Аппаратные возможности vga


Содержание

Что такое DVI и VGA – особенности и отличия

Каждый пользователь ПК рано или поздно сталкивается с подключением своего ноутбука или персонального компьютера к монитору с помощью различных кабелей и разъемов. Все они отличаются между собой по структуре, качеству картинки и максимально допустимой длине кабеля. В 90-е годы для подключения ЭЛТ мониторов использовался 15-ти пиновый разъем VGA, который выдавал хорошее изображение для того времени. Со временем разрешения которое выдает VGA стало недостаточно и ему на смену пришел новый 17 (17-29) пиновый интерфейс DVI с возможностью отобразить намного большее разрешение из-за его большей пропускной способности.

DVI разъем

Для разработки Digital Visual Interface (DVI) крупные компании объединили свои усилия. Совместно было принято решение о нецелесообразности дважды конвертировать сигнал. Вследствие этого разработчики пришли к решению о создании единого цифрового интерфейса, который сможет выводить исходное изображения без лишних изменений и потерь качества.

Основной принцип работы интерфейса заключается в новой технологии протокола кодирования данных TMDS. Информация, предварительно реализированная протоколом, последовательно передается на устройство.

Интерфейс позволяет достичь разрешения 1920х1080 при частоте в 60 Гц. Таких параметров позволяет добиться пропускная способность 1,65 Гб/с и это при использовании одного соединения TMDS. Если же используются два соединения, то скорость возрастет до 2 Гб/с. При таких высоких показателях DVI на голову превосходит своих предшественников.

Для простого пользователя объяснить, чем так хорош Digital Visual Interface можно сказав лишь то, что это цифровой видеоинтерфейс. Отличить его от аналогового предшественника не составит труда — разъемы всегда белого цвета, что не дает возможности его спутать с другими. Форма и большее количество пинов также является характерным отличием интерфейса.

Кабель у интерфейса ограничен по длине, как и у других разъемов, максимальная его длинна составляет не более 10 м, что на 7 метров больше чем у VGA.

Основные виды и отличия

Помимо характерных отличий от других интерфейсов Digital Visual Interface также отличается и между собой. Основными отличиями между ними является количество каналов и наличие возможности передачи аналогового сигнала. Рассмотрим популярные вариации подробнее:

  1. DVI-I SingleLink – самый распространенный вариант. Вариацией этого интерфейса оснащены практически все современные видеокарты. Примечателен он тем, что имеет два объединенных канала (цифровой + аналоговый), которые не зависят друг от друга и не имеют возможности работать одновременно. Устройство само определяет через какой канал передавать данные.
  2. DVI-I DualLink – похож на прошлый вариант, но отличается тем, что имеет два цифровых канала о чем свидетельствует Dual в названии. Это позволяет повысить пропускную способность передачи данных и увеличить максимальное разрешение до 2056х1600, тем самым повысив качество картинки.
  3. DVI-D SingleLink — буква D в названии означает «Digital», что говорит о том, что в данной вариации отсутствует аналоговый канал и интерфейс работает исключительно по одному цифровому. Это ограничивает разрешение до 1920х1080.
  4. DVI-D DualLink – спецификация разъема с максимальной пропускной способностью. Достигается это с помощью использования сразу двух цифровых каналов. При этом максимальное разрешение будет составлять 2560х1600.
  5. DVI-A – по сути это VGA, но с разъемом DVI. Может передавать только аналоговый сигнал.

Подвести итог о разнице между разъемами можно просто — буква D говорит о наличии только цифрового сигнала, буква А – только аналогового, буква I говорит о наличии обоих типов сигнала.

В случае, когда на видеокарте есть Digital Visual Interface выход, а на мониторе только VGA подойдут переходники. При приобретении переходников нужно понимать разницу между DVI-I и DVI-D, первый сможет передать сигнал на VGA т.к. присутствует аналоговый канал, а вот второй не имеет аналогового канала связи и передать по нему изображение через переходник не получится, для этого используют специальные дорогостоящие конвертеры.

Помимо переходников DVI–VGA и VGA-DVI существуют и другие DVI–HDMI, HDMI–DVI, DVI-DisplayPort, DisplayPort-DVI, все они передают между собой цифровой сигнал и проблем с подключением возникнуть не должно.

Недостатки технологии

Единственным существенным недостатком технологии является ограничение по длине кабеля. К примеру, при использовании кабеля длиной в 15 м максимальное разрешение, которого можно будет добиться составляет 1280х1024, но если использовать всего 5 метровый кабель разрешение возрастет до 1920х1200. Если требуется подключить устройство на большом расстоянии без потери сигнала придется использовать дополнительные репитеры, которые усилят сигнал.

VGA разъем

В 1987 году компания Canon предоставила миру новый разъем VGA (Video Graphics Array), который был установлен на одноименную видеокарту. Возможностей технологии было более чем достаточно, ведь первоначальное разрешение было 640х480. Максимально возможное разрешение без потери качества изображения, которое способен выдать Video Graphics Array, составляет 1280х1024. Несмотря на то, что давно появились более эффективные интерфейсы, которые вытесняют VGA с рынка, множество телевизоров и видеоустройств по прежнему комплектуются данным разъемом. Причиной вытеснения стало появление новых мониторов, которые требуют большего разрешения.

Разъем имеет 15-ти пиновую распайку и маркируется синим цветом (за редкими исключениями), что позволяет легко отличить его от DVI (белый). Максимальная длинна кабеля для подключения ограничивается 3 м.

Вследствие развития технологий появился новый стандарт Super Video Graphics Array или SVGA, который использует такое же 15-ти пиновое подключение, что и Video Graphics Array но значительно превосходит его технически. Основным отличием SVGA от VGA является количество отображаемых цветов, их в новой версии интерфейса стало 16 млн, при 256 цветов у старого.

Основные виды

У VGA разъемов существует три основных разновидности DDC1, DDC2, E-DDC:

  1. DDC1 – позволяет монитору в одностороннем порядке передавать данные с информацией о своих характеристиках на компьютер. После чего видеокарта определяет данную информацию на кабеле и обнаруживает подключенный к ней монитор DDC
  2. DDC2 – спецификация этого вида позволяет уже обмениваться информацией в двухстороннем порядке. Сперва монитор передает свои данные на компьютер, после чего компьютер подстраивает нужные параметры под подключенный монитор.
  3. E-DDC – представляет собой самую эффективную спецификацию. Информация о данных подключенного монитора сохранялась в памяти устройства.

Распиновка VGA

Все 15 контактов расположены в 3 ряда по 5 контактов. Первые три контакта отвечают за передачу аналогового видеосигнала трех разных цветов (1,2,3). Каждый из них имеет свою землю — 6,7,8 соответственно. 13 и 14 контакты отвечают за горизонтальную и вертикальную синхронизацию. Помимо передачи видеосигнала интерфейс обладает двухсторонней связью с монитором.

  1. RED— Красный видео (75 Ом, 0.7 В).
  2. GREEN— Зеленый видео (75 Ом, 0.7 В).
  3. BLUE— Синий видео (75 Ом, 0.7 В).
  4. RES — Не используется.
  5. GND — Земля.
  6. RGND — Земля красного.
  7. GGND — Земля зеленого.
  8. BGND — Земля синего.
  9. +5V — Дополнительные +5 В от видео карты.
  10. SGND — Синхронизация земли.
  11. ID0 — ID монитора Бит 0 (опционально).
  12. SDA — I2C двунаправленная линия данных.
  13. HSYNC or CSYNC — Горизонтальная синхронизация (или композитная синхронизация).
  14. VSYNC — Вертикальная синхронизация.
  15. SCL — Тактовая частота 15 SCL I2C в DDC2, Monitor ID3 в DDC1.

Если речь идет о миниразъеме mini VGA (уменьшенном аналоге с теми же параметрами), то распиновка будет следующей:

  1. Красный видеопровод.
  2. Зеленый видеопровод.
  3. Синий видеопровод.
  4. Провод горизонтальной синхронизации.
  5. Провод вертикальной синхронизации.
  6. Красный общий провод.
  7. Синий общий провод.
  8. Зеленый общий провод.
  9. Общий провод синхронизации

Удлинители

Существуют ситуации, когда компьютер и подключаемый монитор или телевизор находятся в разных комнатах и для их подключения потребуется кабель нестандартной длинны. Его можно купить в любом компьютерном магазине, но появляются две проблемы:

  • слишком большая цена кабеля — от 20 долларов за 15 метров;
  • жесткость стандартного кабеля, что становится большой проблемой для красивой и правильной укладки в плинтуса. Если же при монтаже кабеля требуется пройти через стену, то заводской кабель явно не поможет т.к. придется сверлить отверстие диаметром в 40-мм.


В подобных случаях идеальным решением будет сделать удлинитель самостоятельно. В этом придет на помощь обычная витая пара 5 или 6 категории.

В вопросе цены она значительно выигрывает у заводского удлинителя Video Graphics Array, цена ее составляет около 15 рублей за метр, а диаметр всего 8 мм.

Используя всего 8 контактов витой пары можно с легкостью спаять удлинитель, но можно поступить еще проще купив в магазине переходник VGA — RJ-45.

DVI-D — VGA переходник своими руками

Найти такой переходник невозможно. Виной всему то, что технологии используют разные порты и типы данных. Если внимательно посмотреть на распиновку DVI-D то станет заметно, что на нем отсутствуют контакты для передачи аналогового сигнала, который требуется для VGA.

В таком случае может помочь конвертер DVI-D – VGA, который преобразует цифровой сигнал исходящий от Digital Visual Interface, в аналоговый. Это единственный вариант подключения.

Стоит заметить, что если выломать 4 «лишних контакта» из-за которых обычный переходник не вставляется в разъем, то все-равно ничего работать не будет, поскольку именно они отвечают за передачу аналогового сигнала.

Максимальная длина кабеля

Все интерфейсы имеют ограничение по максимально допустимой длине кабеля при которой не теряется качество сигнала. Чем больше длинна кабеля, тем хуже сигнал, а соответственно и максимальное разрешение. Для каждого вида максимальная длинна разная, поскольку интерфейсы используют различные технологии и типы сигналов.

Для DVI – 10, VGA – 3 м, HDMI – 10 м.

Отличие DVI и VGA

Основным отличием этих разъемов является максимальное разрешение и качество картинки. Кроме этого Digital Visual Interface имеет от 17 до 29 пинов, при том как VGA всего 15. Еще одним отличием является тип сигналов с которыми работают интерфейсы: у VGA это аналоговый, а у Digital Visual Interface — цифровой. Именно по этой причине VGA приходится проделывать конвертацию дважды, что значительно ухудшает качество получаемого изображения.

Что лучше DVI или HDMI

В сравнении этих двух интерфейсов можно сказать о некой их равнозначности. Большим преимуществом HDMI является то, что с помощью всего одного кабеля можно передавать как видео, так и аудио данные, тем самым уменьшив количество проводов, которых в современных мультимедийных системах предостаточно. Существенным отличием является максимальное разрешение, которое у HDMI на данный момент может составлять 10240 × 5760.

Разница между VGA и HDMI

Некорректно сравнивать два этих интерфейса из-за их разницы во времени создания. HDMI достаточно новый разъем, который предоставляет пользователю прекрасную картинку и отличный звук всего в одном кабеле. Video Graphics Array сейчас используется по большей части в старой технике не совместимой с новыми технологиями.

Аппаратные возможности vga

VGA (так же, как и EGA) состоит из следующих основных подсистем (в народе словом «секвенсер» называли набор регистров управления доступом к плоскостям видеопамяти):

  • Графический контроллер (Graphics Controller), посредством которого происходит обмен данными между центральным процессором и видеопамятью. Имеет возможность выполнять битовые операции над передаваемыми данными.
  • Видеопамять (Display Memory), в которой размещаются данные, отображаемые на экране монитора. 256 кБ DRAM разделены на четыре цветовых слоя по 64 кБ.
  • Последовательный преобразователь (Serializer или Sequencer) — преобразует данные из видеопамяти в поток битов, передаваемый контроллеру атрибутов [3] .
  • Контроллер атрибутов (Attribute Controller) — с помощью палитры преобразует входные данные в цветовые значения.
  • Синхронизатор (Sequencer) — управляет временны́ми параметрами видеоадаптера и переключением цветовых слоёв.
  • Контроллер ЭЛТ (CRT Controller) — генерирует сигналы синхронизации для ЭЛТ [4][5] .

В отличие от CGA и EGA, основные подсистемы располагаются в одной микросхеме, что позволяет уменьшить размер видеоадаптера (EGA тоже был реализован в одном чипе, по крайней мере его тайванские неоригинальные клоны). В компьютерах PS/2 видеоадаптер VGA интегрирован в материнскую плату [2] .

Отличия от EGA

VGA полностью аналогичен EGA (включая плоскостную видеопамять в 16цветных режимах и секвенсор для доступа процессора к ней), за исключением нижеследующего:

  • иной разъем и кабель к монитору (и иные мониторы), аналоговый, а не 2 бита на цвет. Этот разъем и кабель не менялись около 15 лет (до появления цифровых пакетно-ориентированных технологий DVI, HDMI и DisplayPort, пришедших из мира бытовой видеотехники) и использовались далее в куда более высоких разрешениях. Даже стандартные VGA мониторы сплошь и рядом были способны показывать режим 800×600 при использовании с более современной видеокартой (все зависело от качества блоков развертки монитора и их способности не сорвать генерацию на таких повышенных частотах). В настоящее время (все современные видеокарты совместимы с VGA сверху вниз) слово «VGA» в обиходе oзначает именно этот тип подключения монитора, ныне устаревший, но все еще актуальный.
  • 18битные цвета в палитре вместо 6битных, такой богатый набор позволял, например, реализовать ночь, плохую погоду, «заколдованные» режимы и мерцающие цвета в играх одной лишь палитрой (как в Ultima VII)
  • наличие 256-цветных режимов, стандартный — 320×200, недокументированными (на деле документированными в документациях на аппаратуру VGA, но не включенными в BIOS и его документацию) ухищрениями можно было получить 320×240 (квадратные пиксели, т.н. «режим Х») и выше
  • максимальный 16цветный режим — 640×480 (квадратные пиксели)
  • во всех 200строчных графических режимах сканлиния повторялась 2 раза, что давало 400 физических строк развертки монитора, что сильно улучшало качество картинки даже в младших режимах (отсутствие щелей между строк развертки).
  • высота ячейки знакогенератора — 16 сканлиний, а не 14, как у EGA, что давало те же 400 строк развертки во всех текстовых режимах (кроме режимов совместимости со знакогенератором EGA). Таким образом, VGA всегда использовал 400 строк развертки, кроме двух старших 16цветных режимов, где их было 480 и 350. Режим Х также использовал 480 строк.
  • все регистры (палитры, секвенсера и т.д.) доступны на чтение, EGA имел ряд регистров «только для записи» (например, палитра).

Текстовые режимы

В стандартных текстовых режимах символы формируются в ячейке 9×16 пикселов, возможно использование шрифтов других размеров: 8—9 пикселов в ширину и 1—32 пиксела в высоту. Размеры самих символов, как правило, меньше, так как часть пространства уходит на создание зазора между символами. Функция для выбора размера шрифта в BIOS отделена от функции выбора видеорежима, что позволяет использовать различные комбинации режимов и шрифтов. Имеется возможность загрузки восьми и одновременного вывода на экран двух различных шрифтов [2] [6] .

В VGA BIOS хранятся следующие виды шрифтов и функции для их загрузки и активации:

  • 8×16 пикселов (стандартный шрифт VGA),
  • 8×14 (для совместимости с EGA),
  • 8×8 (для совместимости с CGA).

Как правило, эти шрифты соответствуют кодовой странице CP437. Также поддерживается программная загрузка шрифтов, которую можно использовать, например, для русификации [7] .

Доступны следующие стандартные режимы:

  • 40×25 символов, 16 цветов, разрешение 360×400 пикселов.
  • 80×25 символов, 16 цветов, разрешение 720×400 пикселов.
  • 80×25 символов, монохромный, разрешение 720×400 пикселов [4] .

Используя шрифты меньших размеров, чем стандартный 8×16, можно увеличить количество строк в текстовом режиме. Например, если включить шрифт 8×14, то будет доступно 28 строк. Включение шрифта 8×8 увеличивает количество строк до 50 (аналогично режиму EGA 80×43) [8] [9] .

В текстовых режимах для каждой ячейки с символом можно указать атрибут, задающий способ отображения символа. Существует два отдельных набора атрибутов — для цветных режимов и для монохромных. Атрибуты цветных текстовых режимов позволяют выбрать один из 16-ти цветов символа, один из 8-ми цветов фона и включить или отключить мерцание (возможность выбора мерцания можно заменить на возможность выбора одного из 16-ти цветов фона), что совпадает с возможностями CGA. Атрибуты монохромных режимов совпадают с атрибутами, доступными у MDA, и позволяют включать повышенную яркость символа, подчёркивание, мерцание, инверсию и некоторые их комбинации [2] .

Графические режимы

В отличие от своих предшественников (CGA и EGA) видеоадаптер VGA имел видеорежим с квадратными пикселами (то есть, на экране с соотношением сторон 4:3 соотношение горизонтального и вертикального разрешений было также 4:3). У адаптеров CGA и EGA пикселы были вытянуты по вертикали.

Стандартные графические режимы

  • 320×200 пикселов, 4 цвета.
  • 320×200 пикселов, 16 цветов.

  • 320×200 пикселов, 256 цветов (новый для VGA).
  • 640×200 пикселов, 2 цвета.
  • 640×200 пикселов, 16 цветов.
  • 640×350 пикселов, монохромный.
  • 640×350 пикселов, 16 цветов.
  • 640×480 пикселов, 2 цвета. При разрешении 640×480 пиксел имеет пропорции 1:1 (новый для VGA).
  • 640×480 пикселов, 16 цветов (новый для VGA) [4] .

Нестандартные графические режимы (X-режимы)

Перепрограммирование VGA позволяло достичь более высоких разрешений по сравнению со стандартными режимами VGA. Наиболее распространённые режимы таковы:

  • 320×200, 256 цветов, 4 страницы. Ничем внешне не отличающийся от режима 13h (320×200, 256 цветов), этот режим имел четыре видеостраницы. Это позволяло реализовать двойную и даже тройную буферизацию.
  • 320×240, 256 цветов, 2 страницы. В этом режиме страниц меньше, зато квадратные пиксели.
  • 360×480, 256 цветов, 1 страница. Наибольшее разрешение на 256 цветах, которое позволяет VGA.

Во всех этих режимах используется плоскостная организация видеопамяти, концептуально похожая на используемую в 16цветных режимах, но использующая для формирования цвета по 2 бита из каждой плоскости, а не по 1 — т.е. биты 0-1 байта 0 в плоскости 0 давали биты 0-1 цвета пиксела 0, те же биты в плоскости 1 — биты 2-3 цвета, и т.д. Следующие биты того же байта давали цвета следующих пикселов, т.е. 4 расположенные «один параллельно другому» по одному адресу байта в 4 плоскостях задавали цвет 4 пикселов.

Такая организация видеопамяти позволяла использовать всю видеопамять карты, а не только плоскость 0 в 64К, для формирования 256цветной картинки, что давало возможность использования высоких разрешений, или же многих страниц.

Для работы с такой памятью использовался тот же секвенсер, что и в 16цветных режимах.

Зато из-за особенностей контроллера видеопамяти копирование данных в видеопамять происходит вчетверо быстрее, чем в режиме 13h (это сильно зависит от конкретного машинного кода, исполняющего копирование, и конкретного сценария рисования, а именно заливки сплошным цветом, в общем случае плоскостная видеопамять куда медленнее обычной, и именно потому в SVGA от нее отказались полностью).

Термин «X-режим» (англ. Mode X ) был придуман Майклом Абрашем в 1991 году для обозначения нестандартного режима 320×240 с 256 цветами. Этот режим был открыт (путем изучения IBMовской документации на аппаратуру VGA, которая в те времена была защищена на правовом уровне и не ходила в виде файлов в публичном доступе, опубликованы были только вызовы VGA BIOS, которые не умели включать эти режимы) различными программистами независимо друг от друга, но стал известным благодаря статьям Майкла Абраша в журнале «Dr. Dobb’s Journal» [10] .

Илон Маск рекомендует:  Что такое код domdocument >create_attribute

4a4ik

13 июля 2015 г.

Как работать с VGA видеоинтерфейсом

Рис.3 VGA «мама» Рис.4 VGA «папа»

Вывод Имя Направление Описание
1 RED » height=»9″ src=»http://pinouts.ru/images/arrowr.gif» style=»font-size: 1em; font-stretch: normal; margin: 0px; padding: 0px;» w /> Красное видео (75 Ом, 0.7 В)
2 GREEN » height=»9″ src=»http://pinouts.ru/images/arrowr.gif» style=»font-size: 1em; font-stretch: normal; margin: 0px; padding: 0px;» w /> Зелёное видео (75 Ом, 0.7 В)
3 BLUE » height=»9″ src=»http://pinouts.ru/images/arrowr.gif» style=»font-size: 1em; font-stretch: normal; margin: 0px; padding: 0px;» w /> Синие видео (75 Ом, 0.7 В)
4 RES Зарезервировано
5 GND Земля
6 RGND Земля для красного
7 GGND Земля для зелёного
8 BGND Земля для синего
9 KEY Не используется
10 SGND Земля для синхро сигналов
11 ID0 Не используется
12 SDA I 2 C двунаправленная передача данных
13 HSYNC or CSYNC » height=»9″ src=»http://pinouts.ru/images/arrowr.gif» style=»font-size: 1em; font-stretch: normal; margin: 0px; padding: 0px;» w /> Горизонтальная синхронизация
14 VSYNC » height=»9″ src=»http://pinouts.ru/images/arrowr.gif» style=»font-size: 1em; font-stretch: normal; margin: 0px; padding: 0px;» w /> Вертикальная синхронизация
15 SCL I 2 C синхро сигнал

Отбросим I2C и остаётся всего несколько выводов. Все земли можно соединить вместе, в итоге будет 3 цвета RGB, на эти выводы подаётся аналоговое напряжение от 0 до 0.7 В, чем больше напряжение на цветовом входе тем «насыщеннее» данный цвет. 0.7 В на всех 3 выводах дадут самый яркий белый цвет на который способен монитор. Таким образом можно получить практически любой цвет смешиванием 3-ёх составляющих. Для простоты я буду подавать на каждый из выводов либо 0 либо 0.7 В. Если хочется большого разнообразия цветов, нужно использовать преобразователи из цифрового кода в аналоговое напряжение ЦАП. Его можно составить самому с помощью резисторной матрицы. Либо достать специальную микросхему, к примеру: AD664

На выводах вертикальной и горизонтальной синхронизации действуют уровни ТТЛ сигналов.
— Уровень логического нуля, не более +0,8 В
— Уровень логической единицы, не менее +2,4 В
Вообщем они стабильно работают с МК при 3.3 В и 5 В.

При питании от 3.3 В (стандартное напряжение ПЛИС) (логическая 1 ≈ 3.3 В)
на цветовые входы сигнал подаётся через резисторы 270 Ом.

Рис.5 Подключение VGA к цифровому устройству с питанием 3.3 В

Как мы помним входное сопротивление цветовых VGA входов 75 Ом.
Рассчитаем максимальное напряжение:
3.3 * 75 / (75 + 270) = 0.717 В
Немного превышает, но работает без проблем.

При питании от 5 В, потребуется резисторы номиналом:
R = 3.3 * 75 / 0.7 — 75 = 460 ≈ 470 Ом

Остаётся узнать в какие моменты подавать единички и нолики на эти выводы.

Разрешение изображения и частота обновления определяется интервалами импульсов синхронизации. Во время синхроимпульсов на RGB выводах, должно быть 0 В.

Видео данные 1 строки — горизонтальный синхро импульс — видео данные 2-ой строки — горизонтальный синхро импульс — видео данные 3-ей строки — ********************* — рисуем последнюю строку — большой вертикальный синхроимпульс (вместе с горизонтальным) — Всё по новой.

Рис. 6 Временные диаграммы сигналов

Рис.7 Отображение синхроимпульсов

Частота обновления кадров 60 Гц
Вертикальное обновление 31.469 кГц
Частота пикселей 25.175 МГц

Часть линии Пиксели Время [мкс]
Видео данные (D) 640
Front porch (E) 16
Ширина синхро импульса (B) 96
Back porch (C) 48
Целая линия (A) 800
Часть кадра Линии Время [мс]
Видео данные (R) 480
Front porch (S) 10
Ширина синхро импульса (P) 2
Back porch (Q) 33
Весь кадр (O) 525

Не обязательно использовать точно такие же значения как в таблице, лишь бы они были достаточно близкими. Для данного разрешения используются отрицательные вертикальный и горизонтальный синхроимпульсы, для других разрешений это может не совпадать.

Можно заметить что частота вертикальной синхронизации иногда не совпадает с частотой обоновления экрана. LCD моинторы пришли на смену ЭЛТ мониторов, которые заменили большие телевизоры с электронно-лучевой трубкой. Когда появилась возможность выводить цветное изображение на экран у американских инженеров возникла проблема, тот стандарт частоты передачи звука который они выбрали «не согласуется» (вызывает помехи) с 60 Гц. Стандарт для частоты был 44.056 кГц. Но они выяснили что изменение частоты на 0.1 % позволит это исправить и т.к. стандарт передачи звука был уже общепринятым, они уменьшили частоту оновления экрана.
60 * 0.999 = 59.94
Т.к. многие значения были приняты ещё тогда, производели к ним привыкли и продолжают использовать, если сейчас изменить стандарт то придётся проделать слишком большую работу, не считая того что многие устройства могут просто перестать работать с новыми стандартами.
Подробней про это можно прочитать здесь и здесь
Я не знаю причину отличий другиих значений и почему нельзя было сделать временные интервалы кратные 10, 5 или хотя бы 2.

Из таблиц видно что есть время когда на экран ничего не выводится, это сделано для синхронизации, это можно представить будто наш рисующий луч (раньше изображение отобрадалось электронным лучём) уходит за границы экрана. Также нужно подождать несколько пустых линий, которые уходят под эвидимый экран.


Рис. 8 Экран с зонами синхронизации (Blanking Time)

Легче рассчитать и реализовать время 1 пикселя и затем всё подстраивать под него, иногда указывается просто частота пикселей и остальные значения в пикселях.

В принципе это всё что ннеобходимо знать чтобы рисовать на VGA мониторе, осталось запрограммировать (или любым другим способом) цифровое устройство и попытаться вывести изображение.

Телевизор работает почти также, но там только «1 провод», значит все сигналы соединены вместе, если цвет не так важен, то принцип тот же.

Попробуем вывести изображение и посмотреть на осцилограмму сигнала.
У меня есть готовая тестовая программа для ПЛИС отсюда которая выводит данное изображение:

Рис,9 Полученное изображение на мониторе

Рассмотрим осцилограмму. Сверху вниз по порядку идут: Красный, Зелёный, Синий, Горизонтальная синхронизация, Вертикальная синхронизация.

Рис. 10 Осцилограмма сигналов полученного изображения

Здесь отображен 1 кадр, можно догадаться как будет выглядеть изображение, т.к. каждая полоса состоит из имульсов (если приблизить там есть зоны где постоянно 1, но не длинной во всю линию), то не будет одноцветных линий. Если разбить сигналы на столбцы, видно что есть линии на которых промежутки только красного либо зелёного цветов.

Используемые мной значения:
Весь кадр (O) — 16.69284 мс
Ширина вертикального синхроимпульса (P) — 64.08 мкс
1 строка (A) — 31.9176 мкс
Ширина горизонтального синхроимпульса (B) — 3.84 мкс
Частота пикселей — 25 МГц

Программирование видеоадаптеров.

Сразу после появления видеоадаптера VGA многие фирмы начали выпуск новых моделей видеоадаптеров, обеспечивающих отображение большего количества цветов и большую разрешающую способность. Такие видеоадаптеры получили общее название Super VGA или SVGA.

Подавляющее большинство видеоадаптеров SVGA обеспечивают полную совместимость с VGA на уровне регистров. Поэтому все программное обеспечение, разработанное для видеоадаптера VGA, работает с видеоадаптерами SVGA без дополнительных изменений.

Естественно, чтобы расширить возможности видеоадаптера VGA, пришлось дополнить его новыми регистрами. Видеоадаптеры SVGA имеют значительно больше регистров, чем простые видеоадаптеры VGA. Чтобы видеоадаптер SVGA смог проявить все свои возможности, необходимо, чтобы программное обеспечение правильно использовало все регистры видеоадаптера.

К сожалению, SVGA не является стандартом, наподобие EGA или VGA. Различные модели видеоадаптера SVGA обладают различным набором регистров, расположенных по разным адресам и выполняющих различные функции. Это значительно затрудняет создание программ, использующих все возможности SVGA, так как такая программа должна правильно определить тип вашего видеоадаптера и работать с ним соответствующим образом.

Ассоциация VESA разработала стандарт на функции BIOS, позволяющие управлять видеоадаптерами SVGA. Текущая версия стандарта VESA не позволяет реализовать все возможности современных видеоадаптеров, например, отображать геометрические фигуры с использованием аппаратных возможностей акселераторов. Мы опишем стандарт VESA и приведем несколько примеров программирования видеоадаптеров SVGA при помощи функций BIOS.

Самые широкие возможности для использования видеоадаптеров SVGA предоставляет операционная система Windows. В ней используются специальные драйверы, выполняющие всю работу по программированию видеоадаптеров на аппаратном уровне. Обычно драйверы разрабатываются самой фирмой создавшей видеоадаптер. Поэтому кропотливая работа с регистрами адаптера скрыта от программистов, разрабатывающих программы Windows. Они имеют дело с хорошо документированными высокоуровневыми функциями графического интерфейса.

Видеопамять SVGA

Видеоадаптеры SVGA превосходят VGA по разрешению экрана и количеству одновременно отображаемых цветов.

Лучшие режимы VGA

Типичные режимы SVGA

640 x 480; 16 цветов

800 x 600; 256, 64 К, 16,7 М цветов

320 x 200; 256 цветов

1024 x 768; 256, 64 К, 16,7 М цветов

1280 x 1024; 256, 64 К, 16,7 М цветов

Чтобы иметь возможность отображать большое количество цветов при большой разрешающей способности, видеоадаптер SVGA должен иметь значительно больше видеопамяти, чем адаптер VGA. Например, для реализации режима с разрешением 1024 x 768 пикселов и возможностью одновременного отображения 64 К цветов необходима видеопамять объемом 1,6 Мбайт.

Для доступа центрального процессора к видеопамяти обычно резервируется адресное пространство размером всего 64 Кбайт. Как же процессор получает доступ к видеопамяти, объем которой для некоторых режимов достигает 4 Мбайт? Существует несколько различных подходов к решению этой проблемы, которые могут комбинироваться.

Слоеный пирог

В большинстве стандартных режимов адаптеров EGA и VGA видеопамять организована из четырех слоев. По каждому адресу расположены сразу четыре байта. Благодаря специальным схемам видеоадаптер может получить доступ к отдельным слоям памяти.

Простейший путь втиснуть в адресное пространство объемом 64 Кбайт больше памяти лежит в увеличении количества слоев видеопамяти. Действительно у некоторых моделей видеоадаптера SVGA видеопамять организована в 8 и даже в 16 слоев. Каждый байт видеопамяти определяет 8 пикселов. Восемь слоев памяти позволяют закодировать 256 возможных цветов для пиксела, а шестнадцать слоев — 65536 различных цветов.

Однако увеличение числа слоев влечет за собой усложнение аппаратуры видеоадаптера и ее удаление от стандарта адаптера VGA, регистры которого рассчитаны только на четыре слоя памяти.

Увидеть весь мир через замочную скважину

Многие современные видеоадаптеры применяют давно известный прием, ранее использовавшийся для подключения к компьютеру дополнительной памяти. Центральный процессор получает доступ к видеопамяти через небольшое окно. Это окно может иметь небольшой размер — до 64 Кбайт и располагаться в адресном пространстве процессора. Обычно окно занимает адресное пространство A000:0000h — A000:FFFFh, то есть расположено также как и для стандартных цветных режимов видеоадаптеров EGA, VGA и SVGA. Процессор компьютера может перемещать это окно по всей видеопамяти адаптера получая доступ к разным ее участкам.

Таким образом, процессор может одновременно получить доступ только к части видеопамяти. Чтобы обратиться к другому участку видеопамяти, необходимо переместить окно доступа. Обычно для этого достаточно записать в определенный регистр видеоадаптера SVGA положение окна относительно начала видеопамяти.

Доступ к видеопамяти через небольшое окно создает определенные трудности для программного обеспечения. Теперь чтобы отобразить на экране монитора пиксел вы должны не только вычислить положение соответствующей ячейки видеопамяти, но также определить смещение для окна доступа.

Одновременно усложняются процедуры, отображающие на экране линии и другие геометрические фигуры. Возможно, что выводимое на экран изображение не помещается в одно окно. Процедура должна будет соответственно перемещать окно по видеопамяти.

Усложняются процедуры копирования изображения из одной позиции экрана в другую. Они должны учитывать, что при копировании может понадобиться перемещать окно доступа к видеопамяти.

Чтобы немного помочь программистам в решении этих и многих других задач, некоторые реализации видеоадаптеров SVGA отводят для доступа к видеопамяти не одно, а два окна. Обычно они обозначаются как окно A и окно B. В некоторых моделях видеоадаптеров через одно окно можно только записывать данные в видеопамять, а через другое только читать из видеопамяти.

Больше цветов больше бит

Многие режимы видеоадаптера SVGA позволяют одновременно отображать на экране больше чем 256 различных цветов. Естественно что для этого каждый пиксел должен быть представлен большим количеством бит.

HDMI,DVI,VGA,DisplayPort — Всё об интерфейсах подключения.

Подбираем для соответствующего разъема нужный штекер. Какие типы кабелей предлагают производители» HDMI,DVI,VGA,DisplayPort» и какой интерфейс является оптимальным для подключения монитора.

порты HDMI, VGA(D-Sub), DVI.

Раньше что­бы подключить монитор к компьютеру, использовали только аналоговый интерфейс VGA. В сов­ременных устройствах присут­ствуют разъемы » HDMI,DVI,VGA,DisplayPоrt». Посмотрим какими пре­имуществами и недостатками об­ладает каждый из интерфейсов.

С развитием новых технологий для плоских мониторов стало не­достаточно возможностей разъ­ема VGA. Чтобы достичь наивыс­шего качества изображения, не­обходимо использовать цифро­вой стандарт, такой как DVI. Про­изводители устройств для до­машних развлечений создали стандарт HDMI, ставший цифро­вым -преемником» аналогового разъема Scan. Несколько позднее VESA (Ассоциация стандартиза­ции видеоэлектроники) разрабо­тала DisplayPort.


Основные интерфейсы подключения мониторов.

VGA. Первый стандарт подклю­чения, используемый и посей день, был разработан в 1987 году веду­щим в то время производителем компьютеров IBM для своих ПК се­рии PS/2. VGA — сокращенное Video Graphics Array (массив пикселов), в свое время именно так называ­лась видеоплата в компьютерах PS/2, разрешение которой состав­ляло 640×480 пике, (часто встреча­ющееся в технической литературе сочетание «VGA-разрешение» озна­чает именно эту величину).

Аналоговая система передачи данных с увеличением разрешения только ухудшает качество картинки. Поэтому в современ­ных компьютерах стандартом является цифровой интерфейс.

интерфейсы vga и dvi

. ■ DVI. Данная аббревиатура оз-naHaeTDigital Visual Interface-циф­ровой видеоинтерфейс. Он пере­дает видеосигнал в цифровом формате, сохраняя при этом вы­сокое качество изображения.

DVI имеет обратную совместимость: почти все компьютеры оснащены разъ­емом DVI-I, который способен пе­редавать как цифровые видеодан­ные, так и VGA-сигнал.

Недорогие видеоплаты снабжа­ются DVI-выходом в модификации Single Link (одноканальное реше­ние). Максимальное разрешение в данном случае составляет 1920х 1080 пике. (Full HD). Более дорогие модели видеоплат имеют двух-канальиый интерфейс DVI (Dual Link). К ним можно присоеди­нять мониторы с разрешением до 2560×1600 пике.

Разъем DVI достаточно велик, поэтому Apple разработала для своих ноутбуков интерфейс Mini DVI. С помощью переходника удается подключать устройства с Mini DVI и к монито­рам, оснащенным разъемом DVI.

■ HDMI. Сокращение HDMI рас­шифровывается как High Defini­tion Multimedia Interface, то есть мультимедийный интерфейс вы­сокого разрешения. В современ­ных устройствах для домашнего развлечения, например плоских телевизорах и Blu-ray-плеерах, HDMI является стандартным ин­терфейсом подключения.

Как и в случае DVI, передача сиг­нала осуществляется в цифровом формате, что означает сохранение исходного качества. Вместе с HDMI была разработана технология за­щиты HDCP (High Bandwidth Digital Content Protection), препятствую­щая созданию точных копий, на­пример, видеоматериалов.

Первые устройства с поддержкой HDMI появились в конце 2003 года. С тех пор стандарт несколько раз подвергался изменениям, в част­ности — добавлялась поддержка новых аудио- и видеоформатов (см. таблицу вверху).

Для миниатюрных моделей тех­ники существует интерфейс Mini HDMI; соответствующий кабель HDMI/Mini HMDI входит в комп­лект поставки многих устройств.

интерфеисы HDMI и DisplayPort

■ DisplayPort (DP). Новый тип цифрового интерфейса для связи видеоплат с устройствами отобра­жения призван заменить DVI. Те­кущая версия стандарта 1.2 позво­ляет подключать несколько мо­ниторов при их последователь­ном объединении в одну цепочку. Однако в настоящее время уст­ройств, обладающих портом DP, не так много. Являясь прямым кон­курентом HDMI, данный интерфейс имеет существенное преиму­щество с точки зрения производи­телей: не требует лицензионных отчислений. В то время как за каж­дое устройство с HDMI приходит­ся платить четыре американских цента. Если на разъеме компьюте­ра или ноутбука стоит обозначе­ние «DP++», это указывает, что с по­мощью переходника можно под­ключать мониторы с интерфейса­ми DVI и HDMI.

Чтобы на тыльной стороне со­временных видеоплат оставалось достаточно места для разъемов иного назначения, был разрабо­тан уменьшенный вариант интер­фейса DP. Например, видеоплаты Radeon серии HD6800 содержат до шести портов Mini DP.

Mini DVI, Mini DisplayPort

HDMI,DVI,VGA,DisplayPort

Какой из этих стандартов полу­чит самое широкое распростра­нение? У HDMI шансы на успех очень велики, ведь данный ин­терфейс есть у большинства уст­ройств. Однако в колоде произ­водителей стран Азии [LG, Pa­nasonic, Sony, Samsung и Sharp] имеется новый козырь: согласно официальным данным, интер­фейс Digital Interactive Interface for Video and Audio (DiiVA) обеспе­чивает пропускную способность 13,5 Гбит/с (DP: 21,6; HDMI: 10,21. Кроме того, как обещают компа­нии, максимальная длина кабеля между устройствами, например Blu-ray-плеером и телевизором, будет достигать 25 м. Никакой информации о том, как выглядит интерфейс DiiVA, пока нет.

Передача видео по USB

Два года назад появилась воз­можность подключать мониторы через USB с помощью переходни­ков DisplayLink. Однако ввиду невысокой (480 Мбит/с) пропуск­ной способности соединение по USB 2.0 для передачи видео не­пригодно. Другое дело — свежая версия стандарта USB (3.0), обес­печивающая скорость передачи данных до 5 Гбит/с.
Переходник компании DisplayLink позволяет подключать мониторы непосредственно к USB-порту ком­пьютера.

переходник usb dvi

пееходник usb ty dvi

Как соединить компьютер и монитор с разными интерфейсами.

Благодаря переходникам есть множество вариантов подклю­чения (см. таблицу внизу).

Рас­пространенные переходники, на­пример DVI-I/VGA, имеют впол­не приемлемую стоимость. Так называемые конвертеры, преоб­разующие цифровой сигнал вы­хода DisplayPort в аналоговый VGA-сигнал, обходятся значи­тельно дороже.

DVI to VGA adapter

perekhodnik hdmi vga

Однако, напри­мер, при подключении телевизо­ра с интерфейсом HDMI к разъ­ему DVI практически всегда от­сутствует звук.

HDMI cable to the DVI connector

Возможно ли сочетание устройств с различными версиями HDMI

При таком сочетании будут до­ступны лишь функции более ран­ней версии соответствующего ин­терфейса. Например, если видео­плата с HDMI 1.2 подключена к ЗО-телевизору, поддерживающему HDMI 1.4, то ЗО-игры станут ото­бражаться только в формате 2D.
Совет. Установка нового драйвера позволяет добавить поддержку HDMI 1.4 в некоторых видеопла­тах на чипах от NVIDIA, например GeForce GTX 460.
Какие разъемы обеспечивают наилучшее качество изображения?

Как показало тестирование, ана­логовый VGA-интерфейс дает наи­худшее качество изображения, в особенности при передаче сиг­налов с разрешением более 1024х 768 пике. Такое разрешение сегод­ня поддерживают даже 17-дюймо­вые мониторы. Обладателям мони­торов с большей диагональю и разрешением 1920×1080 пике, на­стоятельно рекомендуется исполь­зовать DVI, HDMI или DP.

Как подключить монитор к ноутбуку?

Большинство ноутбуков оснаща­ется разъемами для подключе­ния внешних мониторов. Вначале присоедините монитор к ноутбу­ку. После этого, используя кнопки Ш и KPI , можно переключаться между следующими режимами.

■ Использование внешнего мо­нитора в качестве основного. Дисплей ноутбука отключается, изображение выводится только на подключенный внешний мо­нитор. Оптимальный вариант для киноманов и геймеров.

Режим клона. Внешний мони­тор и дисплей ноутбука демонст­рируют одно и то же изображение

■ Практичная функция при прове­дении презентаций и семинаров.

■ Многоэкранный режим. Поз­воляет увеличить размер Рабоче­го стола Windows за счет исполь­зования нескольких мониторов. Очень удобно, например, набирая текст в Word, иметь перед глазами электронные сообщения.

Удастся ли присоединить телевизор к компьютеру ?

В современных компьютерах и ноутбуках отсутствуют аналого­вые видеоинтерфейсы, такие как S-Video или композитный разъем. Поэтому подключить старый ЭЛТ-телевизор точно не получится. Однако подавляющее большин­ство плоских моделей оснащено интерфейсами DVI или HDMI, а значит, соединить их с компью­тером не составит труда.

perekhodnik hdmi ty dvi

Нетбуки же, как правило, обла­дают только VGA-выходом, и с ними можно соединять лишь те телевизоры, у которых имеется VGA-вход.

Можно ли подключить монитор через USB


Для традиционных мониторов это возможно только с помощью дополнительного переходника DisplayLink . Впрочем, в продаже встречаются и модели, подключа­емые к USB-порту компьютера напрямую — например, Samsung SyncMaster 940 UX.

Какова максимальная длина кабеля для монитора?

Возможности кабеля зависят от типа подключения. При использо­вании DVI длина соединения мо­жет достигать 10 м, однако в случае с HDMI и VGA она не должна пре­вышать 5 м. Для достижения мак­симальной скорости передачи.

На что следует обращать внимание при покупке видеокабеля?

Чтобы расположенные поблизо­сти электронные устройства не влияли на качество передава­емого сигнала, приобретайте только хорошо экранированные кабели. При использовании низ­кокачественного кабеля другие устройства, создавая помехи, мо­гут в некоторых случаях даже снижать скорость передачи дан­ных. В результате на экран будет выводиться прерывистое изо­бражение либо появится эффект наложения спектров. Позолочен­ные контакты предотвращают коррозию штекеров вследствие повышенной влажности воздуха. К тому же применяемые в совре­менных кабелях позолоченные контакты снижают сопротивле­ние между разъемом и штекером, отчего повышается качество пе­редачи. Но как видно из практики: на всё это можно забить, на позолоченные контакты и прочую лобуду, дешёвые кабели китайского производства, а именно они поставляются в комплекте с мониторами и видеокартами. И очень неплохо справляются со своими обязанностями.

Для справки: как то, где то собрали меломанов для теста кабелей. Присутствовали и с позолоченными, и с платиновыми контактам, от 1000$ за шнурок и много дороже. Ну и оценки выставлялись за качество звучания. Что бы определить победителя , соревнования проводились ебстественно в тёмную, производителя видно не было. Ну и кому то из устроителей в голову пришла мысль послать сигнал через обыкновенный железный ЛОМ (которым землю долбят). И что ВЫ думаете, он занял одно из призовых мест.

А меломаны долго объясняли какой кристально чистый звук идёт по этому крутому кабелю. Так что включайте голову, а то я видел у ребят кабель DVI по цене дороже чем видеокарта и монитор вместе взятые.

Видеоадаптер VGA. Принцип работы

Видеосистема предназначена для наблюдения за сигналами компьютерной системы — вывода текстовой, символьной или графической информации на экран монитора. Сегодня компьютер уже нельзя представить без отображения происходящих процессов на экране дисплея, но первые вычислительные системы возникли до появления телевизионных систем. Самые первые ЭВМ использовали в качестве выходных устройств печатающие устройства — принтеры, плоттеры, графопостроители, выдающие результаты вычислений на бумаге.

Системы отображения информации и принцип работы

Сейчас монитор является стандартным средством отображения визуальной информации. Для хранения каждого символа, который предстоит отобразить на экране, зарезервирована специальная область памяти. Таким образом, вывод текста на экран осуществляется заполнением символами этой области памяти. Экран монитора представляется 2000-элементной матрицей (80х25 символов). Образ символа, появляющегося на экране, записан в специальной микросхеме ПЗУ видеоадаптера. Каждый символ формируется на экране из множества точек. Видеостандарты различных фирм отличаются друг от друга количеством точек, используемых при формировании символов.

Компания IBM уже четыре раза изменяла назначение ОЗУ под видеосистему. В первую очередь речь идет о системах IBM PC и XT. Также существует вариант, предназначенный для PCjr, и еще один, использующийся во всех последних усовершенствованных видеосистемах.

Первые две видеосистемы PC могли работать одновременно, так как использовали различные области памяти. Одна область памяти предназначена для монохромного режима, а другая — для цветного. Независимо от используемого адаптера дисплея для любого режима используются одни и те же области памяти. Память монохромного экрана расположена по адресу В0000, цветного — В8000. В целях обеспечения совместимости новые видеосистемы работают с этими же адресами, даже если они используют для хранения дополнительной информации другие адреса памяти.

Для вывода информации на экран программе необходимо знать, какую память она должна использовать для этого. Эту информацию можно получить из специального байта памяти — флага видеорежима. Он используется для указания типа видеоадаптера дисплея, установленного в компьютере. Он позволяет компьютеру определить тип используемого дисплея — монохромный или цветной. Кроме того, этот байт позволяет так же указать тип монитора даже в том случае, если установленный адаптер способен работать с двумя видами дисплеев. Байт флага видеорежима размещается в начале оперативной памяти, по адресу 0463h. Для кодировки текущего дисплея используется байт 0В4h для указания монохромного режима и 0D4h — для цветного.

Стандарт, предложенный фирмой IBM, предполагает хранение символов, видимых на экране, не в непрерывной последовательности. Символы, видимые на экране, располагаются в байтах памяти с промежутком в один байт. Промежуточные байты предназначены для хранения параметров изображаемых символов. Четный байт памяти содержит символ, а нечетный — его атрибуты. Лишняя память может использоваться для хранения нескольких образов экранов — видеостраниц. Все основные видеосистемы разработаны таким образом, что позволяют осуществлять быстрое переключение между страницами. Таким образом, видеосистема может изменять образы экрана почти без задержек, и регулировать скорость замены. Основная цветная схема IBM может работать в режиме с изображением текста на 40 столбцах экрана. Этот режим обеспечивает возможность вывода информации не на компьютерный дисплей, а на телевизор. Так как телевизор не обладает такой четкостью, как монитор компьютера, 80 столбцов текста на экране сливаются. Тогда при уменьшении числа столбцов текста до 40, требуется в два раза меньше памяти. Таким образом, это в свою очередь позволяет увеличить число видеостраниц в два раза.

Со временем IBM усовершенствовала свои видеосистемы и соответственно увеличила объем памяти, используемой для них. В символьных дисплеях она используется для реализации новых видеорежимов, позволяющих разместить на экране до 43 строк и увеличить число видеостраниц. Некоторые видеосистемы способны реализовывать свои собственные режимы при работе с текстом, размещая текст в 60 строках и 132 столбцах.

Использование псевдографики

В любом текстовом режиме легко получить графическое изображение. С помощью одного байта можно закодировать 256 символов, что значительно перекрывает весь алфавит и все цифры, свободные значения используются для кодировки некоторых специальных символов. Большинство из них создано как раз для построения графических изображений.

Из этих символов можно формировать на экране графические изображения любой конфигурации. Эти символы называются псевдографикой.

Разумеется, качество псевдографики значительно проигрывает любой другой графической системе РС. Изображение, сформированное графическими блоками, имеет острые углы и грубое наполнение. Используя большие графические блоки невозможно получить сглаженную деталировку и плавность переходов, поэтому такой графический инструмент представляется слишком грубым во многих применениях. Преимуществом псевдографики является то, что она доступна во всех системах IBM как с цветным, так и с черно-белым монитором.

Растры

Один из способов улучшения качества графического изображения — уменьшение размеров самих графических блоков. При помощи меньших блоков можно сформировать более сглаженное изображение с большей детализацией. Таким образом, чем меньше размер блоков, тем лучше качество получаемого изображения, однако в этом случае следует учитывать характеристики графической системы, накладывающей свои ограничения на размер этих блоков. Размер блока не может быть меньше точки экрана, поэтому наилучшее качество изображения можно получить, работая с индивидуальными точками экрана.

Эти точки являются элементарными частицами, из которых формируются блоки. Они называются пикселами. Не все системы могут работать с элементарными точками видеосистемы. В некоторых из них пиксели образуются объединением определенного количества экранных точек. Наилучших результатов достигаются при выделении специальной области памяти под хранение информации по отображению на экране каждого пиксела изображения, как это сделано для текстового режима, где каждому символу выделено два байта памяти. В системах IBM информация по каждому пикселю хранится в одном или более битах памяти. Такие системы называются системами с растровой графикой. Другим вариантом данной технологии является описание пиксела с использованием адресации памяти. Последний метод называют графикой с адресацией всех точек.

Потенциально растровая графика имеет больше возможностей для формирования более точного изображения. Большее количество обрабатываемых пикселей подразумевает лучшую детализацию — число точек и, как следствие, потенциально возможное число пикселей во много раз превышает число символов, изображаемых на экране — от 64 до 128 раз. Недостатком такой разрешающей способности растровой графики является использование большого объема памяти. Закрепление за каждой точкой экрана одного или двух байтов памяти пропорционально увеличит общий ее объем, закрепляемой за видеосистемой. Графические системы IBM с наименьшим качеством требуют 128 К памяти при закреплении за каждой точкой только одного байта.

Графические сопроцессоры

Точно так же, как арифметический сопроцессор способен существенно повысить быстродействие РС при расчете сложных математических функций, графический сопроцессор может ускорить работу компьютера при формировании изображения на экране монитора. Причем ускорение работы очень существенно, потому что графический сопроцессор способен обрабатывать огромные объемы графической информации — сотни тысяч пикселей за несравнимо более короткий промежуток времени, по сравнению с центральным микропроцессором. Современные графические сопроцессоры Intel 82796, Texas Instruments TMS34010, IBM 8415А широко используются в высокопроизводительных системах. Графические сопроцессоры являются основой для создания скоростных видеосистем. Точно так же, как для математических сопроцессоров, графическим сопроцессорам требуется свое программное обеспечение. Кроме того, во многих случаях им требуются специфические, более дорогие мониторы, графические операционные системы.

Проблема с программным обеспечением может быть решена при помощи специальных графических операционных систем, таких, как Microsoft Windows или Digital Research GEM — при работе в среде DOS, или Presentation Manager — для OS/2. Эти системы связывают программы пользователя и усовершенствованные видеосистемы, включая и реализованные на графических сопроцессорах.

Во многом алгоритм их работы напоминает алгоритм работы BIOS. Он основывается на использовании вызова специальных подпрограмм по формированию соответствующего изображения на видеодисплее. Графические системы переводят поступающие команды на язык, понятный для графических сопроцессоров или других видеоустройств. Таким образом, пользователю нужно только оперировать образами, формируемыми графическими системами. Насыщение систем новыми функциями является делом разработчика графического пакета.

Например, программе нужно очистить экран. Для этого она должна передать графическому пакету соответствующую команду, и только. Все взаимодействие с техническим обеспечением реализует сама графическая система. Однако ей необходимо знать точно, на какой видеосистеме нужно очистить экран, чтобы сформировать команды надлежащим образом. Графические пакеты распознают устройства технического обеспечения по средствам программного драйвера, устанавливаемого в файле CONFIG.SYS. При замене видеосистемы потребуется только заменить один драйвер, используемый графической операционной системой, и все пользовательские программы будут работать с новой системой отображения.

Видеоадаптеры

Видеосистемы совершенствовались как ни что другое буквально с каждым днем. И пользователю приходится решать сложную задачу: какой видеоадаптер выбрать из нескольких десятков имеющихся сейчас на рынке в условиях существования полдюжины «официальных» видеостандартов, и нескольких десятков видеосистем, реализующих идеи, позволяющие превзойти эти стандарты.

Почти полностью все развитие видеостандартов происходило на основании видеоадаптеров, предлагаемых IBM в своих компьютерах. Прогресс шел постоянно, начиная от жуткого зеленого экрана, до сегодняшних полноцветных дисплеев с высокой разрешающей способностью. Параллельно увеличивалось вредное влияние видеосистем на глаза человека.

Адаптер монохромного дисплея

Этот адаптер часто называют просто MDA от Monochrome Display Adapter, хотя его официальное имя — Monochrome Display, или Parallel Printer Adapter.

Слово «монохромный» отражает самую важную характеристику MDA. Он был создан для работы с одноцветным дисплеем. Первоначально он работал с экранами зеленого цвета, которыми обеспечивались преимущественно все системы IBM того времени.

Слова «адаптер дисплея» несут функциональное описание. Это устройство преобразует сигналы, распространяющиеся по шине РС, к форме, воспринимаемой видеосистемой. Возможность подключения принтера к этому адаптеру является его достоинством, потому что позволяет подключить принтер без использования еще одного разъема расширения.

MDA является символьной системой, не обеспечивающей никакой другой графики, за исключением расширенного множества символов IBM. Это был первый адаптер IBM и до недавнего времени он был лучшим адаптером для обработки текстов, обеспечивающим самое четкое изображение символов, по сравнению с любыми дисплейными системами, выпущенными до PS/2. Текстовый режим был целью разработки адаптера. Тогда сотрудники фирмы IBM не могли вообразить, что кому-либо понадобится рисовать схемы на дисплее.

Символы MDA

Для обеспечения подключения терминалов, используемых в больших компьютерных системах, IBM для изображения символа в MDA использовала площадь экрана в 9 х 14 пикселей, а сам символ был 7 х 9 пикселей. Дополнительное пространство использовалось для разделения каждого символа, что увеличивало читаемость.

Для реализации тогдашних стандартов видеотерминалов, обрабатывающих символы по 80 столбцам и 25 строкам, требовалось 740 горизонтальных пикселей и 350 вертикальных, 252000 точек на экран.

Частота MDA

При работе с таким количеством точек фирма IBM пошла на компромисс. При отображении информации с большой частотой потребовалось бы более широкополосный монитор, чем тот, который был доступен (во всяком случае, за небольшие деньги) во время разработки РС. IBM слегка уменьшила используемую частоту, доведя ее до 50 Гц и компенсировала возможность появления мерцания экрана использованием люминофора с большим остаточным свечением. Таким образом, появился стандарт IBM на монохромный дисплей. Используемая более низкая частота давала дополнительно время электронной пушке обрабатывать каждую строку изображения. Однако даже с такой формой плотность точек по монохромным стандартам IBM требовала увеличения горизонтальной частоты по отношению к используемой в популярном видеомониторе телевизионном приемнике — 18,1 КГц против 15,525 КГц.

Цветной графический адаптер


Первым растровым дисплейным адаптером, разработанным IBM для РС, был цветной графический адаптер — CGA (Color Graphic Adapter). Представленная альтернатива MDA ослепила привыкший к зеленому компьютерный мир. Новый адаптер обеспечивал 16 ярких чистых цветов. Помимо этого, он обладал способностью работать в нескольких графических режимах с различной разрешающей способностью.

Как об этом говорит наименование адаптера, он предназначался для формирования графического изображения на цветном экране. Однако он обеспечивал работу и с монохромными дисплеями, созданными не IBM для платы MDA. Он мог работать в паре как с монохромными, так и с композитными мониторами, и даже с модулятором телевизионных приемников (тем не менее, вы не можете подключить CGA к телевизору, если у последнего нет композитного видеовхода). Обеспечивает также работу светового пера.

CGA — это многорежимный дисплейный адаптер. Он может использоваться и для символьных и для побитных технологий. Для каждой из них он реализует несколько режимов. Он содержит 16 Кбайт памяти, прямо доступных центральному микропроцессору.

Символьные режимы CGA

Символьный режим функционирования CGA устанавливается по умолчанию. В этом режиме функционирование CGA напоминает MDA. Главным отличием этих двух адаптеров является то, что второй был создан для работы с нестандартными вертикальными и горизонтальными частотами, обеспечивая более четкое изображение. CGA же использует стандартные частоты — те, что используются композиционными дисплеями. Это дает возможность быть совместимым с большим семейством мониторов, но в то же время уменьшает качество изображения.

Для того, чтобы обеспечить функционирование с 15,525 КГц горизонтальной частоты и 60 Гц вертикальной, CGA разделил дисплей на матрицу в 640 горизонтальных пикселей и 200 вертикальных. Для того, чтобы расположить 2000 символов на экране размером 80 х 25 символов — в формате MDA — используются ячейки 8 х 8 пикселей.

16 Кб памяти CGA позволяют работать с 4 страницами текста. Обычно в текстовом режиме используется единственная страница — первая. Остальные доступны программам и пользователю через BIOS и через регистр режима CGA.

Качество символов CGA

В системах CGA каждый символ располагается в матрице 7 х 7. Одна точка зарезервирована для подстрочного элемента и еще одна — для разделения. Очевидно, что подстрочный элемент имеет протяженность на все изображение, что позволяет избежать использования дополнительных линий для разделения строк текста. Использование меньшего количества точек при изображении символа означает, что его изображение будет иметь более грубую и менее приятную форму по сравнению с MDA.

Цвета символов

В любом текстовом режиме IBM, используя атрибуты, можно работать с 16-цветовой палитрой. Любой символ текста может быть изображен любым из 16 цветов.

Фон символа — точки, входящие в матрицу символа 8 х 8 и не участвующие в формировании формы символа — может также иметь один из 16 цветов, но с одним ограничением. В режиме, устанавливаемом по умолчанию, для фона можно использовать 8 цветов, потому что бит в байте параметров, устанавливающий яркость или интенсивность фонового цвета, предназначается для другой цели. Он используется для задания режима мерцания символа.

Специальный регистр CGA изменяет назначение этого бита. Загружая определенные значения в этот регистр, пользователь или программа могут выбирать между использованием мерцания или изображением цвета фона с повышенной интенсивностью. Однако этот регистр управляет всем текстом экрана, поэтому невозможно одновременно использовать и мерцающие символы и повышенную интенсивность цветового фона.

CGA требует от программистов прямого обращения к этому регистру. Более усовершенствованные адаптеры IBM используют дополнительную программу BIOS для реализации этой функции.

Улучшенный графический адаптер

К 1984 году недостатки CGA стали очевидными. Это выявилось благодаря широкому его распространению. Тяжело читаемый текст и грубая графика портили зрение лучше всякого другого приспособления.

Как ответ на заслуженную критику, появился улучшенный графический адаптер — EGA. Улучшение было многосторонним: возросшая разрешающая способность, возможность обеспечивать графический режим монохромных экранов, в том числе любимых IBM зеленых дисплеев. Разрешающая способность EGA.

Самое существенное изменение хорошо заметно по рисуемому изображению. Разрешающая способность была увеличена до 640 х 350 пикселей. Ячейки символов имеют размер 8 х 14. И, хотя такая ячейка на одну точку уже, чем поддерживаемая MDA, символ формируется той же матрицей 7 х 9. Но более важным являлось то, что было выделено достаточно места для подстрочного и надстрочного пространства. Благодаря этому смежные ряды не сливались и цветное изображение текста воспринималось также хорошо, как и монохромное.

Разрешающая способность 640 х 350 обеспечивалось в графическом режиме. Этот адаптер мог также поддерживать все графические режимы предыдущих адаптеров IBM. Это означает, что EGA способен обеспечить все режимы устаревшего CGA.

Частоты EGA

Для того, чтобы обеспечить передачу зрительной информации, согласно стандарту EGA, необходимо использовать сигнал с более широкой полосой частот, увеличив его диапазон до более высокой частоты. Вместо 15,525 КГц CGA, EGA увеличил горизонтальную частоту сканирования до 22,2 КГц. Вертикальная частота сканирования (частота кадров) приблизительно равна 60 Гц. Из-за использования более высокой частоты стандарт EGA несовместим с устройствами, созданными по стандарту NTSC. В эту группу устройств входят и телевизоры. Требуется специальные дисплеи EGA.

Цвета EGA

Возможности стандарта EGA по формированию цветной гаммы существенно возросли. Посредством изменения интерфейса адаптер — дисплей, реализуемая палитра EGA была расширена до 64 оттенков (считая черный и различные оттенки серого, как отдельные цвета). Кроме того, благодаря наличию большого ресурса памяти стандарт EGA способен поддерживать более широкую палитру цветов с более высоким уровнем разрешающей способности. В режиме с максимальной разрешаемой способностью и полным использованием ресурса памяти, EGA в состоянии одновременно формировать изображение в 16 цветовых оттенках, выбранных из 64-цветной палитры на экране в 640 х 350 пикселей.

Video Graphics Array — VGA

Весь процесс разработки IBM дисплеев для своих персональных компьютеров поддается и не поддается логическому объяснению. С одной стороны, некоторые видеосистемы IBM для отдельных применений подходили лучше других. Но с другой отказ от узкой специализации на отдельное видеоустройство дает возможность настроить адаптер на разные типы дисплеев, что открывает огромный рынок для дополнительной видеопродукции, поступающей от независимых поставщиков, что обеспечивает в свою очередь расширение снабжения рынка. При переходе к новому видеостандарту адаптерная плата может быть легко заменена другой. С другой стороны, объединение дисплея и адаптера поддается логическому обоснованию также.

Компьютеры Portable, такие, как PC Portable (которые не содержат на своей системной плате дисплейную систему) и переносные компьютеры Convertible (содержащие ее там) требуют полной интеграции дисплея и центрального блока для увеличения транспортабельности переносных компьютеров. Такой подход имеет преимущество простоты сборки системы.

Система поступает в виде одного большого блока и не нужно задумываться, как собрать систему из составляющих. Более того, такой способ реализации видеосистемы чаще всего обходится дешевле, потому что не требует устанавливать платы расширения, интерфейсные цепи и взымать деньги за дополнительные разработки. Для снижения стоимости PCjr в этой модели IBM сначала использовала видеосистему, реализуемую на системной плате.

Промежуточным вариантом является реализация видеосистемы на базе платы расширения, чья стоимость входит в стоимость системы. Большинство персональных компьютеров продается по такой методике.

Разрешающая способность VGA в графическом режиме

Как и предыдущие системы, VGA обеспечивают различные уровни разрешающей способности при различных режимах функционирования. Но, в отличие от них VGA обеспечивает гораздо большее количество режимов — 17. Однако в графическом и текстовом режимах достигаются отличающиеся уровни разрешающей способности. В графических режимах при формировании растрового цветного изображения достигается разрешающая способность 640 х 480 пикселей. При этом формируется 16 цветов выбранных из палитры в 256. Такой же уровень разрешающей способности обеспечивается и для монохромного изображения. Переход к стандарту 640х480 пикселей от стандарта EGA (640 x 350) позволил улучшить точность изображения. Стандарт VGA позволяет создать изображение более точное с использованием большей гаммы цветов. Соотношение горизонтальных пикселей к вертикальным 4 к 3 равно отношению сторон экрана большинства мониторов, что удобно при разработке графических приложений.

Цвета VGA

Новый стандарт способен поддерживать 256 различных цветов одновременно. Цвета выбираются из палитры 262144 оттенка. В этом режиме разрешение ограничено уровнем 320х200 пикселей. Это равно средней разрешающей способности CGA, но CGA может работать одновременно только с четырьмя цветами, выбранными из шестнадцатицветной палитры.

Электронно — лучевая трубка

Электронно-лучевая трубка (ЭЛТ — CRT) представляет собой электронную пушку для монохромного дисплея (3 пушки для цветного), электростатическую и магнитную отклоняющие системы и экран, покрытый слоем люминофора, помещенные в вакуумный баллон. Электронная пушка создает поток электронов, направляемый с помощью отклоняющей системы в нужную часть экрана, где в результате взаимодействия электронов с покрытием экрана испускается свет. След от луча на экране называется растр. Формирование изображения в ЭЛТ происходит так: электронный луч пробегает слева направо по горизонтальным линиям экрана, таким образом, проходя путь от левого верхнего угла до правого верхнего угла экрана. Когда луч доходит до правой стороны, он гасится и смещается в начало следующей линии. Когда луч пробежит весь экран, он гасится и возвращается в левый верхний угол.

Видеопамять

Видеопамять VGA разделяется на 4 банка или цветовых слоя. Все цветовые слои расположены в одном адресном пространстве так, что каждому адресу соответствует 4 байта памяти — по одному байту на каждый цветовой слой. В текстовых режимах первый цветовой слой занимают ASCII-коды, второй — атрибуты символов, в третий — знакогенератор. При работе в графическом режиме организация памяти видеокарты зависит от специфики режима.

Как установить Windows 7

Видеоконтроллер VGA совместимый

Видеоконтроллер VGA совместимый

данный драйвер не подойдёт для полноценной работы на компьютере, а сгодится только для простых задач, естественно современные игры под это понятие не подходят. Поэтому вам нужно установить нормальный драйвер для вашей видеокарты, сделать это можно многочисленными способами, описанными на нашем сайте.
В первую очередь попробуйте установить драйвер автоматически, щёлкните правой мышью на Видеоконтроллер VGA совместимый и выберите обновить драйверы, вполне возможно драйвер обновится.

Если у вас осталась коробка от вашей видеокарты, то наверняка в ней есть диск с драйверами. С этого диска можно установить драйвер на вашу видеокарту. Но так как драйвера на таких дисках всегда устаревшие, более правильным решением будет зайти на официальный сайт изготовителя видеокарты и скачать новейшие версии драйверов, а затем установить их. Прежде чем скачивать драйвера, нужно узнать название вашей видеокарты. Как это сделать?
Самый простой способ, работает в большинстве случаев. Узнаём Совместимые ИД оборудования устройства, щёлкаем правой мышью на пункте Видеоконтроллер VGA совместимый, выбираем Свойства, затем Сведения, в Описании устройства смотрим Совместимые ИД оборудования, копируем его

и идём на сайт http://devid.info/ru , вбиваем в поле ввода и жмём Искать

и пожалуйста, мы узнаём не только название нашей видеокарты, но и ещё можем скачать на неё драйвера.
Друзья, даже если вы просто скопируете код ИД оборудования и вставите в поле поиска любого поисковика, результат выдачи будет в большинстве случаев положительный.


Или вы можете воспользоваться более точным способом, описанным в нашей статье Как подобрать драйвер по коду ИД оборудования.
Можно поступить более изящно, например скачать и установить программу Everest, очень удобная программа, на русском языке, с помощью неё можно идентифицировать не только вашу видеокарту, а все установленные в ваш системный блок устройства. Так же с помощью этой утилиты можно установить температуру комплектующих системного блока. Работает Everest бесплатно 30 дней, затем просит себя купить. Месяц, это более чем большой срок установить, что же кроется в вашем диспетчере устройств за названием Видеоконтроллер VGA совместимый.
Официальный сайт программы http://everest.ru.softonic.com/download , скачиваем и запускаем установку утилиты.

Запуск производите от администратора.

щёлкаем левой мышью на названии видеокарты и выбираем скачать драйвера,

автоматически переходим на официальный сайт нашей видеокарты, скачиваем нужный драйвер и устанавливаем его. Если будете испытывать трудности, прочитайте наши подробные статьи Как установить драйвер на видеокарту NVIDIA или ATI Radeon.
После установки драйвера идём в Диспетчер устройств в пункт «Видеоадаптеры» и видим вместо Видеоконтроллер VGA совместимый название нашей видеокарты.

VGA2USB — устройство для захвата VGA-сигнала от Epiphan Systems Inc.

Аналогово-цифровое преобразование является одной из постоянных составляющих работы компьютерных TV-тюнеров и устройств видеозахвата. Ввиду специфики аналогового телевизионного вещания и существующих до сих пор аналоговых стандартов хранения видеоинформации (например, VHS и его производных), качество работы АЦП заметно влияет на конечный результат. Цифровые форматы DVB-T, DVB-C, DVB-S в расчёт не принимаются, конвертация исходного MPEG1/2-потока, при использовании этих стандартов, практически, отсутствует. Однако мало кто вспоминает о постоянно происходящем в большинстве компьютеров цифро-аналоговом преобразовании. Речь идёт об интерфейсе VGA (Video Graphics Array), разработанном компанией IBM ещё в 1987 году. Напомним, что после формирования изображения в цифровом виде оно поступает из видеопамяти на RAMDAC (Random Access Memory Digital to Analog Converter — цифро-аналоговый преобразователь из ОЗУ), где преобразуется в аналоговый сигнал, передаваемый на монитор. Изначально стандарт VGA использовал новый для того времени трехрядный 15-контактный разъем D-Sub для подключения монитора. При этом в разъеме были зарезервированы контакты для будущих расширений, поэтому его форма не изменилась и по сей день. При подключении современных мониторов используются некоторые из этих контактов. В настоящее время максимальными параметрами при использовании этого типа подключения являются разрешение 2048×1536 и глубина цвета 32 бита.

Решения, позволяющие выделить из VGA идеологически близкий RGB, а то и вовсе — композитный сигнал, существуют достаточно давно. Но вот устройство, способное осуществлять захват непосредственно с VGA-разъёма, встречается нам впервые. Канадская компания Epiphan Systems Inc. специализируется на технологиях захвата и хранения контента, поступающего с источников VGA-сигнала. Об основной целевой аудитории этого производителя лучше всего скажут такие клиенты как Henry Ford Health Services или аэропорт Сан-Франциско.

Комплект поставки

Скромная белая коробка с минимумом надписей подчёркивает нишевый характер продукта.

Комплект поставки составляют:

  • Само устройство
  • Кабель USB 2.0 A — Mini-B
  • Переходник D-Sub Male — Male
  • VGA-разветвитель на два монитора
  • Кабель VGA — VGA
  • CD с драйверами и программным обеспечением

Дополнительное ПО производства сторонних разработчиков в комплекте поставки отсутствует.

Конструкция и спецификации

Для описания дизайна VGA2USB лучше всего подходит слово «неброский». Серебристый параллелепипед без особых визуальных изысков, имеющий разъём D-Sub с одной стороны и гнездо для подключения USB-кабеля с другой. Рядом с интерфейсным разъёмом находятся три светодиодных индикатора (питание, работа в режиме просмотра, захват). Устройство отличается компактностью, размеры VGA2USB составляют 80×54×23 мм.

Перейдём к аппаратной части.

Работа с VGA-интерфейсом осуществляется при помощи чипа 8-битного АЦП AD9884A с производительностью 140 MSPS (Mega Samples Per Second) от Analog Devices, Inc. За поддержку USB-интерфейса отвечает контроллер CY7C68013 производства Cypress Semiconductor Corporation.

Для VGA2USB заявлены следующие спецификации:

  • Интерфейс USB 2.0
  • Поддерживаемые операционные системы — Linux, Windows 2000, Windows XP, MAC OSX
  • Максимальная частота сэмплирования — 230 Мегапикселей в секунду
  • Глубина цвета — 16 бит / формат 5:6:5
  • Поддерживаемые видеорежимы:
    • 720×400 при 70, 85 Гц
    • 640×480 при 60, 70, 72, 75, 85 Гц
    • 800×600 при 56, 60, 70, 72, 75, 85 Гц
    • 1024×768 при 60, 70, 72, 75, 85 Гц
    • 1152×864 при 60, 70, 75, 85 Гц
    • 1152×900 при 66, 76 Гц
    • 1280×960 при 60, 85 Гц
    • 1280×1024 при 60, 70, 75, 85 Гц
    • 1600×1200 при 60, 65, 70, 75, 85 Гц
    • 2048×1536 при 60, 70, 72, 75, 85 Гц
    • 2560×2048 при 60, 70, 72, 75, 85 Гц

Производитель приводит примеры частоты обновления в зависимости от используемого разрешения, полученные под Windows XP на Intel P4 3.0 ГГц FSB 800:

  • 640×480 — 28.0 кадров в секунду
  • 800×600 — 20.6 кадров в секунду
  • 1024×768 — 10.0 кадров в секунду
  • 1280×1024 — 5.6 кадров в секунду
  • 1600×1200 — 4.3 кадра в секунду
  • 1920×1200 — 3.1 кадра в секунду
  • 2048×1536 — 2.0 кадра в секунду

Конфигурация тестового компьютера

  • Процессор Athlon 64 3800+ (Socket 939)
  • Системная плата Foxconn WinFast NF4UK8AA-8EKRS (чипсет NVIDIA nForce4 Ultra)
  • Оперативная память 2 ГБ Samsung
  • ASUS Extreme N7800GT GeForce 7800 GT
  • Звуковая карта Creative Sound Blaster Audigy 2ZS
  • Жесткий диск 120 ГБ Maxtor Plus9-6Y120M0 7200rpm SATA150 8 МБ
  • Жесткий диск 120 ГБ Maxtor Plus9-6Y120M0 7200rpm SATA150 8 МБ
  • DVD ROM 12x/48x Hitachi GD-7500BV
  • DVD ReWriter BENQ DW1640
  • DVD ReWriter NEC ND-3500A
  • Блок питания Thermaltake HPC-420-102 DF
  • Операционная система Windows XP Professional (SP2) ENG

Настройка

Html-меню установочного диска предупреждает о возможности появления более свежих драйверов на сайте производителя. Сам драйвер устанавливается штатными средствами операционной системы. Кроме драйвера, на диске находится SDK (!) и руководство пользователя. При тестировании использовался драйвер версии 1.4.12.0000.

После установки в разделе USB Controllers появляется VGA2USB by Epiphan Systems Inc.

Для работы с устройством предназначена одноимённая программа VGA2USB.

Программа позволяет осуществлять автоматический захват отдельных кадров и запись видеопотока. В разделе Autosave опций программы можно настроить интервалы захвата, как покадрово, так и по времени, выбрать формат (BMP, PNG, JPEG (компрессия составляет 85%), AVI) и установить префиксы названий получаемых файлов. При этом допускается как десятичная система (переменная d в наименовании), так и шестнадцатеричная (переменная X). Возможно преобразование полученных в формате BMP изображений в AVI, выполняемое программой после окончания захвата. Кроме того, реализована функция паузы.

Видеопоток может сжиматься любым установленным в системе кодеком, выбираемым на соответствующей вкладке Codec.

В разделе Adjusments, как нетрудно догадаться, находятся опции изображения:

Sampling phase — ручная подстройка горизонтального разрешения,
PLL adjusment — ручная подстройка вертикальной синхронизации,
Shift horizontally/Shift vertically — настройки позиции видеоизображения,
Set Offset/Gain — настройки яркости и контраста.
Чекбокс Prefer wide aspect ration VGA modes обеспечивает совместимость с широкоформатными разрешениями.

В разделе Miscellaneous доступны: центрирование изображения под размер окна программы, инвертирование цветов при печати и настройки компрессии при вещании в сеть. В программе доступен демонстрационный режим передачи изображения на сайт производителя с ограничением по времени в 5 минут. Отметим, что работа в этом режиме требует установленного Java-компонента.

Частоты обновления на тестовой системе совпали с заявленными в спецификациях, причём, как в штатном режиме, так и при снижении частоты процессора до 960 МГц путём уменьшения множителя. При этом в разрешениях 640×480 и 800×600 частоты при работе с устройством зависят от частот обновления на входе. Максимальные значения, соответствующие заявленным, достигаются при 85 Гц. При 60 Гц этот параметр снижается на 40-50%. В разрешениях от 1024×768 и выше такой корреляции не наблюдается.

Попробуем оценить чёткость на примере тестового изображения.

Исходное изображения Полученное изображение
Разрешение 640×480
Разрешение 800×600
Разрешение 1024×768
Разрешение 1600×1200

Некоторое снижение чёткости, особенно заметное в больших разрешениях, вряд ли, будет критичным в большинстве задач, выполняемых при помощи этого устройства. Яркость может быть увеличена при помощи настроек программы VGA2USB.

Разница изображения при подключении через VGA, DVI и HDMI

VGA, DVI и HDMI — видеоинтерфейсы передачи видеосигнала от источника к устройству вывода изображения. Отличаются способом передачи и обработки сигнала, а так же разъёмом.

VGA разработан в 1987 году и предназначался для передачи аналогового сигнала на мониторы с электронно-лучевой трубкой. Спустя десять лет рынок стали захватывать жидкокристаллические мониторы.

Через VGA процесс передачи видеосигнала осуществлялся путём преобразования цифрового сигнала в аналоговый, который затем передавался и выводился на ЭЛТ-монитор. С появлением ЖК-мониторов схема усложнилась. Теперь приходилось преобразовывать сигнал из цифрового в аналоговый, передавать на ЖК-монитор и обратно преобразовывать в цифровой. Стало очевидно, что аналоговый сигнал можно исключить из цепочки и в 1999 году появился видеоинтерфейс DVI.

В начале двухтысячных был разработан HDMI. От DVI он отличается более компактным разъёмом и возможностью передавать цифровые аудиосигналы (с 2008 года DVI тоже научился передавать звук). Преимущества нового интерфейса были очевидны и, на данный момент, он является передовым. Его популярность привела к появлению таких разновидностей, как miniHDMI и microHDMI. Их отличие только в размерах разъёмов.

Насколько изображение через DVI и HDMI лучше VGA

Главным аргументом в пользу цифровых интерфейсов приводят то, что аналоговый сигнал при передаче подвержен воздействию внешних электромагнитных полей, а это ведёт к его искажению. В этом есть доля истины, но в домашних условиях нет серьёзных помех, которые могли бы привести к заметному искажению даже при передаче на большое расстояние. Так же считается, что DVI и HDMI передают сигнал максимально точно за счёт посткоррекции ошибок, чего нет у VGA. Это действительно так, но преимуществом это является только при качественном кабеле небольшой длины (до 5 метров).

Ещё одним доводом в пользу цифровых видеоинтерфейсов является отсутствие лишних преобразований сигнала — из цифрового в аналоговый и обратно. Казалось бы, HDMI и DVI подчистую должны выигрывать в этом аспекте у VGA. На практике иногда выходит наоборот, так как без преобразований не обходится в любом случае. Цифровые сигналы кодируются, а перед отображением на экране должны быть раскодированы и обработаны. За этот процесс отвечают отдельные модули устройств вывода изображений, а их алгоритмы перекодирования не всегда идеальны. Правда, со временем они совершенствуются и в настоящее время на хорошем уровне даже в дешевых мониторах и телевизорах.

Качество кабеля ещё один камень преткновения. Аналоговый сигнал менее требователен к нему, в то время как цифровому сигналу нужен хороший проводник. Особенно это актуально при длине кабеля более пяти метров. В этом случае, при потере битов, исправление ошибок не всегда срабатывает и на выходе можем получать изображение в разы хуже, чем если бы использовалось VGA соединение.

Подводим итоги

Несмотря на то, что я принизил достоинства DVI/HDMI, в некоторых случаях, передаваемое через них изображение, будет лучше. Но заметить это можно только при наличии качественного кабеля, надёжного соединения между разъёмами и хорошего устройства вывода — монитора или телевизора высокой чёткости.

Если монитор через VGA выдаёт хорошую картинку, то не ждите, что при подключении через цифровой видеоинтерфейс изображение заиграет новыми красками. В своей практике значительное улучшение я встречал только один раз при подключении мониторов фирмы «АОС». Они отвратительно работали через VGA — изображение было нечетким, размытым. В данном случае это вина только производителя.

Заметили ли Вы разницу картинки при переходе с одного видеоинтерфейса на другой? Жду в комментариях, а если хотите узнать больше об этих разъемах, то посмотрите видео.

Аппаратные возможности vga

Изначально персональные компьютеры IBM PC комплектовались видеоадаптером MDA с монохромным дисплеем. Этот адаптер имел небольшую разрешающую способность, не мог отражать графическую информацию и был монохромным. Через некоторое время небольшая фирма Hercules Computer Technology выпустила монохромный видеоадаптер Hercules, который имел возможность вывода графики и имел большую разрешающую способностью CGA стал первым цветным видеоадаптером фирмы IBM. Он уже обеспечивал возможность отображать цветную графическую и текстовую информацию, но имел слишком маленькую разрешающую способность. Затем IBM выпустила два, наиболее распространенных в настоящее время видеоадаптера EGA и VGA. Они созданы на другой элементной базе и имеют лучшую, чем у CGA, разрешающую способность при большем числе отображаемых цветов.

В последнее время различные фирмы — производители видеоадаптеров выпустили большое количество плат, превосходящим по своим возможностям VGA. Эти платы, которые можно объединить под общим названием Super VGA, не имеют пока единого стандарта.

Фирма IBM начала выпуск нового видеоадаптера XGA, который, как предполагается, станет новым стандартом для компьютеров на базе процессоров Intel 386/486… Видеоадаптер содержит встроенный графический процессор, значительно увеличивающий его возможности и скорость работы. XGA аппаратно поддерживает перерисовку изображений в окнах экрана. При обмене данными между видеопамятью и основной памятью сам XGA вместо центрального процессора реализует управление шиной данных, что позволяет быстро передавать изображение на экран.

Следует также отметить, что предусмотрена совместимость видеоадаптеров VGA и XGA на уровне регистров. Базовая конфигурация XGA содержит 512 Кбайт видеопамяти, что обеспечивает разрешение 1024*768 пикселов при 16 цветах. Увеличение объема видеопамяти до 1Мбайта при той же разрешающей способности позволяет получить 256 цветов.

АРХИТЕКТУРА ВИДЕОАДАПТЕРОВ EGA И VGA

Видеоадаптеры EGA и VGA условно делятся на шесть логических блоков, описание которых приведены ниже:

1. Видеопамять. В видеопамяти размещаются данные, отображаемые адаптером на экране дисплея. Для EGA и VGA видеопамять обычно имеет объем 256 Кбайт, на некоторых моделях SVGA и XGA объем видеопамяти может быть увеличен до 2Мбайт. Видеопамять находится в адресном пространстве процессора и программы могут непосредственно производить с ней обмен данными. Физически видеопамять разделена на четыре банка, или цветовых слоя, использующих совместное адресное пространство.

2. Графический контроллер. Посредством его происходит обмен данными между центральным процессором и видеопамятью. Аппаратура графического контроллера позволяет производить над данными, поступающими в видеопамять и расположенными в регистрах-защелках простейшие логические операции.

3. Последовательный преобразователь. Выбирает из видеопамяти один или несколько байт, преобразует их в поток битов, затем передает их контроллеру атрибутов.

4. Контроллер ЭЛТ. Контроллер генерирует временные синхросигналы, управляющие ЭЛТ.

5. Контроллер атрибутов. Преобразует информацию о цветах из формата, в котором она хранится в видеопамяти, в формат, необходимый для ЭЛТ.

6. Синхронизатор. Управляет всеми временными параметрами видеоадаптера. Синхронизатор также управляет доступом процессора к цветовым слоям видеоадаптера.

Илон Маск рекомендует:  Формы в HTML
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL