Borland delphi 4 0 для начинающих типы данных структурные типы

Содержание

Borland delphi 4 0 для начинающих типы данных структурные типы

Delphi 4 для начинающих. Часть 3
Разгребаясь с письмами читателей, я решил начать следующую статью с работы с файлами и строковыми переменными. На такой ход меня натолкнуло следующее письмо: «Я только начал программировать на Delphi. У меня к вам большая просьба: при создании различных программ часто приходится работать с файлами (создавать, удалять, копировать, переписывать файлы), не могли бы вы в ближайшем номере «Компьютерной газеты» мне рассказать о методах работы с файлами». Что ж, желание просящих выполняю.

Подавляющее большинство приложений, с которыми работает пользователь, должно как-то сохранять результаты своей работы, сохранять изменения в настройках. Для сохранения настроек приложения зачастую используют системный реестр, а вот для сохранения конечных данных приходится использовать файлы или базы данных. О базах данных мы поговорим в будущих статьях, а о работе с файлами я поведаю Вам уже сейчас.

Для использования файлов в приложении разработчику приходится решать множество задач. Основные из них – это поиск необходимого файла и выполнение с ним операций ввода/вывода.

Основные принципы и структура файловой системы мало изменились еще со времен MS-DOS. Если не принимать во внимание способы защиты файлов и организацию их хранения на уровне кластеров, то все остается без изменений вот уже скоро двадцать лет. Новые варианты файловых систем (FAT32, NTFS) не изменяют главного – понятия файла и способов обращения к нему. Поэтому современный программный код Delphi, например, для чтения данных из файла, удивительно похож на аналогичный, написанный, к примеру, на Turbo Pascal 4.0.

При организации операций файлового ввода/вывода в приложении большое значение имеет тип используемых данных. В основном это строки, но встречаются числовые данные или структурированная информация, например, записи или массивы данных. О типе хранимых в файле данных необходимо знать заранее. Для работы с файлами необходимо для начала описать тип файла. Для этого используются специальные файловые переменные. Они делятся на нетипизированные и типизированные. В Delphi имеется одна нетипизированная переменная. Для ее обозначения используется ключевое слово file :

Такие файловые переменные используются для организации быстрого и эффективного ввода/вывода безотносительно к типу данных. При этом подразумевается, что данные читаются или записываются в виде двоичного массива. Для этого используются специальные процедуры блочного чтения и записи.

Типизированные файловые переменные обеспечивают ввод/вывод с учетом конкретного типа данных. Для их объявления используется ключевое слово file of, к которому добавляется конкретный тип данных. Например, для работы с двоичным файлом файловая переменная будет иметь вид:

v ar ByteFile: file of byte;

При этом можно использовать любые типы фиксированного размера, за исключением указателей. Разрешается использовать структурные типы, если их составные части удовлетворяют названному выше ограничению. Например, можно создать файловую переменную для записи:


type Country = record

var CountryFile: file of Country;

Для работы с текстовыми файлами используется специальная файловая переменная TextFile или Text :

Теперь, после рассмотрения типов файлов, рассмотрим две наиболее распространенные операции, выполняемые с файлами: чтение и запись. Для их выполнения применяются специальные функции файлового ввода/вывода.

Итак, для выполнения операции чтения и/или записи необходимо выполнить следующие действия:

  1. Объявить файловую переменную;
  2. При помощи функции AssignFile связать эту переменную с требуемым файлом;
  3. Открыть файл при помощи функций Append, Reset или Rewrite;
  4. Выполнить операции чтения и/или записи. При этом, в зависимости от сложности задачи и структуры данных, может использоваться целый ряд вспомогательных функций.
  5. Закрыть файл при помощи функции CloseFile .

В качестве примера рассмотрим небольшой фрагмент исходного кода программы:

If OpenDlg1.Execute then AssignFile(F, OpenDlg1.fileName) else exit;

While Not EOF(F) do

Если в диалоге OpenDlg1 был выбран файл, то его имя связывается с файловой переменной F при помощи процедуры AssignFile . В качестве имени файла всегда рекомендуется передавать полное имя файла (включая путь к нему). Как раз в таком виде возвращают результат выбора файла диалоги работы с файлами, описанные в материале прошлого номера. Затем при помощи процедуры Reset этот файл открывается для чтения и записи. В цикле осуществляется чтение из файла текстовых строк и запись их в компонент TMemo . Процедура Readln осуществляет чтение текущей строки файла и переходит на следующую строку. Цикл выполняется до тех пор, пока функция EOF не сообщит о достижении конца. По завершении цикла файл закрывается.

Теперь остановимся поподробнее на назначении функций, используемых для файлового ввода/вывода. Открытие файла может осуществляться тремя процедурами:


procedure Reset(var F [: File; RecSize: Word ] );
— открывает существующий файл для чтений и записи, текущая позиция устанавливается на первой строке файла;


procedure Append(var F: Text);
— открывает файл для записи информации после его последней строки, текущая позиция устанавливается на конец файла;

procedure Rewrite(var F: File [; Recsize: Word ] ); — создает новый файл и открывает его, текущая позиция устанавливается в начало файла. Если файл с таким именем уже существует, то он перезаписывается.

Чтение данных из файла выполняют процедуры Read и Readln.


procedure Read( [ var F: Text; ] V1 [, V2. Vn ] ); —
для текстовых файлов;


Procedure Read(F, V1 [, V2,…,Vn ] );
— для типизированных файлов.

При одном вызове процедуры можно читать данные в произвольное число переменных. Естественно, тип переменных должен совпадать с типом файла. При чтении в очередную переменную читается ровно столько байт из файла, сколько занимает тип данных. В следующую переменную читается столько же байт, расположенных следом. После выполнения процедуры текущая позиция устанавливается на первом непрочитанном байте. Аналогично работают несколько процедур Read для одной переменной, выполненных подряд.

procedure Readln([ var F: Text; ] V1 [, V2, . Vn ]); — считывает одну строку текстового файла и устанавливает текущую позицию на следующую строку. Если использовать процедуру без переменных, то она просто передвигает текущую позицию на следующую строку.

Процедуры для записи данных в файл Write и Writeln работают аналогично.

Для контроля за текущей позицией в файле применяются две основные функции. Функция EOF возвращает значение True, если достигнут конец файла. Функция EOLN сигнализирует о достижении конца строки. В качестве параметра в функции необходимо передавать файловую переменную.


procedure Seek(var F; N: Longint); —
обеспечивает смещение текущей позиции на N элементов. Размер одного элемента в байтах зависит от типа данных файла (от типизированной переменной).

Рассмотрим теперь режим блочного чтения и записи в файл. Он обеспечивает ввод/вывод данных между файлом и областью адресного пространства (буфером). Этот режим отличается значительной скоростью, причем скорость пропорциональна размеру одного передаваемого блока – чем больше блок, тем больше скорость.

Для реализации этого режима необходимо использовать только нетипизированные файловые переменные. Размер блока определяется в процедуре открытия файла ( Reset, Rewrite, Append ). Непосредственно для выполнения операций используются процедуры BlockRead и BlockWrite . Процедура


procedure BlockRead(var F: File; var Buf; Count: Integer [; var AmtTransferred: Integer]);

выполняет запись блока из памяти в файл. При этом параметр F содержит нетипизированную файловую переменную, связанную с нужным файлом, параметр Buf определяет переменную (число, строку, массив, структуру), в которую читаются байты из файла, параметр Count определяет число считываемых блоков, а параметр AmtTransferred возвращает число реально считанных блоков.

В блочном режиме чтения/записи размер блока необходимо выбирать таким образом, чтобы он был кратен размеру одному значению типа, который хранится в файле. Например, если в файле хранятся значения типа Double (8 байт), то размер блока может быть равен 8, 16, 24, 32 и т.д. Фрагмент исходного кода блочного чтения из такого файла выглядит так:

DoubleArray: array [0..255] of Double;

If OpenDlg.Execute then AssignFile(F, OpenDlg.FileName) else Exit;

BlockRead(F, DoubleArray, 32, Transfered);

ShowMessage(‘Считано ‘+IntToStr(Transfered)+’ блок(-а,-ов)’);

Как видно из примера, размер блока установлен в процедуре Reset и кратен размеру элемента массива DoubleArray, в который считываются данные. В переменную Transfered возвращается число считанных блоков. Если размер файла меньше заданного в процедуре BlockRead числа блоков, ошибка не возникает, а в переменную Transfered передается число реально считанных блоков.

Обратите внимание, что для процедуры BlockRead организовывать цикл для чтения нескольких блоков нет необходимости.


procedure BlockWrite(var f: File; var Buf; Count: Integer [; var AmtTransferred: Integer]);

Еще одна часто выполняемая с файлом операция – поиск файлов в заданном каталоге. Для организации поиска и отбора файлов используются специальные процедуры, а также структура, в которой сохраняются результаты поиска.

Эта запись обеспечивает хранение характеристик файла при удачном поиске. Дата и время создания файла хранятся в формате MS-DOS, поэтому для получения этих параметров в формате TDateTime необходимо использовать функцию


function FileDateToDateTime(FileDate: Integer): TDateTime;

Обратное преобразование выполняет функция


function DateTimeToFileDate(DateTime: TDateTime): Integer;

Свойство Attr может содержать комбинацию следующих значений:

faReadOnly – только для чтения;

Для определения параметров файла используется оператор AND :


If SearchRec.Attr AND faReadOnly) > 0 then ShowMessage(‘
файл только для чтения’);

Непосредственно для поиска файлов используются функции FindFirst и FindNext .

function FindFirst(const Path: string; Attr: Integer; var F: TSearchRec): Integer;

находит первый файл, заданный полным маршрутом Path и параметрами Attr . Если заданный файл найден, функция возвращает 0, иначе – код ошибки. Параметры найденного файла возвращаются в записи F типа TSearchRec .

function FindNext(var F: TSearchRec): Integer;

используется для поиска файла. При этом используются параметры поиска, заданные последним вызовом функции FindFirst . В случае удачного поиска возвращается 0.

Для освобождения ресурсов, выделенных для выполнения поиска, применяется функция

procedure FindClose(var F: TSearchRec);

В качестве примера организации поиска файлов рассмотрим фрагмент исходного кода, в котором маршрут поиска файлов задается в однострочном текстовом редакторе DirEdit, а список найденных файлов передается в компонент TListBox.

FindFirst(DirEdit.Text, faArchive + faHidden, SearchRec);

While FindNext(SearchRec) = 0 do

Напоследок, как и обещал в прошлом номере, немного о создании дополнительных форм. Итак, для создания дополнительной формы необходимо воспользоваться пунктом меню New Form ( File/New Form ) или кнопкой New Form на панели инструментов. Перед Вами появится новая форма проекта с названием Form2 . При запуске программы эта форма не будет активизирована. Для ее запуска необходимо воспользоваться процедурой Show из кода исходной программы. Список существующих форм и возможность активизация форм проекта доступны при нажатии на кнопку ViewForm на панели инструментов или при нажатии на пункт Forms… ( View/Forms… ). Таким образом, необязательно загромождать экран бесконечными формами проекта, когда на данный момент из них необходима только одна. Достаточно закрыть ненужные формы, а при необходимости активизировать их при помощи диалога ViewForm .

Borland delphi 4 0 для начинающих типы данных структурные типы

Школа программирования Delphi

Портал DelphiSchool является бесплатным проектом, обеспечивающим пользователям быстрый и легкий доступ к урокам программирования на Delphi. Сайт позволяет научиться программировать на Делфи любому, кто хочеть писать свои программы, игры, Android приложения, программы для MAC OC или IOS. Кроме уроков Delphi и статей Delphi, на сайте доступны также и видеоуроки. Практически к каждому уроку, пользователю доступен исходник, изучив который, он сможет наглядно посмотреть как работает та или иная программа, написанная на Делфи. Кроме того мы постараемся прилагать к каждому материалу (статье, уроку, видеоуроку) файлы Delphi, которые будут помогать изучить предоставленный материал.

Каждый кто решил написать свою программу, создать свое приложение, научиться программировать и т.д., найдет на DelphiSchool статьи Delphi, уроки Delphi, видеоуроки Delphi, исходники Delphi, файлы Delphi, изучит компоненты Delphi, посмотрит Delphi примеры и многое другое абсолютно бесплатно. Все о Delphi программировании теперь собрано на одном сайте.
DelphiSchool

В языке программирования Delphi все должно иметь свой тип. Delphi требует явного указания всех типов. Существует четыре простых типа данных: целые числа, вещественные числа (дробные), строки и булевые значения.

Все переменные должны относиться к какому-то типу. Поскольку переменная — это область памяти, где хранится определенная информация, то для того, чтобы знать, что хранится в этой памяти, мы должны указать компилятору, к какому типу относится переменная. Если переменная относится к типу целых чисел, то в памяти, отведенной под переменную, хранится целое число.

В переменных целого типа, информация представляется в виде чисел, которые не имеют дробной части. Такие числа используются для математических вычислений и любых других операций, в которых требуется работа с числами.

Существует несколько видов целых типов данных. В основном они отличаются только размером отводимой переменным памяти для хранения данных.

В таблице ниже перечислены все типы целых чисел. В примечании указано, какого типа могут быть эти числа — со знаком или без (т. е. только положительные или могут быть и отрицательными). В зависимости от объема памяти, отводимого переменной для хранения данных, определяется максимальное число, которое можно записать в эту переменную.

Таблица. Типы целочисленных переменных

Название

Размер памяти для хранения данных

Простые типы данных

Введение

В предыдущих уроках мы между делом знакомились с типами данных. Всё это время речь шла о простых типах. Сегодня мы обобщим пройденное ранее, а также познакомимся с новым материалом, который необходимо знать в рамках темы «Простые типы данных». Осмысленно подходить к выбору типов данных для используемых в программах переменных необходимо по разным причинам. Во-первых, имея под рукой многообразие доступных типов и умело ими распоряжаясь, можно сократить объём памяти, требуемый программе для работы. Экономию в 1-2 байта никто не заметит, но если речь идёт о больших объёмах данных, эти байты могут вылиться во вполне реальные мегабайты. Во-вторых, разумный выбор типов данных позволяет избежать некоторых ошибок, причём как со стороны программиста (на этапе создания программы), так со стороны пользователя (во время использования программы).

Простые типы данных — общее представление

Простые типы данных названы простыми, потому что они не содержат внутри себя никаких других типов. Кроме того, простые типы данных обеспечивают хранение в памяти только одного значения. К простым типам данных относят следующие:

  • целочисленные;
  • вещественные;
  • логические;
  • строковые (символьные).

Следует отметить, что все эти типы за исключением вещественного, упорядочены. Что это значит? А это значит, что в рамках данного типа значения расположены не в произвольном порядке, а в порядке возрастания. Зная об этом, в некоторых случаях можно исключить в своей программе лишний код. Поясню на примере, как именно упорядочены значения в этих типах данных:

Целочисленный тип — содержит числовые значения, целые числа. Числа упорядочены по возрастанию: . -2, -1, 0, 1, 2, 3, .
Логический тип — содержит всего 2 значения — True, False, которые тоже упорядочены: False, True (следует из соответствия False — 0, True — 1).
Символьный тип — символы кодовой таблицы. Поскольку каждому символу соответствует свой код, то символы расположены в порядке увеличения кода. К примеру, буквы латинского алфавита A, B, C, D, . идут в кодовой таблице именно так, т.к. чем дальше от начала алфавита, тем больший код имеет буква. То же самое касается и арабских чисел в кодовой таблице — они идут по порядку: 0, 1, 2, . 8, 9. Это позволяет делать такие сравнения, как, например ‘A’ Pred() — функция возвращает предыдущее значение для выражения, указанного в качестве единственного аргумента.

Примеры: Pred(5) = 4, Pred(‘E’) = ‘D’, Pred(True) = False.

Succ() — функция, обратная для Pred() — возвращает следующее значение.

Примеры: Succ(5) = 6, Succ(‘E’) = ‘F’, Succ(False) = True.

Ord() — возвращает порядковый номер значения в списке значений типа данных. С этой функцией мы уже встречались при работе со строками — с её помощью мы узнавали код символа.

Примеры: Ord(‘A’) = 65, Ord(True) = 1.

Low() — возвращает минимальное значение указанного типа данных.

Примеры: Low(Byte) = 0, Low(Boolean) = False, Low(Char) = #0 (символ с кодом 0).

High() — возвращает максимальное значение указанного типа данных.

Примеры: High(Byte) = 255, High(Boolean) = True, High(Char) = #255 (в русской локали это символ «я»).

Ну и ещё две процедуры, с которыми мы уже знакомы:

Dec() — уменьшает значение на единицу.

Inc() — увеличивает значение на единицу.

Не забывайте о втором необязательном параметре этих процедур.

Пользовательские типы данных

На основе порядковых типов данных программист может создать свои собственные типы — перечислимые и интервальные. Они будут рассмотрены ниже.

Целочисленные типы

Как следует из названия, целочисленные типы позволяют хранить целые числа. Среди них есть типы, которые хранят числа со знаком (т.е. положительные или отрицательные), а есть и такие, которые хранят только положительные. Чем большее количество значений может содержать тип, тем больше памяти он занимает. Рассмотрим целочисленные типы данных.

Сначала рассмотрим беззнаковые типы, т.е. те, которые позволяют хранить только положительные числа и ноль:

Byte — значения 0..255 — занимает в памяти 1 байт.

Word — значения 0..655352 байта.

LongWord — значения 0..42949672954 байта.

Теперь типы со знаком (отрицательные числа записываются со знаком минус «-» впереди, неотрицательные могут записываться как со знаком «+», так и без него):

ShortInt — значения -128..1271 байт.

SmallInt — значения -32768..327672 байта.

LongInt — значения -2147483648..21474836474 байта.

Int64 — значения -2 ^53 ..2 ^53 -18 байт.

Существуют также 2 общих типа, которые находят своё отражение в вышеперечисленных. Рекомендуется использовать именно эти типы, т.к. компилятор «заточен» под них и создаёт более быстрый и эффективный код:

Integer — значения -2147483648..21474836474 байта.

Cardinal — значения 0..42949672954 байта.

Следует отметить, что целые числа могут быть представлены не только в десятичной, но и в шестнадцатеричной системе счисления, т.е. в виде $xxxxxxxx, где x — один из символов 0, 1, . 8, 9, A, B, . E, F. К примеру, все цвета (точнее, их коды) представляются именно в виде шестнадцатеричных чисел.

Логические типы

С логическими выражениями и с логическим типом данных мы уже знакомы — это тип Boolean , принимающий значения True и False. Помимо Boolean существуют следующие логические типы: ByteBool , WordBool и LongBool . Однако последние введены лишь для обспечения совместимости с другими языками и системами программирования. Использовать рекомендуется только тип Boolean. Логическое значение в памяти занимает 1 байт. На самом деле, конечно, достаточно и одного бита, но оперировать ячейками меньше байта, мы, к сожалению, не можем.

Символьные типы

Символьные типы обеспечивают хранение отдельных символов. Основной тип данных — Char , который содержит символы с кодами 0..255. Существуют ещё типы AnsiChar и WideChar . Тип AnsiChar эквивалентен типу Char, т.е. по сути это один и тот же тип. Занимает в памяти 1 байт. Для кодирования символов используется код ANSI (American National Standards Institute). Тип WideChar кодируется международным кодом Unicode и занимает в памяти 2 байта. Таблица Unicode включает символы практически всех языков мира.

Вещественные типы

Из названия следует, что эти типы используются для хранения вещественных, т.е. действительных чисел. Отличаются они границами допустимых значений и точностью, т.е. числом цифр после запятой. Вот эти типы:

Real (он же Double ) — значения от 5.0×10 ^-324 до 1.7×10 ^308 , точность — 15-16 цифр, занимает в памяти 8 байт.

Real48 — значения от 2.9×10 ^-39 до 1.7×10 ^38 , точность — 11-12 цифр, 6 байт памяти.

Single — значения от 1.7×10 ^-45 до 3.4×10 ^38 , точность — 7-8 цифр, 4 байта.

Extended — от 3.6×10 ^-4951 до 1.1×10 ^4932 , точность — 19-20 цифр, 10 байт памяти.

Comp — от -2×10 ^63 +1 до 2×10 ^63 -1, точность — 19-20 цифр, 8 байт.

Currency — от -922337203685477.5808 до 922337203685477.5807, точность — 19-20 цифр, в памяти занимает 8 байт.

Как и в случае с целыми числами, перед вещественными числами может стоять знак «+» или «-«.

Существует 2 формы записи вещественных чисел — с фиксированной точкой и с плавающей.

Запись с фиксированной точкой представляет собой обычную запись, в которой целая и дробная части отделены друг от друга точкой/запятой.

Запись с плавающей точкой подразумевает запись порядка числа, который отделяется от самого числа буквой «E» (запись «e» тоже допустима). Например, запись 1.5e2 означает число 1.5 с порядком +2, т.е. это 1.5×10 ^2 = 150.

Типы Comp и Currency были введены специально для произведения точных денежных расчётов. При этом, тип Comp, как видно из значений границ диапазона, хранит целые числа, поэтому при задании чисел с дробной частью они автоматически преобразуются в ближайшее целое число.

Перечислимые типы данных

От рассмотрения готовых типов данных перейдём к типам, которые могут быть созданы самим программистом. Один из вариантов, как было отмечено выше, — это перечислимый тип.

Смысл перечислимого типа в том, что мы явным образом указываем (перечисляем) все возможные значения. Преимущества в том, что кроме заданных значений переменные этого типа не смогут принимать больше никаких значений. Кроме того, значения можно задавать вполне осмысленные — например слова. Это упростит понимание кода и написание программы.

Значения типа данных перечисляются через запятую, а весь этот набор заключается в круглые скобки. Описание типа должно производиться в специальном разделе раздела описаний — разделе описания типов. Этот раздел предваряется ключевым словом type . Т.е. запись идёт приблизительно так же, как и описание переменных или констант, только вместо var и const пишется type. Сам тип описывается следующим образом: название типа, далее знак равенства и далее само значение. В случае с перечислимым типом это будет набор возможных значений.

Примечание: практически все типы данных в Object Pascal принято называть с буквы «T» (сокращённо от «Type»). Это не закон языка — просто одно из правил хорошего тона. Зная, что «T***» — это тип, вы никогда не ошибётесь, в противном же случае название можно спутать, например, с названием переменной.

Допустим, мы хотии задать тип данных, определяющий один из месяцев года. Мы можем описать его так:

Обратите внимание, что после описания перечислимого типа в программе не может быть переменных, название которых совпадает с названием значений объявленного типа. В нашем примере не может быть переменных «Jan», «Feb» и т.д. При попытке присвоения переменной перечислимого типа значение, не указанное в списке, компилятор выдаст ошибку, поэтому ошибиться не представляется возможным.

Раздел type существует как в модуле всей формы (в этом разделе изначально описана сама форма: TForm1 = class(TForm) . ), так и в любой подпрограмме. Область действия типа, соответственно, определяется местом в программе, в котором он описан.

Интервальные типы данных

Интервальные типы данных (также их называют ограниченными) получаются из имеющихся типов путём ограничения диапазона значений. Интервал задаётся двумя константами — начальной и конечной границей. При каждом присвоении значения переменной выполняется проверка соответствия нового значения указанному диапазону. Если значение не попадает в диапазон, выдаётся сообщение об ошибке. Во время выполнения программы задание недопустимого значения к ошибке не приводит, зато значение переменной может стать неверным.
Ограниченный тип данных можно создать только на основе простого упорядоченного типа. Значение второй константы (т.е. правой границы) должно быть больше значения первой (левой границы).
Ограниченные типы данных также описывают в разделе type. Формат записи похожий, только между константами-границами ставятся две точки.

Например, мы хотим в программе работать с датами. Можно создать ограниченные типы данных для значений дня, месяца и года (диапазон для значения года следует задать в зависимости от контекста задачи):

Помните, что использование ограниченного типа данных не уменьшит объём занимаемой памяти. Это следует из того, что задание интервала — это всего лишь условное задание возможных значений из общего набора значений данного типа.

Заключение

Сегодня мы рассмотрели простые типы данных — целочисленные, вещественные, символьные и логические, а также научились создавать перечислимые и интервальные типы данных в своих программах. Как было отмечено в начале, все эти типы позволяют хранить только одно значение и не содержат внутри себя других типов. В дальнейшем мы перейдём к рассмотрению структурных типов данных, где дело обстоит иначе.

Автор: Ерёмин А.А.

Статья добавлена: 12 июня 2008

Зарегистрируйтесь/авторизируйтесь,
чтобы оценивать статьи.

Статьи, похожие по тематике

Для вставки ссылки на данную статью на другом сайте используйте следующий HTML-код:

Ссылка для форумов (BBCode):

Быстрая вставка ссылки на статью в сообщениях на сайте:
<> (буква a — латинская) — только адрес статьи (URL);
<<статья:122>> — полноценная HTML-ссылка на статью (текст ссылки — название статьи).

Поделитесь ссылкой в социальных сетях:

Комментарии читателей к данной статье

Цитата (Белеков Б. Д):

Репутация: +40
Репутация: нет
Репутация: +1

Было было. где-то в первых ‘уроках’.

Кстати чё-то в паскале не помню инта64, как впрочем и реала48.

Репутация: +40

При использовании Delphi 2009 — да, там есть поддержка Юникода. А вам нужны греческие и японские? И они на клавиатуре у вас есть?

> в одном из предыдущих уроков Вы говорили, что рассскажете про этот момент
Можно пояснить, про какой именно момент?

Репутация: -1

В качестве параметра все буквы русского, латинского, греческого, японского. и всех остальных языков, а так же все существующие служебные символы.

в одном из предыдущих уроков Вы говорили, что рассскажете про этот момент, отсюда собственно и возник вопрос.
Извините если побеспокоил напрасно.

Репутация: +40

Кажется, вопрос не по теме урока.

А как сделать — обработать событие OnKeyDown или OnKeyPress. У второго в качестве параметра введённый символ.

Репутация: -1

Оставлять комментарии к статьям могут только зарегистрированные пользователи.

Borland delphi 4 0 для начинающих типы данных структурные типы

В этом уроке мы раскроем важную тему собственных типов данных, ее не знание будет очень сильно вас ограничивать в плане удобства програмирования и построения правильной архитектуры приложения.

При создании любой серьёзной программы не обойтись без дополнительных, более сложных, чем числа и строки, типов данных. В Delphi программист может для своих целей конструировать собственные типы данных. Чтобы ввести в программу (описать) новый тип данных, применяется оператор с ключевым словом type:
type название_типа = описание_типа;

Перечислимый тип — это тип данных, диапазоном значений которого является просто набор идентификаторов. Это может применяться в тех случаях, когда нужно описать тип данных, значения которого нагляднее представить не числами, а словами. Перечислимый тип записывается взятой в круглые скобки последовательностью идентификаторов — значений этого типа, перечисляемых через запятую. При этом, первые элементы типа считаются младшими по сравнению с идущими следом. Например, тип, описывающий названия футбольных команд, можно сформировать так: Вообще, под перечислимыми типами понимают все типы, для которых можно определить последовательность значений и их старшинство. К ним относятся:

  • все целочисленные типы, для которых всегда можно указать число, следующее за числом N;
  • символьные типы (Char): за символом ?a? всегда следует ?b?, за ?0? следует ?1?, и так далее;
  • логические типы — тип Boolean также представляет собой перечислимый тип: type Boolean = (false, true);

Структурные типы данных используются практически в любой программе. Это такие типы, как

  • массивы
  • записи
  • множества

Массив — это структура данных, доступ к элементам которой осуществляется по номеру (или индексу). Все элементы массива имеют одинаковый тип.
Описание массива имеет вид: Диапазон определяет нижнюю и верхнюю границы массива и, следовательно, количество элементов в нём. При обращении к массиву индекс должен лежать в пределах этого диапазона. Массив из ста элементов целого типа описывается так: Теперь можно описать переменные типа TMyArray:

Вместо присвоения типа можно явно описать переменные как массивы:

Для доступа к элементу массива нужно указать имя массива и индекс элемента в квадратных скобках. В качестве индекса может выступать число, идентификатор или выражение, значение которых должно укладываться в диапазон, заданный при описании массива: Иногда требуется узнать верхнюю границу массива. Встроенная функция High() вернёт число, являющееся верхней границей массива. В скобки нужно подставить массив, верхнюю границу которого требуется узнать.

Выражение: Означает, что каждый элемент массива B равен элементу с таким же индексом массива A. Такое присвоение возможно только если переменные объявлены через некий поименованный тип, или перечислены в одном списке. И в случае:

его использовать невозможно (но возможно поэлементное присвоение B[1] := A[2]; и т.д.).

Массивы могут иметь несколько измерений, перечисляемых через запятую. Например, таблицу из четырёх столбцов и трёх строк:

1 2 3 4
5 6 7 8
9 10 11 12

Можно описать в виде массива с двумя измерениями: Теперь в результате операции присвоения Y будет равен 7.
Многомерный, например, двумерный массив можно описать как массив массивов: Результат будет аналогичен предыдущему примеру.
Каждое измерение многомерного массива может иметь свой собственный тип, не обязательно целый.
Кроме вышеописанных, так называемых статических массивов, у которых количество элементов неизменно, в Delphi можно использовать динамические массивы, количество элементов в которых допускается изменять в зависимости от требований программы. Это позволяет экономить ресурсы компьютера, хотя работа с такими массивами происходит гораздо медленнее. Описываются динамические массивы аналогично статическим, но без указания диапазона индексов: После создания в динамическом массиве нет ни одного элемента. Необходимый размер задаётся в программе специальной процедурой SetLength. Массив из ста элементов: Нижняя граница динамического массива всегда равна нулю. Поэтому индекс массива A может изменяться от до 99.
Многомерные динамические массивы описываются именно как массивы массивов. Например, двумерный: В программе сначала задаётся размер по первому измерению (количество столбцов):

SetLength(A, 3);

Затем задаётся размер второго измерения для каждого из трёх столбцов, например:

SetLength(A[0], 3);
SetLength(A[1], 2);
SetLength(A[2], 1);

Тип Размер(byte) Кол-во значащих цифр Диапазон
Single 7-8 1.5e-45 … 3.4e38
Double 15-16 5.0e-324 . 1.7e308
Real 11-12 2.9e-39 … 1.7e38
Extended 19-20 3.4e-4951 … 1.1e4932

S-e-m

Здесь m – знаковый разряд числа; e – экспоненциальная часть (содержит двоичный порядок); m – мантисса числа.

Мантисса m имеет длину от 23 (для Single) до 63 (для Extended) двоичных разрядов, что и обеспечивает точность 7-8 для Single и 19-20 для Extended десятичных цифр. Десятичная точка(запятая) подразумевается перед левым (старшим) разрядом мантиссы, но при действиях с числом она сдвигается влево и вправо в соответствии с двоичным порядком числа, хранящимся в экспоненциальной части, поэтому действия над вещественными числами называют арифметикой с плавающей точкой(запятой).
Особые операции :
Round( r ) – 3 округление (r= 2.6);
Trunc ( 2.8 ) – 2 целая часть;
Int (2.8 ) – 2.0 округление дробной части;
Frac (2.8) – 0.7 дробная часть.
11. Порядковые типы. Целые типы в Delphi, тип диапазон

К порядковым типам относятся целые типы, логический и символьный типы, а так же перечисления и тип-диапазон(пользовательский тип). К любому из них применима функция ORD(X) , которая возвращает порядковый номер значения выражения X. Для целых типов ORD(X) возвращает само значение X. Применение к логическому, символьному и к перечислениям дает «+» целое число в диапазоне 0-1(лог. тип), 0-255 (символьный), 0-65535 (перечисление). У типа-диапазон результат применения ord(x) зависит от свойств базового порядкового типа.
Так же к порядковым типам можно применять функции:
PRED(X) – возвращает предыдущее значение порядкового типа ( ord(pred(x)) = ord(x)-1).

SUCC(X)– возвращает следующее значение порядкового типа( ord(succ(x)) = ord(x)+1).
Вот некоторые целые типы :

Название типа Размер в байтах Диапазон
Byte 0…255
Shortint -128…127
Word 0…65535
Integer -2147483647…2147483295

К типам применимы следующие функции :

Abs(x)–возвращает модуль X

Chr(x)–возвращает символ по его коду

Dec(x)–уменьшает значение на 1

Inc(x)–увеличивает значение на 1
Div–целочисленное деление

Mod–дробная часть деления

Sqr(x)–возвращает квадрат X

А так же операции *,/,+,.
При работе с данными, нужно следить за тем, чтобы они не выходили за границы диапазона значений.
Тип-диапазон – это подмножество своего базового типа, в качестве которого может выступать любой порядковый тип, кроме типа-диапазона. Задается границами своих значений внутри базового типа : .. .Есть две функции : HIGH(x) — возвращает максимальное значение типа-диапазона, к которому принадлежит переменная Х.
LOW(x) — возвращает минимальное значение типа-диапазона.

12.Порядковые типы. Символьный тип. Таблица символов.
Значениями символьного типа является множество символов компьютера. Каждому символу присваивается целое число в диапазоне от 0 до 255. Это число служит кодом внутреннего представления символа, его возвращает функция ORD. В Delphi 7 есть три символьных типа :

Тип ANSIChar представляет собой так называемые Ansi-символы. Это символы, которые используются в операционных системах семейства Windows(размером 1 байт). Тип WideChar предназначен для хранения так называемых Unicode-символов, которые в отличие от Ansi-симвояов занимают два байта. Это позволяет кодировать символы числами от 0 до 65535 и используется для представления различных азиатских алфавитов. Первые 256 символов в стандарте Unicode совпадают с символами Аnsi.Тип Char в Delphi 7 эквивалентен типу AnsiChar и обеспечивает наибольшую производительность. Для отображения множества символов в подмножество натуральных чисел и обратно имеются следующие две стандартные функции:

ord(c) — дает порядковый номер символа с;
chr(i) — дает символ с порядковым номером i.
UpCase(CH) – возвращает прописную букву, если CH– строчная латинская буква, в противном случае возвращает сам символ.
Length( ) – функция, результатом которой является длина указанной строки.
13.Логический тип. Логические операторы и операции сравнения.
Значениями логического типа может быть одна из предварительно объявленных констант False или True.
Ord (False) =0; Ord (True) = 1; False

14.Порядковые типы. Перечисляемый тип.(пользовательский тип)
Перечисление, или перечисляемый тип
, задается перечислением тех значений, которые он может получать. Каждое значение именуется некоторым идентификатором и располагается в списке, обрамленном круглыми скобками, например :
Type
TSound = (‘ click, clack, clock’);

Описание переменных : var snd:TSound;
Особые операции:
ord(snd) – возвращает номер значения по порядку начиная с нуля(нумерацию можно начинать с единицы, если в типе указать : Type TSound = (‘click’=1,’ clack, clock’).

15.Тип массив(статический) : описание, ввод, вывод. Форматный вывод.
Это пользовательский тип.
Отличительная особенность массивов заключается в том, что все их компоненты – суть данные одного типа. Эти компоненты можно легко упорядочить и обеспечить доступ к любому из них простым указанием его порядкового номера.
Описание типа массива : = array [ ] of ;
– правильный идентификатор; array,of – зарезервированные слова(массив, из); – список из одного или нескольких индексных типов, разделенных запятыми; – любой тип Паскаля.
В качестве индексных типов в Паскале можно использовать любые порядковые типы, кроме LongInt и типов-диапазонов с базовым типом LongInt.
Обычно в качестве индексного типа используется тип-диапазон, в котором задаются границы индексов. Так как тип за словом of,– это любой тип Паскаля, он может быть, в частности, и другим массивом, например :
type mat = array [0..5,-1..2,Char] of Byte.

Ввод и вывод begin a.b : =100; writeln(a.b); End.

16.Тип запись : описание, ввод, вывод, Оператор With. Запись с вариантами.
Запись
– это структура данных, состоящая из фиксированного количества компонентов, называемых полями записи. В отличие от массива компоненты (поля) записи могут быть различного типа. Чтобы можно было ссылаться на тот или иной компонент записи, поля именуются.
Структура объявления типа записи такова :
= record end;
– правильный идентификатор ;record,end – зарезервированные слова(запись, конец); – список полей, представляющий собой последовательность разделов записи, между которыми ставится точка с запятой. Каждый раздел записи состоит из одного или нескольких идентификаторов полей, отделяемых друг от друга запятыми. За идентификатором(-ми) ставится двоеточие и описание типа поля(-ей).
Описание : type BirthDay = record
day, month : Byte;
year : Word end;
var a, b: BirthDay;

К каждому из компонентов записи можно получить доступ, если использовать составное имя, то есть указать имя переменной, затем точку и имя поля : a. Day : = 27
Для вложенных полей приходится продолжать уточнения :
Type BirthDay = record …. End;
var c : record
name : String ;
bd : BirthDay ;
end;
begin
…. If c. bd. Year = 1939 then
end.
Чтобы упростить доступ к полям записи, используется оператор присоединения WITH :
with do
with, do – ключевые слова ( с, делать) ; – имя переменной типа запись, за которой, возможно, следует список вложенных полей; – любой оператор Паскаля.
Например : with c. bd do month : = 9;
В Паскале допускается использовать записи с так называемыми вариантными полями, например :
Type Forma = record
Name :String ;
case Byteof
0 : (BirthPlace : String [40] ) ;
1 : ( Country : String [20] ) ;
end;
17.Тип множество : описание, ввод, вывод, операции над множествами.
Множество
– это наборы однотипных, логически связанных друг с другом объектов. Характер связей между объектами лишь подразумевается программистом и никак не контролируется в Паскалем. Количество элементов, входящих в множество, может меняться в пределах от 0 до 256. Именно непостоянством количества своих элементов множества отличаются от массивов и записей.
Два множества эквивалентны ó все их элементы одинаковые, причем порядок следования может быть разным. Если одни элементы одного множества входят также и в другое, то говорят о включении первого множества во второе.
Пример определения и задания множеств :
type
digitChat = set of ‘0’ .. ‘9’ ;
var s1,s2,s3: digitChar;

Ввод и вывод : S1:=[ 1..10]; … Writeln(s1); End.

S2:=[‘2’,’3’,’1’];
s3:=[‘2’,’3’];

end.
В этом примере s1 и s2 эквивалентны, а s3 включено в s2, но не эквивалентно ему.
Описание :
= set of
– правильный идентификатор;set, of – зарезервированные слова (множество, из); – базовый тип элементов множества, в качестве которого может использоваться любой порядковый тип, кроме Word, Integer, LongInt.
Над множествами определены следующие операции :
а) пересечение множеств (*) – результат содержит элементы, общие для обоих множеств.
б) объединение множеств (+) – результат содержит элементы первого множества, дополненные элементами из второго множества.
в) разность множеств (-) – результат содержит элементы первого множества, которые не принадлежат второму.
г) проверка эквивалентности (=) – возвращает True, если оба множества эквивалентны.
д) проверка неэквивалентности (<>) – возвращает True, если оба множества неэквивалентны.
е) проверка вхождения первого множества во второе ( =) – возвращает True, если второе множество включено в первое.
з)проверка принадлежности (in) – в этой бинарной операции первый элемент – выражение, а второй – множество одного и того же типа; возвращает True если выражение имеет значение, принадлежащее множеству, (см. предыдущий пример) 1 in s1 возвращает True, а 2*2 in s2 возвращает False.
и) Include – включает новый элемент в множество ( Include (S, I), здесь S- множество, I – элемент)
Exclude – исключает элемент из множества ( Exclude (S, I)).

18.Текстовый файл : описание файловой переменной, основные операции. Использование параметров программы для передачи программе имен файлов.
Текстовый файл – совокупность строк (последовательностей символов) переменной длины, заканчивающихся специальным символом eoln (конец строки; на клавиатуре набирается нажатием клавиши Enter).
Описание файловой переменной : : TextFile; или просто Text.
Первоначально любой файл данных создается как текстовый. Набранные на клавиатуре данные представляют собой стандартный входной файл. Содержимое дисплея при просмотре любого файла – стандартный выходной файл. Эти файлы используются при задании и просмотре данных. Для хранения данных последние записываются в файл на внешнем запоминающем устройстве (диске).

Основные операторы для работы с текстовыми файлами:
assignFile( ,’ ’) – связывает файловую переменную с файлом;
rewrite( ) – создание и открытие нового файла для записи;
reset ( ) – открытие существующего текстового файла (файла, связанного с файловой переменной ) для чтения;
append( ) – открытие существующего текстового файла (файла, связанного с файловой переменной ) для дозаписи в конец;
closeFile( ) – закрытие открытого файла.

Операторы ввода-вывода:
read( , ) – чтение данных; элемент списка ввода для текстового файла – число или символ или строка string;
write( , ) — запись данных согласно списку вывода; элемент списка вывода для текстового файла – число или символ или строка string.
readln( , ) — чтение данных согласно списку ввода и переход на следующую строку; если в строке данных остались данные, не вошедшие в список ввода, они игнорируются
writeln( , ) — запись данных в файл согласно списку вывода с добавлением в конце выведенной строки маркера конца строки (переход на следующую строку).
Параметры :
assignFile(dat, ParamStr(1));
assignFile(res, ParamStr(2));
ParamStr – стандартная функция для работы с параметрами в Delphi, она возвращает параметр с заданным номером. Ее синтаксис:
function ParamStr( : word): string;

Все параметры трактуются как отдельные строки (string). Параметры пользователя нумеруются, начиная с единицы. В нулевом параметре ParamStr(0) ОС передает программе полное имя запускаемого приложения (например, D:\Гречкина\Project1.exe). Этот (нулевой) параметр не входит в общее число параметров, которое можно узнать с помощью функции ParamCount: function ParamCount: word.
19.Назначение и отличие процедур общего вида и функций.
Назначение
. Подпрограммы (процедуры и функции) представляет собой инструмент, с помощью которого любая программа может быть разбита на ряд в известной степени независимых друг от друга частей. Такое разбиение необходимо по двум причинам :
1)Средство экономии памяти.
2)Применение методики нисходящего проектирования, благодаря которой достигаются достаточно простые алгоритмы, которые можно легко запрограммировать.
Отличие : Процедуры и функции представляют собой относительно самостоятельные фрагменты программы, оформленные особым образом и снабженные именем. Отличие процедуры от функции заключается в том, что результатом исполнения операторов, образующие тело функции, всегда является некоторое единственное значение или указатель, поэтому вызов функции, поэтому вызов функции можно использовать в соответствующих выражениях наряду с переменными и константами.
20. Описание и вызов процедур.
Формат описания процедуры имеет вид:

procedure имя процедуры (формальные параметры);

раздел описаний процедурыbegin исполняемая часть процедурыend;
Вызов:
имя процедуры (формальные параметры);


21. Описание и вызов функций.
Формат описания функции:

function имя функции (формальные параметры):тип результата;

раздел описаний функции

begin
исполняемая часть функции
end;Вызов:
Имя переменной:=имя функции (формальные параметры);…
ИЛИ
имя процедуры (имя функции (формальные параметры));
22. Классы формальных параметров: параметры-константы, параметры-значения, параметры-переменные. Ключевые слова const, var, out при описании параметров.Параметры-значения

Формальный параметр-значение обрабатывается, как локальная по отношению к процедуре или функции переменная, за исключением того, что он получает свое начальное значение из соответствующего фактического параметра при активизации процедуры или функции. Изменения, которые претерпевает формальный параметр-значение, не влияют на значение фактического параметра.
Соответствующее фактическое значение параметра-значения должно быть выражением и его значение не должно иметь файловый тип или какой-либо структурный тип, содержащий в себе файловый тип.
Фактический параметр должен иметь тип, совместимый по присваиванию с типом формального параметра-значения. Если параметр имеет строковый тип, то формальный параметр будет иметь атрибут размера, равный 255.
Параметры-константы
Формальные параметры-константы работают аналогично локальной переменной, доступной только по чтению, которая получает свое значение при активизации процедуры или функции от соответствующего фактического параметра. Присваивания формальному параметру-константе не допускаются. Формальный параметр-константа также не может передаваться в качестве фактического параметра другой процедуре или функции.
Параметр-константа, соответствующий фактическому параметру в операторе процедуры или функции, должен подчиняться тем же правилам, что и фактическое значение параметра.
В тех случаях, когда формальный параметр не изменяет при выполнении процедуры или функции своего значения, вместо параметра-значения следует использовать параметр-константу. Параметры-константы позволяют при реализации процедуры или функции защититься от случайных присваиваний формальному параметру. Кроме того, для параметров структурного и строкового типа компилятор при использовании вместо параметров-значений параметров-констант может генерировать более эффективный код.
Параметры-переменные
Параметр-переменная используется, когда значение должно передаваться из процедуры или функции вызывающей программе. Соответствующий фактический параметр в операторе вызова процедуры или функции должен быть ссылкой на переменную. При активизации процедуры или функции формальный параметр-переменная замещается фактической переменной, любые изменения в значении формального параметра-переменной отражаются на фактическом параметре.
Внутри процедуры или функции любая ссылка на формальный параметр-переменную приводит к доступу к самому фактическому параметру. Тип фактического параметра должен совпадать с типом формального параметра-переменной (вы можете обойти это ограничение с помощью нетипизированного параметра-переменной).
Примечание: Файловый тип может передаваться только, как параметр-переменная.
23. Массивы и записи как формальные параметры процедур и функций.
Объявление :
Type mas = array [1..100] of integer;
procedure massiv ( a : mas);

Открытый массив представляет собой формальный параметр подпрограммы, описывающий базовый тип элементов массива, но не определяющий его размерности и границы
procedure MyProc( OpenArray : array of Integer);
Внутри такой параметр трактуется как одномерный массив с нулевой нижней границей. Верхняя граница открытого массива возвращается функцией High.Используя 0 как минимальный индекс, подпрограмма может обрабатывать одномерные массивы произвольной длины.
24. Имена процедур и функций как фактические параметры процедур( Процедурный тип).
Процедурные типы — это нововведение фирмы Borland (в стандартном Паскале таких типов нет). Основное назначение этих типов — дать программисту гибкие средства передачи функций и процедур в качестве фактических параметров обращения к другим процедурам и функциям.
Для объявления процедурного типа используется заголовок процедур, в котором опускается ее имя, например:
type
Proc = procedure (a, b, с : Real; Var d : Real);
Proc2 = procedure (var a, b);
РгосЗ = procedure;
Func1 = function : String;
Func2 = function ( var s : String) : Real;
В программе могут быть объявлены переменные процедурных типов, например,так:
var
р1 : Proc;
ар : array [1..N] of Proc1;
Переменным процедурных типов допускается присваивать в качестве значений имена соответствующих подпрограмм. После такого присваивания имя переменной становится синонимом имени подпрограмм.
В отличие от стандартного Паскаля, в Турбо Паскале разрешается использовать в передаваемой процедуре как параметры-значения, так и параметры-переменные
<ознакомиться с файлом ProcType на сайте Гречкиной>
25.Модули в Паскале : назначение, описание, использование. Обязательные и дополнительные разделы.
Модуль
– это автономно контролируемая программная единица, включающая в себя различные компоненты раздела описаний ( типы, константы, переменные, процедуры и функции) и, возможно, некоторые исполняемые операторы инициализирующей части.
Структура модуля :
unit ;
interface

implementation

begin

end.
Если в модуле используются другие модули, то нужно объявить их словом uses,оно можется следовать сразу за словом interface, либо сразу за словом implementation, либо и там и там.
unit – зарезервированное слово( единица); interface – зарезервированное слово (интерфейс), начинающее интерфейсную часть модуля; implementation – зарезервированное слово(выполнение), начинающее исполняемую часть модуля; begin – зарезервированное слово, начинающее инициализирующую часть модуля(эта конструкция begin необязательна); end – зарезервированное слово, являющееся признаком конца модуля.
В части interface содержатся объявления всех глобальных объектов модуля, которые должны стать доступными основной программе и(или) другим модулям.
В части implementation содержит описания подпрограмм, объявленных в интерфейсной части. В ней могут объявляться локальные для модуля объекты – вспомогательные типы, константы, переменные и блоки, а так же метки, если они используются в инициализирующей части.
В инициализирующей части (begin как это слово, так и вся эта часть может отсутствовать или быть пустой) размещаются исполняемые операторы, содержащие некоторый фрагмент программы. Эти операторы исполняются до передачи управления основной программе и обычно используются для подготовки ее к работе. Например, в них могут инициализироваться переменные, открываться нужные файлы и т.д.
Для использования в программе модуля или списка модулей необходимо в начале программы поместить оператор uses, после которого уже указывать модули :
program Lalala;
uses aUnit, bUnit, cUnit;
26.Составление функциональных и структурированных тестов.
Функциональные тесты проверяют правильность работы программы по принципу: «не знаю как сделано, но знаю, что должно быть в результате, и именно это и проверяю».
К функциональным тестам относятся:
· «тепличные», проверяющие программу при корректных, нормальных значениях исходных данных
· «экстремальные» («стресс–тесты»), находящиеся на границе области определения (например, наибольшая или наименьшая нагрузка системы по количеству или по времени), проверяющие поведение системы в экстремальных ситуациях, которые могут произойти и на которые программа должна корректно реагировать.
· «запредельные» («тесты обезьяны»), выходящие за границы области определения (а возможно, и здравого смысла), проверяющие ситуации, бессмысленные с точки зрения постановки задачи, но которые могут произойти из-за ошибок пользователя (корректная реакция системы на запрещенный или неподдерживаемый ввод и т.п., так называемая «защита от дурака»)
Структурные тесты контролируют (тестируют) работу всех структурных частей программы (функций, процедур, модулей, основной программы) по всем возможным маршрутам (ветвям программы).
При структурном тестировании необходимо осуществлять контроль:
· обращений к данным (т.е. проверять правильность инициализации переменных; а также размеры массивов и строк; отслеживать, не перепутаны ли строки со столбцами; соответствуют ли входных и выходных значений выбранным типам данных; проверять правильность обращения к файлам и т.п.);
· вычислений (порядок следования операторов и запись выражений; переполнение разрядной сетки или получение машинного нуля; соответствие результата заданной точности и т.п.);
· передачи управления (завершение циклов, функций, программы);
· межмодульных интерфейсов (списки формальных и фактических параметров; отсутствие побочных эффектов, когда подпрограмма изменяет аргументы, которые не должны меняться и т.п.).
Искусство тестирования сводится к разработке простого, полного и не избыточного набора тестов, а технология тестирования – к испытанию программы на всем наборе тестов, после внесения в нее каждого изменения.
20. Нисходящее и восходящее тестирование программ. Достоинства и недостатки. Использование заглушек и драйверов.
Восходящее тестирование.

При восходящем подходе программа собирается и тестируется снизу вверх. Только модули самого нижнего уровня (модули, не вызывающие других модулей) тестируются независимо, автономно. После того как тестирование этих модулей завершено, вызов их должен быть так же надежен, как вызов встроенной функции языка или оператор присваивания. Затем тестируются модули, непосредственно вызывающие уже проверенные. Эти модули более высокого уровня тестируются не автономно, а вместе с уже проверенными модулями более низкого уровня. Процесс повторяется до тех пор, пока не будет достигнута вершина. Здесь завершаются и тестирование модулей, и тестирование сопряжений программы. Для каждого модуля необходимо написать небольшую ведущую программу.

Глава 3.Типы данных

Похожие главы из других книг

Типы данных

Глава 1 Типы данных, услоные операторы и массиы VBA

Глава 1 Типы данных, услоные операторы и массиы VBA

Типы данных

Типы данных Один из этапов проектирования базы данных заключается в объявлении типа каждого поля, что позволяет процессору базы данных эффективно сохранять и извлекать данные. В SQL Server предусмотрено использование 21 типа данных, которые перечислены в табл. 1.1.Таблица 1.1.

12.2. Типы баз данных

12.2. Типы баз данных Группу связанных между собой элементов данных называют обычно записью. Известны три основных типа организации данных и связей между ними: иерархический (в виде дерева), сетевой и реляционный.Иерархическая БДВ иерархической БД существует

Типы данных

Типы данных В JScript поддерживаются шесть типов данных, главными из которых являются числа, строки, объекты и логические данные. Оставшиеся два типа — это null (пустой тип) и undefined (неопределенный

Типы данных

Типы данных Приведенные в этой главе таблицы взяты непосредственно из оперативной справочной системы и представляют единую модель данных Windows (Windows Uniform Data Model). Определения типов можно найти в заголовочном файле BASETSD.H, входящем в состав интегрированной среды разработки

14.5.1 Типы данных

14.5.1 Типы данных Файл может содержать текст ASCII, EBCDIC или двоичный образ данных (существует еще тип, называемый локальным или логическим байтом и применяемый для компьютеров с размером байта в 11 бит). Текстовый файл может содержать обычный текст или текст, форматированный

20.10.3 Типы данных MIB

20.10.3 Типы данных MIB Причиной широкого распространения SNMP стало то, что проектировщики придерживались правила «Будь проще!»? Все данные MIB состоят из простых скалярных переменных, хотя отдельные части MIB могут быть логически организованы в таблицы.? Только небольшое число

Глава 3.Типы данных

Типы данных

Типы данных Многие языки программирования при объявлении переменной требуют указывать, какой тип данных будет ей присваиваться. Например, в языке Java кодint i = 15;объявит переменную целого типа int с именем i и присвоит ей значение 15. В этом случае тип данных ставится в

5.2.4. Типы данных

5.2.4. Типы данных Мы можем вводить в ячейки следующие данные: текст, числа, даты, также приложение Numbers предоставляет возможность добавлять флажки, ползунки и другие элементы управления. Аналогично MS Excel для выравнивания чисел, дат и текстовых данных в Numbers существуют

ГЛАВА 9. Числовые типы данных.

ГЛАВА 9. Числовые типы данных. Firebird поддерживает числовые типы данных с фиксированной точкой (точные числа) и с плавающей точкой (приблизительная точность). Десятичными типами с фиксированной точкой являются целые типы с нулевым масштабом SMALLINT, INTEGER и в диалекте 3 BIGINT, а

ГЛАВА 11. Символьные типы данных.

ГЛАВА 11. Символьные типы данных. Firebird поддерживает символьные (строковые) типы данных фиксированной и переменной длины. Они могут быть определены для локального использования в любом наборе символов, выбираемом из большого списка. Символьные типы фиксированной длины не

Типы данных

Типы данных Несмотря на то, что типы данных подробно описаны в документации (см. [1, гл. 4]), необходимо рассмотреть ряд понятий, которые будут часто использоваться в последующих главах книги. Помимо изложения сведений общего характера будут рассмотрены также примеры

Иллюстрированный самоучитель по Delphi 7 для начинающих

Язык программирования Delphi. Типы данных.

В среде программирования Delphi для записи программ используется язык программирования Delphi. Программа на Delphi представляет собой последовательность инструкций, которые довольно часто называют операторами. Одна инструкция от другой отделяется точкой с запятой.

Каждая инструкция состоит из идентификаторов. Идентификатор может обозначать:

  • Инструкцию языка (:=, if, while, for);
  • переменную;
  • константу (целое или дробное число);
  • арифметическую (+, , *, /) или логическую (and, or, not) операцию;
  • подпрограмму (процедуру или функцию);
  • отмечать начало (procedure, function) или конец (end) подпрограммы или блока (begin, end).

Программа может оперировать данными различных типов: целыми и дробными числами, символами, строками символов, логическими величинами.

Целый тип

Язык Delphi поддерживает семь целых типов данных: shortint, smailint, Longint, Int64, Byte, word и Longword, описание которых приведено в табл. 1.1.

Таблица 1.1. Целые типы.

Тип Диапазон Формат
Shortint -128-127 8 битов
Smallint -32 768-32 767 16 битов
Longint -2 147 483 648-2 147 483 647 32 бита
Int64 -2 63 -2 63 -1 64 бита
Byte 0-255 8 битов, беззнаковый
Word 0-65 535 16 битов, беззнаковый
Longword 0-4 294 967 295 32 бита, беззнаковый

Object Pascal поддерживает и наиболее универсальный целый тип – Integer, который Эквивалентен Longint.

Типы данных в Delphi Обучающий материал

В delphi, при разработке приложений для их быстродействия и максимальной производительности в работе с оперативной памятью используются типы данных. Без указания типа невозможно себе представить, какое количество байт будет выделено для хранения значения переменной в оперативной памяти.

Только обязательное назначение типа переменной обеспечит эффективную работу приложения с минимальной нагрузкой на компьютерную систему.

Язык delphi оперирует достаточно большим набором типов данных: целочисленный тип, вещественный, символьный, строчный и логический тип. К тому же представленные, обобщенные типы в зависимости от объема выделенной памяти под хранение имеют конкретное разделение на типы.

Целочисленный тип данных в Delphi представлен:

  • Shortint — занимает в памяти 8 битов и имеет числовой диапазон от -127 до 128.
  • Smallint — числовой интервал находится в пределах -32 768 — 32 767 (16 битов).
  • Longint – диапазон чисел от -2 147 483 648 до 2 147 483 647 (32 бита).
  • Int64- наибольший интервал от – 263 до 263-1 (64 бита).
  • Byte- интервал значений от 0 до 255 (8 бит).
  • Word- числовой диапазон от 0 до 65535 (16 бит).
  • Longword –интервал составляет 0 — 4 294 967 295 (32 бита).

Следует заметить, что последние 3 типа называются беззнаковыми так, как имеют в своем числовом интервале только положительные числа( нет отрицательных значений). К тому же можно использовать и тип “Integer”, который соответствует “Longint”. К тому же следует знать, что значения в типах имеют строгий порядок. Такое положение позволяет использовать по отношению к значениям различные процедуры и функции. Не относится к вещественному типу данных в Delphi(не упорядочен).

Числа с плавающей точкой (дробные) представлены в delphi вещественным типом. Вещественный тип данных делится на 6 типов, которые отличаются числовым диапазоном, количеством значащих цифр и занимаемой памятью.

  • Single- число может находиться в интервале 1.5 x 1045-3.4х 1038.Объем занимаемой памяти 4 байта.
  • Real48 — числовой диапазон 2.9x-39-1.7×1038 (6 байт).
  • Double — интервал составляет 5.0×10-324 -1.7×10308 (8 байт).
  • Extended — 3.6×10-4951 -1.1 х104932 (10 байт).
  • Comp — диапазон чисел 263+1 – 263-1, занимаемая память 8 байт.

Currency – этот вещественный тип данных называют еще денежным. С его помощью осуществляется реализация различных приложений финансовой тематики. Имеет 53 бита точности и поддержку 4 десятичных мест.

Текстовую информацию(переменные) представляют строковые типы данных в Delphi. Различают 3 типа:

  • Shortstring — длина строки может составлять максимально 255 символов и в памяти размещается статическим методом.
  • Longstring — такой тип данных ограничен лишь объемом динамической памяти.
  • WideString – аналогичен тип Longstring, но каждый символ представлен в Unicode.

В delphi строковые типы данных допускается обозначать типом string, который аналогичен shortstring.

Синтаксис указания типа переменной в delphi довольно просто. Ряд примеров подтверждает это утверждение:

Язык Delphi является производным от низкоуровневого языка Object Pascal, что позволяет разрабатывать с использованием совместимых компиляторов программы под Linux. Такое положение обеспечивает написание программ, разработку графических интерфейсов, приложений, способных облегчить администрирование linux, насытить систему новым и удобным функционалом.

Типы данных Delphi и работа с ними

К встроенным типам данных в языке Delphi относятся типы целые, действительные, символы, строки, указатели, булевы.

Порядковые типы. Порядковыми (ordinal) типами называются те, в которых значения упорядочены, и для каждого из них можно указать предшествующее и последующее значения.

Структурные типы. К структурным типам относятся множества, массивы, записи, файлы, классы, интерфейсы.

Целые типы данных. В переменных целых типов информация представляется в виде целых чисел, т.е. чисел не имеющих дробной части.

Таблица 1 Операции над порядковыми типами

Минимальное значение порядкового типа Т

Максимальное значение порядкового типа Т

Порядковый номер значения выражения порядкового типа. Для целого выражения — просто его значение. Для остальных порядковых типов Ord возвращает физическое представление результата выражения, трактуемое как целое число. Возвращаемое значение всегда принадлежит одному из целых типов

Предыдущее по порядку значение. Для целых выражений эквивалентно Х-1

Следующее по порядку значение. Для целых выражений эквивалентно Х+1

Уменьшает значение переменной на 1. Эквивалентно V := Pred(V)

Увеличивает значение переменной на 1. Эквивалентно V := Succ(V)

8 битов, беззнаковый

16 битов, беззнаковый

32 бита, беззнаковый

Также существует такой тип, как Integer, который эквивалентен типу LongInt. Его диапазон от -2147483648 до 21474836478. Занимает 4 байта в пямяти. Основными являются Integer и Cardinal, так что в большинстве случаев желательно использовать эти типы.

Над целыми данными выполняются все операции, определенные для порядковых типов. Операции над целыми типами:

Возвращает абсолютное целое значение Х

Возвращает целую часть частного деления Х на Y

Возвращает остаток частного деления Х на Y

Возвращает булево True (истина), если Х — нечетное целое, и False (ложь) — в противном случае

Действительные типы данных. В переменных действительных типов содержатся числа, состоящие из целой и дробной частей.

Количество значащих цифр

Основным, обеспечивающим максимальную производительность, является тип Real, который в настоящий момент эквивалентен типу Double.

Таблица 5 Функции действительных типов

Абсолютная величина х

Косинус х (х выражается в радианах, а не в градусах)

Экспоненциальная функция от х

Дробная часть х

Целая часть х. Несмотря на название, возвращает действительное значение (с плавающей запятой), т.е. просто устанавливает нуль в дробной части

Натуральный логарифм от х

Ближайшее к х целое значение. Возвращает значение целого типа. Условие «ближайшее к х» не работает, если верхнее и нижнее значения оказываются равноудаленными (например, если дробная часть точно равна 0,5). В этих случаях Delphi перекладывает решение на операционную систему. Обычно процессоры Intel решают эту задачу в соответствии с рекомендацией IEEE округлять в сторону ближайшего четного целого числа. Иногда такой подход называют «банкирским округлением»

Квадрат х, т.е. X*X

Квадратный корень от х

Целая часть х. В отличие от Int, возвращающей

Символьные типы данных. Символьные типы предназначены для хранения одного символа.

Однобайтовые символы, упорядоченные в соответствии с расширенным набором символов ANSI

Символы объемом в слово, упорядоченные в соответствии с международным набором символов UNICODE. Первые 256 символов совпадают с символами ANSI

Булевы типы данных. Переменные булевых типов данных представляют логические значения, например, true (истина) и false (ложь).

Таблица 7 Размеры переменных булевых типов

2 байт (объем Word)

4 байт (объем Longint)

Массив — это структура данных, представляющая собой набор переменных одинакового типа, имеющих общее имя. Массивы удобно использовать для хранения однородной по своей природе информации, например, таблиц и списков.

Массив, как и любая переменная программы, перед использованием должен быть объявлен в разделе объявления переменных. В общем виде инструкция объявления массива выгладит следующим образом:

Имя: [нижний_индекс..верхний_индекс] of тип

где: имя — имя массива;

array — зарезервированное слово языка Delphi, обозначающее, что объявляемое имя является именем массива;

нижний_индекс и верхний_индекс — целые константы, определяющие диапазон изменения индекса элементов массива и, неявно, количество элементов (размер) массива;

Дополнительные строковые типы данных Delphi Pascal.

В Delphi Pascal помимо основного строкового типа данных string добавлены новые строковые типы. При этом изменено значение стандартного типа string. В результате определены следующие типы строк:

  • • shortstring — «короткая строка», тип всегда означает стандартную строку, принятую в Паскале, т.е. соответствует типу string, рассмотренному выше;
  • • An si st ring — переменная, содержащая адрес строки из символов AnsiChar размером до 2 147 483 547 байт, которая завершается нулем (#0); первый символ расположен в элементе с номером 1, перед строкой хранится ее длина в поле размером 4 байта и количество ссылок на строку — тоже 4 байта (рис. 4.30);
  • • widestring — формат такой же как у Ansistring — переменная, содержит адрес строки символов типа wideChar размером до 2 147 483 547 байт, которая завершается нулем (#0); первый символ расположен в элементе с номером 1;
  • • PChar — переменная, содержащая адрес массива типа array [0. .п] of char, который завершается нулем (#0), первый символ расположен в элементе с номером 0;
  • • string соответствует shortstring, если опция н компилятора выключена (при <$н-)), и Ansistring, если опция н компилятора включена (при ($н+().

Рис. 4.30. Структура строки AnsiString

В связи с этим целесообразно во всех случаях явно указывать тип shortstring или Ansistring вместо string, чтобы программа не зависела от значения опции н компилятора.

Строки первых трех типов: shortstring, AnsiString, WideString — совместимы. При присваивании строк любого типа строке PChar используют явное преобразование типа в тип PChar вида

Для строк всех указанных типов в SysUtils определены стандартные подпрограммы копирования, поиска подстроки и т.п.

Для строк, кроме PChar, существуют несколько удобных функций преобразования.

  • 1. Функция ANSILowerCase (const S: String) : String — заменяет прописные буквы на строчные.
  • 2. Функция ANSIUpperCase (const S: String) : String — заменяет строчные буквы на прописные.
  • 3. Функция StrToInt (S:String) :Integer — преобразует строку в целое число.
  • 4. Функция StrToIntDef(S:String;Default:Integer):Integer — преобразует строку в целое число и возвращает код ошибки.
  • 5. Функция StrToIntRange(S:String;Min..Max:LongInt):LongInt — преобразует строку в целое число и генерирует исключение ERangeEr ror, если число не входит в диапазон.
  • 6. Функция StrToFloat (S: String) :Extended — преобразует строку в вещественное число, в качестве разделителя использует символ, указанный при настройке Windows.
  • 7. Функция intToStr (V: integer) : string — преобразует целое число в строку символов.
  • 8. Функция IntToHex (V: Integer; Digits: Integer) : String — преобразует целое число в строку шестнадцатеричных символов, минимальной ДЛИНЫ Digits.
  • 9. Функция FloatToStr (V:Extended) : string — преобразует вещественное число в строку символов.
Илон Маск рекомендует:  Пример построения Диаграммы на JavaScript
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL