Byte — Тип Delphi


Типы данных в Delphi Обучающий материал

В delphi, при разработке приложений для их быстродействия и максимальной производительности в работе с оперативной памятью используются типы данных. Без указания типа невозможно себе представить, какое количество байт будет выделено для хранения значения переменной в оперативной памяти.

Только обязательное назначение типа переменной обеспечит эффективную работу приложения с минимальной нагрузкой на компьютерную систему.

Язык delphi оперирует достаточно большим набором типов данных: целочисленный тип, вещественный, символьный, строчный и логический тип. К тому же представленные, обобщенные типы в зависимости от объема выделенной памяти под хранение имеют конкретное разделение на типы.

Целочисленный тип данных в Delphi представлен:

  • Shortint — занимает в памяти 8 битов и имеет числовой диапазон от -127 до 128.
  • Smallint — числовой интервал находится в пределах -32 768 — 32 767 (16 битов).
  • Longint – диапазон чисел от -2 147 483 648 до 2 147 483 647 (32 бита).
  • Int64- наибольший интервал от – 263 до 263-1 (64 бита).
  • Byte- интервал значений от 0 до 255 (8 бит).
  • Word- числовой диапазон от 0 до 65535 (16 бит).
  • Longword –интервал составляет 0 — 4 294 967 295 (32 бита).

Следует заметить, что последние 3 типа называются беззнаковыми так, как имеют в своем числовом интервале только положительные числа( нет отрицательных значений). К тому же можно использовать и тип “Integer”, который соответствует “Longint”. К тому же следует знать, что значения в типах имеют строгий порядок. Такое положение позволяет использовать по отношению к значениям различные процедуры и функции. Не относится к вещественному типу данных в Delphi(не упорядочен).

Числа с плавающей точкой (дробные) представлены в delphi вещественным типом. Вещественный тип данных делится на 6 типов, которые отличаются числовым диапазоном, количеством значащих цифр и занимаемой памятью.

  • Single- число может находиться в интервале 1.5 x 1045-3.4х 1038.Объем занимаемой памяти 4 байта.
  • Real48 — числовой диапазон 2.9x-39-1.7×1038 (6 байт).
  • Double — интервал составляет 5.0×10-324 -1.7×10308 (8 байт).
  • Extended — 3.6×10-4951 -1.1 х104932 (10 байт).
  • Comp — диапазон чисел 263+1 – 263-1, занимаемая память 8 байт.

Currency – этот вещественный тип данных называют еще денежным. С его помощью осуществляется реализация различных приложений финансовой тематики. Имеет 53 бита точности и поддержку 4 десятичных мест.

Текстовую информацию(переменные) представляют строковые типы данных в Delphi. Различают 3 типа:

  • Shortstring — длина строки может составлять максимально 255 символов и в памяти размещается статическим методом.
  • Longstring — такой тип данных ограничен лишь объемом динамической памяти.
  • WideString – аналогичен тип Longstring, но каждый символ представлен в Unicode.

В delphi строковые типы данных допускается обозначать типом string, который аналогичен shortstring.

Синтаксис указания типа переменной в delphi довольно просто. Ряд примеров подтверждает это утверждение:

Язык Delphi является производным от низкоуровневого языка Object Pascal, что позволяет разрабатывать с использованием совместимых компиляторов программы под Linux. Такое положение обеспечивает написание программ, разработку графических интерфейсов, приложений, способных облегчить администрирование linux, насытить систему новым и удобным функционалом.

DelphiComponent.ru — бесплатно видеоуроки по Delphi, статьи, исходники

Простые типы данных в Delphi XE

Будьте проще, и к вам потянутся люди!

Кредо Глеба Жеглова

Название «простые типы данных» обусловлено тем, что они не содержат «в себе» никаких других типов данных.

Все простые типы данных, кроме вещественных, называют также поряд­ковыми, так как они определяют упорядоченный набор значений.

Целые типы

Самые «востребованные» типы данных! Можно смело утверждать, что ни одна программа не обходится без них. Именно этим и объясняется такое обилие целых типов данных в Delphi.

Как следует из названия, они предназначены для хранения целых чисел. Большинство типов могут хранить числа со знаками, но типы byteи Lon- gint- только неотрицательные числа. Другое принципиальное отличие целых типов заключается в максимальной и минимальной величине чи­сел, которые они содержат. Естественно, чем эти значения больше, тем больше памяти потребуется для их хранения. Кроме того, операции с «родными» целыми типами — Integerи cardinal- Delphiработает быстрее всего. Таким образом, при выборе целого типа данных для своих перемен­ных вы должны руководствоваться именно этими соображениями. Если коротко: всегда выбирайте типы Integerи cardinal, если у вас нет веских аргументов в пользу других типов данных.

Delphi Типы данных и работа с ними Информатика

Delphi типы данных.ppt

Delphi. Типы данных и работа с ними Информатика и программирование

Программа в процессе выполнения всегда обрабатывает какие-либо данные. Данные могут представлять собой целые и дробные числа, символы, строки, массивы, множества и др. Так компьютер всего лишь машина, для которой данные — это последовательность нулей и единиц, он должен абсолютно точно «знать», как их интерпретировать. По этой причине все данные в языке Delphi подразделены на типы. Для описания каждого типа данных существует свой стандартный идентификатор: для целых — Integer, для дробных — Real, для строк — string и т. д. Программист может образовывать собственные типы данных и давать им произвольные имена Понятие типа данных

Тип данных показывает, какие значения принимают данные и какие операции можно с ними выполнять. Каждому типу данных соответствует определенный объем памяти, который требуется для размещения данных. Например, в языке Delphi существует тип данных Byte. Данные этого типа принимают значения в целочисленном диапазоне от 0 до 255, могут участвовать в операциях сложения, вычитания, умножения, деления, и занимают 1 байт памяти. Понятие типа данных

Все типы данных в языке Delphi можно расклассифицировать следующим образом: простые типы данных. Они в свою очередь подразделяются на порядковые и вещественные типы данных. К порядковым типам относятся целочисленные, символьные, булевские, перечисляемые и интервальные типы данных; временной тип данных. Служит для представления значений даты и времени; строковые типы данных. Служат для представления последовательностей из символов, например текста; составные типы данных (в некоторых источниках — структурированные типы данных). Формируются на основе всех остальных типов. К ним относятся массивы, множества, записи, файлы, классы и ссылки на классы; процедурные типы данных. Позволяют манипулировать процедурами и функциями как данными программы; указательные типы данных. Данные этих типов хранят адреса других данных, с их помощью организуются различные динамические структуры: списки, деревья и т. д. ; тип данных с непостоянным типом значений. Служит для представления значений, тип которых заранее неизвестен; с его помощью легко организуется работа со списком разнотипных значений Понятие типа данных

Данные, независимо от типа, имеют некоторое значение и в программе предстают как константы или переменные. Данные, которые получили значение в начале программы и по своей природе изменяться не могут, называются константами. Константы описываются с помощью зарезервированного слова const. За ним идет список имен констант, каждому из которых с помощью знака равенства присваивается значение. Одно присваивание отделяется от другого с помощью точки с запятой. Тип константы распознается компилятором автоматически, поэтому его не надо указывать при описании. Константы

Значение константы можно задавать и выражением. Например, временной промежуток, равный одному месяцу, можно задать так: const Seconds. In. Minute = 60; Seconds. In. Hour = Seconds. In. Minute * 60; Seconds. In. Day = Seconds. In. Hour * 24; При объявлении константы можно указать ее тип: const Percent: Double = 0. 15; File. Name: string = ‘HELP. TXT’; Константы

Переменные описываются с помощью зарезервированного слова var. За ним перечисляются идентификаторы переменных, и через двоеточие указывается их тип. Каждая группа переменных отделяется от другой группы точкой с запятой. Например: var Index: Integer; // переменная целого типа данных File. Name: string; // переменная строкового типа данных Sum, Profit: Double; // группа переменных вещественного типа данных Переменные

Тип данных Диапазон значений Объем памяти (байт) Byte 0. . 255 1 Word 0. . 65535 2 Shortint -128. . 127 1 Smallint -32768. . 32767 2 Longint -2147483648. . 2147483647 4 Longword 0. . 4294967295 4 Int 64 -2^63. . 2^63 -1 8 Cardinal 0. . 4294967295 4 Integer -2147483648. . 2147483647 4 Целочисленные типы данных

В переменных целых типов информация представляется в виде целых чисел, т. е. чисел не имеющих дробной части. Основными являются Integer и Cardinal, и в большинстве случаев желательно использовать эти типы. Целочисленные типы данных

Операции над целыми типами Операция Результат Abs (X) Возвращает абсолютное целое значение Х Х Div Y Возвращает целую часть частного деления Х на Y Х Mod Y Возвращает остаток частного деления Х на Y Odd (X) Возвращает булево True (истина), если Х — нечетное целое, и False (ложь) — в противном случае Целочисленные типы данных

В переменных действительных (вещественных) типов содержатся числа, состоящие из целой и дробной частей. Вещественные типы данных применяются для описания вещественных данных с плавающей или с фиксированной точкой. Вещественные типы данных

Тип данных Диапазон значений Мантисса Объем памяти (байт) Real 5. 0*10^-324. . 1. 7*10^308 15 -16 8 Real 48 2. 9*10^-39. . 1. 7*10^38 11 -12 6 Single 1. 5*10^-45. . 3. 4*10^38 7 -8 4 Double 5. 0*10^-324. . 1. 7*10^308 15 -16 8 Extended 3. 4*10 -^4932. . 1. 1*10^4932 19 -20 10 Comp -9223372036854775808. . 9223372036854775807 19 -20 8 Currency -922337203685477. 5808. . 922337203685477. 5807 19 -20 8 Вещественные типы данных

Функция Возвращаемое значение Abs (x) Абсолютная величина х Агс. Таn(х) Арктангенс х Cos (х) Косинус х (х выражается в радианах, а не в градусах) Sin(x) Синус х Ln (х) Натуральный логарифм от х Frac(x) Дробная часть х Int (х) Целая часть х. Несмотря на название, возвращает действительное значение (с плавающей запятой), т. е. просто устанавливает нуль в дробной части Round (х) Ближайшее к х целое значение. Возвращает значение целого типа. Sqr(x) Квадрат х, т. е. X*X Sqrt (х) Квадратный корень от х Вещественные типы данных

Символьные типы применяются для описания данных, значением которых является буква, цифра, знак препинания и другие символы. Существуют два фундаментальных символьных типа данных: Ansi. Char и Wide. Char. Они соответствуют двум различным системам кодировки символов. Данные типа Ansi. Char занимают один байт памяти и кодируют один из 256 возможных символов расширенной кодовой таблицы ANSI, в то время как данные типа Wide. Char занимают два байта памяти и кодируют один из 65536 символов кодовой таблицы Unicode. Кодовая таблица Unicode — это стандарт двухбайтовой кодировки символов. Первые 256 символов таблицы Unicode соответствуют таблице ANSI, поэтому тип данных Ansi. Char можно рассматривать как подмножество Wide. Char Тип данных Char является обобщенным и соответствует типу Ansi. Char. Символьные типы данных

Булевские типы данных названы так в честь Георга Буля (George Boole), одного из авторов формальной логики. Диапазон значений данных булевских типов представлен двумя предопределенными константами: True — истина и False – ложь Булевские типы данных широко применяются в логических выражениях и в выражениях отношения. Переменные типа Boolean используются для хранения результатов логических выражений и могут принимать только два значения: False и True (стандартные идентификаторы). Булевские типы данных Byte. Bool, Word. Bool и Long. Bool введены в язык Delphi специально для совместимости с другими языками, в частности с языками C и C++. Все булевские типы данных совместимы друг с другом и могут одновременно использоваться в одном выражении. Булевские типы данных

Тип данных Диапазон значений Объем памяти (байт) Boolean False (0), True (1) 1 Byte. Bool False (0), True (не равно 0) 1 Word. Bool False (0), True (не равно 0) 2 Long. Bool False (0), True (не равно 0) 4 Булевские типы данных

Кроме стандартных типов данных язык Delphi поддерживает типы, определенные программистом. Новый тип данных определяется с помощью зарезервированного слова type, за которым следует идентификатор типа, знак равенства и описание. Описание завершается точкой с запятой. Например, можно определить тип, тождественный существующему типу: type TUnicode = W >

Идентификаторы новых типов в примере начинаются заглавной буквой T (первая буква слова type). Такое соглашение о типах программиста принято разработчиками среды Delphi, но оно не является строгим. Синтаксическая конструкция type позволяет создавать новые порядковые типы: перечисляемые типы и интервальные типы. Определение новых типов данных

Перечисляемый тип данных представляет собой список значений, которые может принимать переменная этого типа. Каждому значению поставлен в соответствие идентификатор, используемый в программе для указания этого значения. type TDirection = (North, South, East, West); Перечисляемые типы данных

Интервальный тип данных задается двумя константами, ограничивающими диапазон значений для переменных данного типа. Обе константы должны принадлежать одному из стандартных порядковых типов (но не вещественному и не строковому). Значение первой константы должно быть обязательно меньше значения второй. Например, определим интервальный тип TDigit: type TDigit = 0. . 9; var Digit: TDigit; begin Digit : = 5; Digit : = 10; // Ошибка! Выход за границы диапазона end. Интервальные типы данных

Выражения Переменные и константы всех типов могут использоваться в выражениях. Выражение задает порядок выполнения действий над данными и состоит из операндов, круглых скобок и знаков операций. Операнды представляют собой константы, переменные и вызовы функций. Операции — это действия, выполняемые над операндами. Например, в выражении (X + Y) / 2; X, Y, 2 — операнды; ‘+’, ‘/’ — знаки операций; скобки говорят о том, что сначала выполняется операция сложения, потом — деления. Операции над данными

Операции в языке Delphi подразделяются на арифметические, операции отношения, логические (булевские), строковые, операцию получения адреса и другие. Выражения соответственно называются арифметическими, отношения, булевскими, строковыми и т. д. в зависимости от того, какого типа операнды и операции в них используются. Операции над данными

Арифметические операции Операция Действие Тип операндов Тип результата + Сложение Целый, вещественный — Вычитание Целый, вещественный * Умножение Целый, вещественный / Деление Целый, вещественный Вещественный div Целочисленное деление Целый mod Остаток от деления Целый Операции над данными

Арифметические операции Выражение Результат 6. 8 — 2 4. 8 7. 3 * 17 124. 1 -(5 + 9) -14 -13. 5 / 5 -2. 7 -10 div 4 -2 27 div 5 5 5 div 10 0 5 mod 2 1 11 mod 4 3 -20 mod 7 -6 Операции над данными

Операции отношения выполняют сравнение двух операндов и определяют, истинно значение выражения или ложно. Сравниваемые величины могут принадлежать к любому порядковому типу данных. Результат всегда имеет булевский тип. Эта группа операций специально разработана для реализации алгоритмических элементов типа «больше», «больше или равно» и т. п. , которые имеются практически в каждой программе. Операции над данными

Илон Маск рекомендует:  Что такое код asp readfilter

Операции отношения Операция Действие Выражение Результат = Равно A = B True, если A = B <> Не равно A <> B True, если A B Больше A > B True, если A > B = Больше или равно A >= B True, если A > B или A = B Операции над данными

132 False 17 132 False 17 Операции отношения Выражение Результат 123 = 132 False 123 <> 132 False 17 19 False 7 >= 7 True Операции над данными

Очередность выполнения операций Операция Приоритет Описание -, not Первый Унарный минус, отрицаиие *, /, div, mod, and Второй Операции типа умножение +, -, or, xor Третий Операции типа сложение =, <>, , = Четвертый Операции отношения Операции над данными

Несоответствие типов данных — частая ошибка. Преобразовывать одни типы данных в другие требуется очень часто. Чтобы работать с числом, мы должны введённый текст (именно текст) преобразовать в число. Преобразования могут выполняться разными способами. Основной из них — применение специальных функций. Функции принимают один из несколько параметров (аргументов), одним из которых является переменная или значение, подлежащее преобразованию. Функция выполняет какие-то операции и возвращает значение нужного типа. Преобразование типов данных

Для преобразования текста (строки) в целое число служит функция Str. To. Int(). Название абсолютно точно отражает назначение функции. У функции единственный параметр — строка, а на выходе получается число. Как называется функция для такого перевода, легко догадаться — Int. To. Str() Преобразование типов данных

Функция Значение Str. To. Int( const Value: String ): Integer; Перевод значение типа string в integer Int. To. Str( Value: Integer ): String; Конвертирует значение типа integer в строку Int. To. Hex( Value: DWord; Digits: Integer ): String; Конвертирует значение типа integer в строку составленную из символов цифр в шестеричном исчисление. Параметр Digits определяет минимальное количество цифр Int. To. Ths( I: Integer): String; Конвертирует значение типа integer в строку. Между тремя цифрами ставится символ: ‘, ‘ (удобна для вывода цифр больше тысячи). Int. To. Digs( Value, Digits: Integer ): String; Преобразование integer в string. Digits — указывает сколько минимально символов в строке. Если Digits больше количества цифр в значении то недостающие цифры заменяются нулями. Num. To. Bytes( Value: Double ): String; Преобразование значение в строку исходя из того, что значение это количество байт. Если значение достаточно большое, число представляется в виде килобайт (с буквой K в конце), или мегабайт (M), гигабайт (G) или терабайт (T) Hex. To. Int( const Value: String ): Integer; Перевод шестеричного числа в integer. Значение конвертируется до первого символа не входящую в шестеричные цифры. Преобразование типов данных

Следует упомянуть и о дробных числах, ведь иногда без них не обойтись. В целом, их ввод и вывод практически такой же, как и целых чисел, только используются функции Str. To. Float() и Float. To. Str(). Всё просто. Однако с вещественными числами есть одна проблема — разделитель целой и дробной части. Дело в том, что нет определённости, какой символ считать разделителем — точку или запятую. Какой символ выбирается — зависит от настроек операционной системы (в Windows этот знак определяется в Панели управления в разделе Язык и региональные стандарты). Таким образом, если заточить программу под запятую, то на системах, где установлена точка, работать ничего не будет и будут возникать ошибки во время работы. В то же время, под точку тоже нельзя затачивать программу, ведь может стоять и запятая. К счастью, решение есть. Есть переменная, которую нигде не нужно объявлять, но значение которой можно менять — это переменная Decimal. Separator. Она объявлена в модуле Sys. Utils и хранит тот символ, который будет считаться разделителем. Установить нужное значение достаточно один раз — например при запуске программы. Работа с вещественными числами

Для ввода целых чисел есть удобный элемент — TSpin. Edit. Расположен он на вкладке Samples. По внешнему виду похож на TEdit, только в поле ещё находятся две кнопки со стрелками — для изменения значения. Допустимые границы числа задаются свойствами Min. Value и Max. Value, а само значение хранится в свойстве Value. Различные способы вывода

Простое окно с сообщением — Show. Message() Самое примитивное окно содержит указанный текст и кнопку OK для закрытия окна. Вызвать такое окно можно процедурой Show. Message(), параметром которой является текст — он и будет отображён в окне. Различные способы вывода

Диалоговое окно — Message. Dlg() Диалоговые окна — более сложный тип окон. Диалоговые окна часто используются для «общения» с пользователем. Однажды такое окно нами уже использовалось — при закрытии окна программы мы спрашивали у пользователя, действительно ли окно нужно закрыть. Теперь разберём работу с такими окнами подробно. Создаются диалоговые окна функцией Message. Dlg(). Это именно функция, а не процедура. Возвращаемым значением является кнопка, которую нажал пользователь. У функции 4 входных параметра Различные способы вывода

Диалоговое окно — Message. Dlg() Параметры: Текст сообщения (тип данных — String); Тип диалогового окна (специальный тип данных — TMsg. Dlg. Type) — указывает на значок, расположенный в окне и на заголовок окна. Этот параметр задаётся одной из следующих констант: mt. Information — информационное окно (значок в окне — буква «i»); mt. Confirmation — окно с вопросом (значок — воспросительный знак); mt. Warning — предупреждающее окно (значок — восклицательный знак); mt. Error — окно с сообщением об ошибке (значок — крест на красном фоне); mt. Custom — окно без значка, а в заголовке — название исполняемого файла программы (все остальные типы в заголовок помещают соответствующее типу диалога название — Information, Warning и т. д. ) Кнопки, которые будут показаны в окне. индекс раздела в справочной системе, соответствующий данному диалогу. Как правило, не используется и задаётся просто 0 Различные способы вывода

Диалоговое окно — Message. Dlg() Внешний вид окон всех типов: Различные способы вывода

Диалоговые окна Message. Box() C помощью фунции Message. Box() можно также выводить диалоговые окна. По внешнему виду они практически ничем не отличаются от окон Message. Dlg(), однако есть возможность указать и заголовок окна. Для формирования строки кода с использованием Message. Box() есть программа Master Message. Box. C помощью неё можно быстро создать нужное диалоговое окно. Различные способы вывода

Специальные окошки существуют не только для вывода на экран, но и для ввода. Примером такого окна является Input. Box(). Функции передаётся 3 параметра: текст заголовка окна, текст пояснения и значение, находящееся в поле при показе окна на экран. Введённую в поле строку функция возвращает как значение-результат. Пример: Ввод с помощью диалогового окна

3.2.2. Вещественные типы Delphi

3.2.2. Вещественные типы Delphi

В Delphi существует четыре вещественных типа: Single , Double , Extended и Real . Их общий формат одинаков (рис. 3.1, а).

Знак — это всегда один бит. Он равен нулю для положительных чисел и единице для отрицательных. Что же касается размеров мантиссы и экспоненты, то именно в них и заключается различие между типами.

Прежде чем перейти к конкретным цифрам, рассмотрим подробнее тип Real , сделав для этого небольшой экскурс в историю. Real — это стандартный тип языка Паскаль, присутствовавший там изначально. Когда создавался Паскаль, процессоры еще не имели встроенной поддержки вещественных чисел, поэтому все операции с данными типа Real сводились к операциям с целыми числами. Соответственно, размер полей в типе Real был подобран так, чтобы оптимизировать эти операции.

а) общий вид вещественного числа

б) Двоичное представление числа типа Single

Рис. 3.1. Хранение вещественного числа в памяти

Микропроцессор Intel 8086/88 и его улучшенные варианты — 80286 и 80386 — также не имели аппаратной поддержки вещественных чисел. Но у систем на базе этих процессоров была возможность подключения так называемого сопроцессора. Эта микросхема работала с памятью через шины основного процессора и обеспечивала аппаратную поддержку вещественных чисел. В системах средней руки гнездо сопроцессора обычно было пустым, т. к. это уменьшало цену (разумеется, вставить туда сопроцессор не было проблемой). Для каждого центрального процессора выпускались свои сопроцессоры, маркировавшиеся Intel 8087, 80287 и 80387 соответственно. Были даже сопроцессоры, выпускаемые другими фирмами. Они работали быстрее, чем сопроцессоры Intel, но появлялись на рынке позже. Тип вещественных чисел, поддерживаемый сопроцессорами, не совпадает с Real . Он определяется стандартом IEEE (Institute of Electrical and Electronics Engineers).

Чтобы обеспечить в своих системах поддержку типов IEEE, Borland вводит в Turbo Pascal типы Single , Double и Extended . Extended — это основной для сопроцессора тип, a Single и Double получаются из него очень простым усечением. Система команд сопроцессора допускает работу с этими типами: при загрузке числа типа Single или Double во внутренний регистр сопроцессора последний конвертирует их в Extended . Напротив, при выгрузке чисел этих типов из регистра в память сопроцессор усекает их до нужного размера. Внутренние же операции всегда выполняются с данными типа Extended (впрочем, из этого правила есть исключение, на котором мы остановимся позже, после детального рассмотрения формата различных типов). Single и Double позволяют экономить память. Ни один из них также не совпадает с типом Real . В системах с сопроцессорами новые типы обрабатываются заметно (в 2–3 раза) быстрее, чем Real (это с учетом того, что тип Real после соответствующего преобразования также обрабатывался сопроцессором; если же сравнивать обработку типа Extended на машине с сопроцессором и Real на машине без сопроцессора, то там на отдельных операциях достигалась разница в скорости примерно в 100 раз). Чтобы программы с этими типами можно было выполнять и в системах без сопроцессора, была предусмотрена возможность подключать к ним программный эмулятор сопроцессора. Обработка этих типов эмулятором была медленнее, чем обработка Real .

Начиная с 486-й серии Intel берет курс на интеграцию процессора и сопроцессора в одной микросхеме. Процент брака в микросхемах слишком велик, поэтому Intel идет на хитрость: если у микросхемы брак только в сопроцессорной части, то на этом кристалле прожигаются перемычки, блокирующие сопроцессор, и микросхема продается как процессор 80486SX, не имеющий встроенного сопроцессора (в отличие от полноценной версии, которую назвали 80486DX). Бывали и обратные ситуации, когда сопроцессор повреждений не имел, зато процессор был неработоспособен. Такие микросхемы превращали в «сопроцессор 80487». Но это уже из области экзотики, и, по имеющейся у нас информации, до России такой сопроцессор не дошел.

Процессор Pentium во всех своих вариантах имел встроенный блок вычислений с плавающей точкой (FPU — Floating Point Unit), и отдельный сопроцессор ему не требовался. Таким образом, с приходом этого процессора тип Real остался только для обратной совместимости, а на передний план вышли типы Single , Double и Extended . Начиная с Delphi 4, тип Real становится синонимом типа Double , а старый 6-байтный тип получает название Real48 .

Здесь и далее под словом Real мы будем понимать старый 6-байтный тип.


Существует директива компилятора <$REALCOMPATIBILITY ON/OFF>, при включении которой (по умолчанию она отключена) Real становится синонимом Real48 , а не Double .

Размеры полей для различных вещественных типов указаны в табл. 3.1.

Таблица 3.1. Размеры полей в вещественных типах

Тип Размер типа, байты Размер мантиссы, биты Размер экспоненты, биты
Single 4 23 8
Double 8 52 11
Extended 10 64 15
Real 6 40 7

Другие параметры вещественных типов, такие как диапазон и точность, можно найти в справке Delphi.

Byte — Тип Delphi

Школа программирования Delphi

Портал DelphiSchool является бесплатным проектом, обеспечивающим пользователям быстрый и легкий доступ к урокам программирования на Delphi. Сайт позволяет научиться программировать на Делфи любому, кто хочеть писать свои программы, игры, Android приложения, программы для MAC OC или IOS. Кроме уроков Delphi и статей Delphi, на сайте доступны также и видеоуроки. Практически к каждому уроку, пользователю доступен исходник, изучив который, он сможет наглядно посмотреть как работает та или иная программа, написанная на Делфи. Кроме того мы постараемся прилагать к каждому материалу (статье, уроку, видеоуроку) файлы Delphi, которые будут помогать изучить предоставленный материал.

Каждый кто решил написать свою программу, создать свое приложение, научиться программировать и т.д., найдет на DelphiSchool статьи Delphi, уроки Delphi, видеоуроки Delphi, исходники Delphi, файлы Delphi, изучит компоненты Delphi, посмотрит Delphi примеры и многое другое абсолютно бесплатно. Все о Delphi программировании теперь собрано на одном сайте.
DelphiSchool

В языке программирования Delphi все должно иметь свой тип. Delphi требует явного указания всех типов. Существует четыре простых типа данных: целые числа, вещественные числа (дробные), строки и булевые значения.

Все переменные должны относиться к какому-то типу. Поскольку переменная — это область памяти, где хранится определенная информация, то для того, чтобы знать, что хранится в этой памяти, мы должны указать компилятору, к какому типу относится переменная. Если переменная относится к типу целых чисел, то в памяти, отведенной под переменную, хранится целое число.

В переменных целого типа, информация представляется в виде чисел, которые не имеют дробной части. Такие числа используются для математических вычислений и любых других операций, в которых требуется работа с числами.

Существует несколько видов целых типов данных. В основном они отличаются только размером отводимой переменным памяти для хранения данных.

В таблице ниже перечислены все типы целых чисел. В примечании указано, какого типа могут быть эти числа — со знаком или без (т. е. только положительные или могут быть и отрицательными). В зависимости от объема памяти, отводимого переменной для хранения данных, определяется максимальное число, которое можно записать в эту переменную.

Таблица. Типы целочисленных переменных

Название

Размер памяти для хранения данных

Byte — Тип Delphi

Порядковые типы
Из простых типов данных порядковые — самые простые. В этих типах информация представляется в виде отдельных элементов. Связь между отдельными элементами и их представлением в памяти определяет естественные отношения порядка между этими элементами. Отсюда и название порядковые.
В Object Pascal определены три группы порядковых типов и два типа, определяемых пользователем. Группы — это целые, символьные и булевы типы. Порядковые типы, задаваемые пользователем, — это перечисления и поддиапазоны.
Все значения любого порядкового типа образуют упорядоченную последовательность, и значение переменной порядкового типа определяется его местом в этой последовательности. За исключением переменных целых типов, значения которых могут быть как положительными, так и отрицательными, первый элемент любого порядкового типа имеет номер 0, второй элемент — номер 1 и т.д. Порядковый номер целого значения равен самому значению. Отношение порядка определяет общие для данных всех порядковых типов операции. Некоторые стандартные функции такого вида встроены в Object Pascal. Они представлены в табл. 1.1.

Илон Маск рекомендует:  Реализация обработки событий на c

Для всех порядковых типов в Object Pascal существует операция задания типа для преобразования целых значений в значения соответствующих порядковых типов. Если Т — имя порядкового типа, а Х — целое выражение, то Т (X) воз-вращает значение Т с порядковым номером X.

Совет: Программисты, работающие на С и C++, для приращения или уменьшения значений переменных привыкли заметку использовать операторы «++» и «—«, возвращающие следующее и предыдущее значения. Программисты Delphi всегда разбивают эти операции на более простые составляющие с помощью функций Pred, Succ. Dec и Inc.


    Таблица 1.1. Операции над порядковыми типами

ОперацияОписание
Low (T)Минимальное значение порядкового типа Т
High(T)Максимальное значение порядкового типа Т
Ord(X)Порядковый номер значения выражения порядкового типа. Для целого выражения — просто его значение. Для остальных порядковых типов Ord возвращает физическое представление результата выражения, трактуемое как целое число. Возвращаемое значение всегда принадлежит одному из целых типов
Pred(X)Предыдущее по порядку значение. Для целых выражений эквивалентно Х-1
Succ(X)Следующее по порядку значение. Для целых выражений эквивалентно Х+1
Dec(V)Уменьшает значение переменной на 1. Эквивалентно V := Pred(V)
Inc(V)Увеличивает значение переменной на 1. Эквивалентно V := Succ(V)

Целые типы
В переменных целых типов информация представляется в виде целых чисел, т.е. чисел не имеющих дробной части. Определенные в Object Pascal целые типы подразделяются на физические (фундаментальные) и логические (общие). При программировании удобнее использовать логические целые типы, которые задают объем переменных в зависимости от типа микропроцессора и операционной среды таким образом, чтобы достигалась максимальная эффективность. Физические целые типы следует применять лишь в тех случаях, когда в первую очередь важны именно диапазон значений и физический объем переменной. В Object Pascal определены следующие целые типы.

    Integer
    Shortint
    Smallint
    Longint
    Byte
    Word
    Cardinal

Обратите внимание, что один из этих целых типов назван именно целым (integer). Это может иногда приводить к путанице, но мы легко сможем ее избежать, применяя термин целый к. группе типов, a integer — к конкретному типу, определяемому в программе этим ключевым словом. Переменные физических целых типов имеют разные диапазоны значений в зависимости от того, сколько байтов памяти они занимают (что равно значению, возвращаемому функцией SizeOf для данного типа). Диапазоны значений для всех физических типов перечислены в табл. 1.2.

    Таблица 1.2. Физические целые типы


    ТипДиапазон значенииФизический формат
    Shortint-128-1278 бит, со знаком
    Smallint-32 768-32 76716 бит, со знаком
    Longint-2 147 483 648-2 147 483 64732 бит, со знаком
    Byte0-2558 бит, без знака
    Word0-65 53516 бит, без знака


Диапазоны значений и форматы физических целых типов не зависят от микропроцессора и операционной системы, в которых выполняется программа. Они не меняются (или, по крайней мере, не должны меняться) с изменением реализации или версии Object Pascal.
Диапазоны значений логических целых типов (Integer и Cardinal) определяются совершенно иным образом. Как видно из табл. 1.3, они никак не связаны с диапазонами соответствующих физических типов. Обратите внимание, что в Delphi по умолчанию задано 32-разрядное представление.

Таблица 1.3. Логические целые типы


    ТипДиапазон значенийФизический формат
    Integer-32 768-32 76716 бит, со знаком (SmalIInt)
    Integer-2 147 483 648-2 147 483 64732 бит, со знаком (Longint)
    Cardinal0-65 53516 бит, без знака (Word)
    Cardinal0-2 14748364732 бит, без знака (Longint)

Совет: В С и C++ для целых значений определены типы int, short int (или просто short) и long int (или просто long). Тип int из C/C++ соответствует типу Integer из Delphi, a long из C/C++ — Longint из Delphi. Однако Shortint из C/C++ соответствует в Delphi не Shortint, a Smalltlnt. Эквивалент Shortint из Delphi в C/C++— это signed char. Тип unsigned char в C/C++ соответствует типу Byte из Delphi. В C/C++ существует еще тип unsigned long, аналога которому в Delphi нет.

Над целыми данными выполняются все операции, определенные для порядковых типов, но с ними все же удобнее работать как с числами, а не с «нечисленными порядковыми типами». Как и «живые» числа, данные целых типов можно складывать (+), вычитать (-) и умножать (*). Однако некоторые операции и функции, применяемые к данным целых типов, имеют несколько иной смысл.

Операция Результат
Abs (X) Возвращает абсолютное целое значение Х
Х Div Y Возвращает целую часть частного деления Х на Y
Х Mod Y Возвращает остаток частного деления Х на Y
Odd (X) Возвращает булево True (истина), если Х — нечетное целое, и False (ложь) — в противном случае
Sqr (X) Возвращает целый квадрат Х (т.е. Х*Х)

Символьные типы
Смысл символьных данных очевиден, когда они выводятся на экран или принтер. Тем не менее, определение символьного типа может зависеть от того, что подразумевать под словом символ. Обычно символьные типы данных задают схему взаимодействия между участками памяти разного объема и некоторым стандартным методом кодирования/декодирования для обмена символьной информацией. В классическом языке Pascal не задано никакой схемы, и в конкретных реализациях применялось то, что на том же компьютере мог использовать каждый.
В реализациях языка Pascal для первых микропроцессоров была применена 7-битовая схема, названная ASCII (American Standard Code for Information Interchange — Американский стандартный код для обмена информацией). Эта схема и поныне широко распространена, но информация хранится, как правило, в 8-битовых участках памяти. Дополнительный бит удваивает число возможных представлений символов, но реализации расширенного набора символов ASCII часто бывают далеки от стандарта. В данной версии Delphi определен набор 8-битовых символов, известный как расширенный (extended) ANSI (American National Standards Institute — Американский национальный институт стандартов). Как бы то ни было, символьную схему приходится воспринимать так, как ее воспринимает операционная система. Для оконных операционных систем фирмы Microsoft это схема ANSI, включающая ограниченное число предназначенных для вывода международных знаков. В стремлении же применить более обширный набор международных знаков весь компьютерный мир переходит к 16-битовой схеме, именуемой UNICODE, в которой первые 256 знаков совпадают с символами, определенными в схеме ANSI.
Для совместимости со всеми этими представлениями в Object Pascal определены два физических символьных типа и один логический.
Физические типы перечислены ниже.

AnsiChar Однобайтовые символы, упорядоченные в соответствии с расширенным набором символов ANSI
WideChar Символы объемом в слово, упорядоченные в соответствии с международным набором символов UNICODE. Первые 256 символов совпадают с символами ANSI


Символьные типы объемом в двойное слово (32 бит) отсутствуют.
Логический символьный тип именуется char. В классическом языке Pascal char— единственный символьный тип. В Delphi char всегда соответствует физическому типу данных AnsiChar. У американских программистов ассоциация символа с однобайтовой ячейкой памяти укоренилась за долгие годы настолько, что им зачастую просто не приходит в голову, что можно использовать другие схемы кодирования. Однако дискуссии по интернационализации программ в Internet и World Wide Web могут существенно изменить их отношение к проблеме объема символьных данных. Применяя логический тип char, следует делать реализации для других микропроцессоров и операционных систем, в которых char может определяться как WideChar. При написании программ, которые могут обрабатывать строки любого размера, для указания этого размера рекомендуется применять функцию SizeOf, не задавая ее жестко постоянной. Функция Ord (С), где С — любая переменная символьного типа, возвращает целое значение, которым символ С представлен в памяти.


    Chr (X)Преобразует целую переменную в переменную типа char с тем же порядковым номером. В Delphi это эквивалентно заданию типа Char (X)
    UpCaseПреобразует строчную букву в прописную



Совет: Процессор не различает типы char, определенные в C/C++ и Delphi. Однако функционально каждый из этих языков трактует данный тип совершенно по-разному. В C/C++ это целый тип, переменной которого можно присваивать целые значения. Переменной int можно присвоить символьное значение, а переменной char — целое. В Delphi символьные типы жестко отделены от численных. Для присвоения численному значению символьного здесь необходимо воспользоваться функцией Ord. В языке Basic один символ представляется так же, как и строка символов. Функция Chr из Delphi эквивалентна функции CHR$ из Basic. Функция Ord из Delphi, возвращающая код ANSI символьной переменной, подобна функции A3 С из Basic, аргумент которой представляет односимвольную строку.

Булевы типы
На ранней стадии обучения программисты осваивают понятие бита, два состояния которого можно использовать для записи информации о чем-либо, представляющем собой одно из двух. Бит может обозначать 0 или 1, ДА или НЕТ, ВКЛЮЧЕНО или ВЫКЛЮЧЕНО, ВЕРХ или НИЗ, СТОЯТЬ или ИДТИ. В Object Pascal информация о чем-либо, что можно представить как ИСТИНА (True) или ЛОЖЬ (False), хранится в переменных булевых типов. Всего таких типов че-тыре, и они представлены в табл. 1.4.


    Таблица 1.4. Размеры переменных булевых типов


    ТипРазмер
    Boolean1 байт
    ByteBool1 байт
    WordBool2 байт (объем Word)
    LongBool4 байт (объем Longint)


По аналогии с целыми и символьными типами, подразделяющимися на физические и логические, естественно предположить, что ByteBool, WordBool и LongBool — физические типы, Boolean — логический. Но в данном случае это не совсем так. Все четыре типа различны. Для Object Pascal предпочтителен тип Boolean, остальные определены для совместимости с другими языками программирования и операционными системами.
Переменным типа Boolean можно присваивать только значения True (истина) и False (ложь). Переменные ByteBool, WordBool и LongBool могут принимать и другие порядковые значения, интерпретируемые обычно как False в случае нуля и True — при любом ненулевом значении.

Совет: Булевы типы в Delphi можно сравнить с типом LOGICAL языка FORTRAN. В Basic, С и C++ булевы типы как таковые отсутствуют. Булевы выражения в этих языках применяются точно так же, как во всех остальных, однако результаты этих выражений интерпретируются не как значения отдельного типа, а как целые числа. Как в Basic, так и в C/C++ булевы выражения дают численные результаты, интерпретируемые как False в случае 0 и True — в случае любого ненулевого значения. Это совместимо с порядковыми значениями булевых выражений в Delphi. В C/C++ простые сравнения дают результат 1 (True) или 0 (False). Это эквивалентно булевым значениям Delphi. Только результат сравнения в Delphi выводится как булевый, а не целый. В большинстве случаев типу Boolean из Delphi соответствует тип char в C/C++. В Basic зарезервированы слова TRUE (эквивалентно константе -1) и FALSE (эквивалентно константе 0). В Basic TRUE меньше FALSE, в Delphi, наоборот, False меньше True.

Перечислимые типы
Type enum type = (first value, value2, value3, last value);
Обычно данные перечислимых типов содержат дискретные значения, представляемые не числами, а именами. Тип Boolean— простейший перечислимый тип в Object Pascal. Булевы переменные могут принимать два значения, выражаемые именами True и False, а сам тип определен в Object Pascal так, как будто он объявлен следующим образом:
Type Boolean = (False, True);
С помощью типа Boolean в Object Pascal выполняются сравнения, большинство же перечислимых типов — это просто списки уникальных имен или идентификаторов, зарезервированных с конкретной целью. Например, можно создать тип MyColor (мой цвет) со значениями myRed, myGreen и myBlue (мой красный, мой зеленый, мой синий). Это делается совсем просто:
Type MyColor = (myRed, myGreen, myBlue);
В этой строке объявлены четыре новых идентификатора: MyColor, myRed, myGreen и myBlue. идентификатором MyColor обозначен порядковый тип, следовательно, в синтаксисе Object Pascal можно применять этот идентификатор везде, где разрешены перечислимые типы. Остальные три идентификатора— это значения типа MyColor. Подобно символьным и булевым типам перечислимые не являются числами, и использовать их наподобие чисел не имеет смысла. Однако перечислимые типы относятся к порядковым, так что значения любого такого типа упорядочены. Идентификаторам в списке присваиваются в качестве порядковых номеров последовательные числа. Первому имени присваивается порядковый номер 0, второму — 1 и т.д.

Совет: В С и C++ есть тип enema, аналогичный перечислимому типу Delphi. Но в этих языках можно произвольно присваивать идентификаторам постоянные значения. В Delphi же соответствие имен и их значений фиксиро-вано: первому имени присваивается значение 0, каждому последующему — на единицу больше. В С тип enum применяется лишь как средство быстрого определения набора целых постоянных. В C++ объявленные в перечислимом типе идентификаторы можно присваивать только переменным того же типа.

Поддиапазонные типы
Переменные поддиапазонного типа содержат информацию, соответствующую некоторому pаданному диапазону значений исходного типа, представляющего любой порядковый тип, кроме поддиапазонного. Синтаксис определения поддиапазонного типа имеет следующий вид:

Type subrange type = low value. high value;

Поддиапазонные переменные сохраняют все особенности исходного типа. Единственное отличие состоит в том, что переменной поддиапазонного типа можно присваивать только значения, входящие в заданный поддиапазон. Контроль за соблюдением этого условия задается командой проверки диапазона (range checking).
Необходимость явно определять поддиапазонный тип возникает нечасто, но все программисты неявно применяют эту конструкцию при определении массивов. Именно в форме поддиапазонной конструкции задается схема нумерации элементов массива.

Целочисленные типы данных

Основы программирования
Каждый профессионал когда-то был чайником. Наверняка вам знакомо состояние, когда “не знаешь как начать думать, чтобы до такого додуматься”. Наверняка вы сталкивались с ситуацией, когда вы просто не знаете, с чего начать. Эта книга ориентирована как раз на таких людей, кто хотел бы стать программистом, но совершенно не знает, как начать этот путь. Подробнее.

Почти все целочисленные типы данных относятся к порядковым типам. Эти типы данных представляют целые числа в определённом диапазоне. Конкретные наименования целочисленных типов и диапазоны значений зависят от конкретного языка программирования, от компилятора и от режима компиляции. Подробнее об этом надо узнавать в документации на компилятор.

Например, тип данных Integer в Delphi имеет диапазон -2147483648…2147483647, в то время как в Turbo Pascal тип данных Integer представляет числа в диапазоне -35768…32767. В Free Pascal диапазон значений типа Integer определяется выбранным режимом.

Так как Lazarus использует компилятор Free Pascal, то всё сказанное о типах данных по отношению к Free Pascal справедливо и для Lazarus.

Илон Маск рекомендует:  Что такое код getdoubleclicktime

Итак, целочисленные типы данных Free Pascal перечислены в таблице 13.1.

Таблица 13.1. Целочисленные типы данных Free Pascal (Lazarus).

Тип Размер, байт Диапазон значений
Byte 1 0…255
Shortint 1 -128…127
Smallint 2 -35768…32767
Word 2 0…65535
Integer 2 или 4 Зависит от режима компиляции
Cardinal 4 0…4294967295
Longint 4 -2147483648…2147483647
Longword 4 0. 4294967295
Int64 8 -9223372036854775808. 9223372036854775807
QWord 8 0. 18446744073709551615

ПРИМЕЧАНИЕ
В Free Pascal типы Int64 и QWord не являются порядковыми! Это означает, что вы не можете использовать их, например, для индексных переменных в циклах. Однако я привёл их здесь, чтобы отдельно не описывать в будущем и собрать в одном месте все целочисленные типы Free Pascal. Если какие-то слова вам не понятны — не пугайтесь. В своё время я обо всём расскажу подробнее.

А теперь несколько пояснений к таблице.

В колонке ТИП приведены идентификаторы типов данных (ключевые слова, которые указывают компилятору, к какому типу относятся те или иные данные). Как использовать эти идентификаторы, вы узнаете в следующих уроках.

В колонке РАЗМЕР указан размер, который занимает тип данных в памяти компьютера. Например, целое положительное число можно представить разными типами: Byte, Word, Cardinal и др. Однако число типа Cardinal будет занимать в памяти 4 байта, в то время как число типа Byte – всего лишь 1 байт. Поэтому, если вы точно знаете, что число, с которым вы работаете, никогда не примет значение больше 255, то лучше определять его как тип Byte, так как это позволит сэкономить место в памяти компьютера. Хотя здесь не всё так однозначно (нюансы распределения памяти и других ресурсов компьютера выходят за рамки данного курса).

В колонке ДИАПАЗОН указан диапазон значений, которым оперирует тип данных. Например, число типа Byte может принимать значения от 0 до 255.

А теперь практика. Напишем программу, которая выводит на экран диапазоны значений всех целочисленных типов данных. Исходный код этой программы приведён ниже:

Стандартная функция Low определяет минимальное значение типа данных. Фунцкия High определяет максимальное значение. С функциями WriteLn и ReadLn вы уже немного знакомы. Более подробно о подпрограммах (процедурах и функциях) мы будем говорить в соответствующем разделе курса.

Напоследок скажу, как записываются целочисленные данные в программе. Да также как и везде — просто пишите число, без кавычек и каких-либо дополнительных символов. Например, так

Правда, это относится к числам в десятичной системе счисления. Наверняка вы уже знаете, что есть и другие системы. Наиболее широко распространены двоичная, десятичная и шестнадцатеричная системы счисления.

Free Pascal поддерживает четыре формата записи целого числа:

  1. Десятичная запись. Просто число, например 10.
  2. Шестнадцатеричная запись. Число с префиксом $. Например, шестнадцатеричное число $10 равно десятичному 16.
  3. Восьмеричная запись. Число с префиксом &. Например, восьмеричное число &10 равно десятичному 8.
  4. Двоичная запись. Число с префиксом %. Например, двоичное число %10 равно десятичному 2.

Если для вас это пока слишком сложно, то пропустите эту часть. Просто добавьте страницу в закладки и вернётесь к ней когда будет нужно. Наиболее любопытным рекомендую прочитать статью Системы счисления.

Создайте программу, которая выводит на экран диапазоны значений целых чисел (листинг 13.1). Откомпилируйте программу и запустите её. Убедитесь, что эти значения соответствуют указанным в таблице 13.1.

В исходном коде программы найдите строку, которая задаёт режим компиляции:

В этой строке вместо слова objfpc напишите слово tp. То есть итоговая строка должна выглядеть так:

Запустите программу. Посмотрите диапазон значений типа Integer. Сделайте выводы.

Учитесь думать как программист, то есть логически. Никто вам до пенсии не будет всё разжёвывать, как это делаю сейчас я. Надо привыкать думать самостоятельно. Иначе вы скатитесь к “обезьяньему принципу обучения”, и тогда ваши шансы стать классным программистом приблизятся к нулю. Чтобы помочь вам не скатиться на уровень “зубрёжки”, я буду периодически оставлять пробелы в вашем обучении, чтобы вы постарались сами додуматься до каких-то вещей.

Намного лучше, если вы сами додумаетесь до неправильного решения, сами найдёте ошибку и сами её исправите, чем будете всегда использовать чужие правильные решения и тупо их копировать.

Целочисленные типы данных

Основы программирования
Каждый профессионал когда-то был чайником. Наверняка вам знакомо состояние, когда “не знаешь как начать думать, чтобы до такого додуматься”. Наверняка вы сталкивались с ситуацией, когда вы просто не знаете, с чего начать. Эта книга ориентирована как раз на таких людей, кто хотел бы стать программистом, но совершенно не знает, как начать этот путь. Подробнее.


Почти все целочисленные типы данных относятся к порядковым типам. Эти типы данных представляют целые числа в определённом диапазоне. Конкретные наименования целочисленных типов и диапазоны значений зависят от конкретного языка программирования, от компилятора и от режима компиляции. Подробнее об этом надо узнавать в документации на компилятор.

Например, тип данных Integer в Delphi имеет диапазон -2147483648…2147483647, в то время как в Turbo Pascal тип данных Integer представляет числа в диапазоне -35768…32767. В Free Pascal диапазон значений типа Integer определяется выбранным режимом.

Так как Lazarus использует компилятор Free Pascal, то всё сказанное о типах данных по отношению к Free Pascal справедливо и для Lazarus.

Итак, целочисленные типы данных Free Pascal перечислены в таблице 13.1.

Таблица 13.1. Целочисленные типы данных Free Pascal (Lazarus).

Тип Размер, байт Диапазон значений
Byte 1 0…255
Shortint 1 -128…127
Smallint 2 -35768…32767
Word 2 0…65535
Integer 2 или 4 Зависит от режима компиляции
Cardinal 4 0…4294967295
Longint 4 -2147483648…2147483647
Longword 4 0. 4294967295
Int64 8 -9223372036854775808. 9223372036854775807
QWord 8 0. 18446744073709551615

ПРИМЕЧАНИЕ
В Free Pascal типы Int64 и QWord не являются порядковыми! Это означает, что вы не можете использовать их, например, для индексных переменных в циклах. Однако я привёл их здесь, чтобы отдельно не описывать в будущем и собрать в одном месте все целочисленные типы Free Pascal. Если какие-то слова вам не понятны — не пугайтесь. В своё время я обо всём расскажу подробнее.

А теперь несколько пояснений к таблице.

В колонке ТИП приведены идентификаторы типов данных (ключевые слова, которые указывают компилятору, к какому типу относятся те или иные данные). Как использовать эти идентификаторы, вы узнаете в следующих уроках.

В колонке РАЗМЕР указан размер, который занимает тип данных в памяти компьютера. Например, целое положительное число можно представить разными типами: Byte, Word, Cardinal и др. Однако число типа Cardinal будет занимать в памяти 4 байта, в то время как число типа Byte – всего лишь 1 байт. Поэтому, если вы точно знаете, что число, с которым вы работаете, никогда не примет значение больше 255, то лучше определять его как тип Byte, так как это позволит сэкономить место в памяти компьютера. Хотя здесь не всё так однозначно (нюансы распределения памяти и других ресурсов компьютера выходят за рамки данного курса).

В колонке ДИАПАЗОН указан диапазон значений, которым оперирует тип данных. Например, число типа Byte может принимать значения от 0 до 255.

А теперь практика. Напишем программу, которая выводит на экран диапазоны значений всех целочисленных типов данных. Исходный код этой программы приведён ниже:

Стандартная функция Low определяет минимальное значение типа данных. Фунцкия High определяет максимальное значение. С функциями WriteLn и ReadLn вы уже немного знакомы. Более подробно о подпрограммах (процедурах и функциях) мы будем говорить в соответствующем разделе курса.

Напоследок скажу, как записываются целочисленные данные в программе. Да также как и везде — просто пишите число, без кавычек и каких-либо дополнительных символов. Например, так

Правда, это относится к числам в десятичной системе счисления. Наверняка вы уже знаете, что есть и другие системы. Наиболее широко распространены двоичная, десятичная и шестнадцатеричная системы счисления.

Free Pascal поддерживает четыре формата записи целого числа:

  1. Десятичная запись. Просто число, например 10.
  2. Шестнадцатеричная запись. Число с префиксом $. Например, шестнадцатеричное число $10 равно десятичному 16.
  3. Восьмеричная запись. Число с префиксом &. Например, восьмеричное число &10 равно десятичному 8.
  4. Двоичная запись. Число с префиксом %. Например, двоичное число %10 равно десятичному 2.

Если для вас это пока слишком сложно, то пропустите эту часть. Просто добавьте страницу в закладки и вернётесь к ней когда будет нужно. Наиболее любопытным рекомендую прочитать статью Системы счисления.

Создайте программу, которая выводит на экран диапазоны значений целых чисел (листинг 13.1). Откомпилируйте программу и запустите её. Убедитесь, что эти значения соответствуют указанным в таблице 13.1.

В исходном коде программы найдите строку, которая задаёт режим компиляции:

В этой строке вместо слова objfpc напишите слово tp. То есть итоговая строка должна выглядеть так:

Запустите программу. Посмотрите диапазон значений типа Integer. Сделайте выводы.

Учитесь думать как программист, то есть логически. Никто вам до пенсии не будет всё разжёвывать, как это делаю сейчас я. Надо привыкать думать самостоятельно. Иначе вы скатитесь к “обезьяньему принципу обучения”, и тогда ваши шансы стать классным программистом приблизятся к нулю. Чтобы помочь вам не скатиться на уровень “зубрёжки”, я буду периодически оставлять пробелы в вашем обучении, чтобы вы постарались сами додуматься до каких-то вещей.

Намного лучше, если вы сами додумаетесь до неправильного решения, сами найдёте ошибку и сами её исправите, чем будете всегда использовать чужие правильные решения и тупо их копировать.

Типы данных Delphi и работа с ними

К встроенным типам данных в языке Delphi относятся типы целые, действительные, символы, строки, указатели, булевы.

Порядковые типы. Порядковыми (ordinal) типами называются те, в которых значения упорядочены, и для каждого из них можно указать предшествующее и последующее значения.

Структурные типы. К структурным типам относятся множества, массивы, записи, файлы, классы, интерфейсы.

Целые типы данных. В переменных целых типов информация представляется в виде целых чисел, т.е. чисел не имеющих дробной части.

Таблица 1 Операции над порядковыми типами

Минимальное значение порядкового типа Т

Максимальное значение порядкового типа Т

Порядковый номер значения выражения порядкового типа. Для целого выражения — просто его значение. Для остальных порядковых типов Ord возвращает физическое представление результата выражения, трактуемое как целое число. Возвращаемое значение всегда принадлежит одному из целых типов

Предыдущее по порядку значение. Для целых выражений эквивалентно Х-1

Следующее по порядку значение. Для целых выражений эквивалентно Х+1

Уменьшает значение переменной на 1. Эквивалентно V := Pred(V)

Увеличивает значение переменной на 1. Эквивалентно V := Succ(V)

8 битов, беззнаковый

16 битов, беззнаковый

32 бита, беззнаковый

Также существует такой тип, как Integer, который эквивалентен типу LongInt. Его диапазон от -2147483648 до 21474836478. Занимает 4 байта в пямяти. Основными являются Integer и Cardinal, так что в большинстве случаев желательно использовать эти типы.

Над целыми данными выполняются все операции, определенные для порядковых типов. Операции над целыми типами:

Возвращает абсолютное целое значение Х

Возвращает целую часть частного деления Х на Y

Возвращает остаток частного деления Х на Y

Возвращает булево True (истина), если Х — нечетное целое, и False (ложь) — в противном случае

Действительные типы данных. В переменных действительных типов содержатся числа, состоящие из целой и дробной частей.

Количество значащих цифр

Основным, обеспечивающим максимальную производительность, является тип Real, который в настоящий момент эквивалентен типу Double.

Таблица 5 Функции действительных типов

Абсолютная величина х

Косинус х (х выражается в радианах, а не в градусах)

Экспоненциальная функция от х

Дробная часть х

Целая часть х. Несмотря на название, возвращает действительное значение (с плавающей запятой), т.е. просто устанавливает нуль в дробной части

Натуральный логарифм от х

Ближайшее к х целое значение. Возвращает значение целого типа. Условие «ближайшее к х» не работает, если верхнее и нижнее значения оказываются равноудаленными (например, если дробная часть точно равна 0,5). В этих случаях Delphi перекладывает решение на операционную систему. Обычно процессоры Intel решают эту задачу в соответствии с рекомендацией IEEE округлять в сторону ближайшего четного целого числа. Иногда такой подход называют «банкирским округлением»

Квадрат х, т.е. X*X

Квадратный корень от х

Целая часть х. В отличие от Int, возвращающей

Символьные типы данных. Символьные типы предназначены для хранения одного символа.

Однобайтовые символы, упорядоченные в соответствии с расширенным набором символов ANSI

Символы объемом в слово, упорядоченные в соответствии с международным набором символов UNICODE. Первые 256 символов совпадают с символами ANSI

Булевы типы данных. Переменные булевых типов данных представляют логические значения, например, true (истина) и false (ложь).

Таблица 7 Размеры переменных булевых типов

2 байт (объем Word)

4 байт (объем Longint)

Массив — это структура данных, представляющая собой набор переменных одинакового типа, имеющих общее имя. Массивы удобно использовать для хранения однородной по своей природе информации, например, таблиц и списков.

Массив, как и любая переменная программы, перед использованием должен быть объявлен в разделе объявления переменных. В общем виде инструкция объявления массива выгладит следующим образом:

Имя: [нижний_индекс..верхний_индекс] of тип

где: имя — имя массива;

array — зарезервированное слово языка Delphi, обозначающее, что объявляемое имя является именем массива;

нижний_индекс и верхний_индекс — целые константы, определяющие диапазон изменения индекса элементов массива и, неявно, количество элементов (размер) массива;

Delphi XE2 и Char / тип Byte

У меня есть эта проблема, посмотрите этот код примера:

где SRC является типом строки и iindex является целочисленным типом, и как выход я должен иметь что-то как:

и так было слишком всего длится версии Дельфи до Дельфы х; теперь с Delphi XE2, у меня есть этот выход:

Теперь я спрашиваю, нужно использовать другой тип строки? Я нашел обходной путь для ее решения, конечно, обновление байт (SRC [iindex]) к байту (SRC [Succ (iindex)]), но так, когда iIndex = 255, я есть байт (SRC [256]), которые вызывают исключение и поэтому необходимо изменить байты в слове. Конечно, я не думаю, что это самое лучшее решение, поэтому я прошу вас, если есть лучшее решение для него. Огромное спасибо.

Вы получаете доступ к строке недоступных. Доступа Строка 1 на основе в Delphi. Вы должны получить сообщение об ошибке проверки диапазона. Кроме того , я думаю , вы должны предпочесть использовать chr() и ord() вместо слепков.

Я не вижу, что код может работать в более ранних версиях Delphi. Действительно Delphi 2010 ведет себя точно так, как вы описываете XE2 себя один раз проверка диапазона отключена. Это еще один пример того, почему проверка диапазона является настолько ценной.

Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL