Целые числа


Содержание

Математика

Тестирование онлайн

Натуральные числа

Это числа, которые используются при счете: 1, 2, 3. и т.д.

Ноль не является натуральным.

Натуральные числа принято обозначать символом N.

Целые числа. Положительные и отрицательные числа

Два числа отличающиеся друг от друга только знаком, называются противоположными, например, +1 и -1, +5 и -5. Знак «+» обычно не пишут, но предполагают, что перед числом стоит «+». Такие числа называются положительными. Числа, перед которыми стоит знак «-«, называются отрицательными.

Натуральные числа, противоположные им и ноль называют целыми числами. Множество целых чисел обозначают символом Z.

Рациональные числа

Множество рациональных чисел обозначается Q. Все целые числа являются рациональными.

Иррациональные числа

Бесконечная непериодическая дробь называется иррациональным числом. Например:

Множество иррациональных чисел обозначается J.

Действительные числа

Множество всех рациональных и всех иррациональных чисел называется множеством действительных (вещественных) чисел.

Действительные числа обозначаются символом R.

Округление чисел

Рассмотрим число 8,759123. . Округлить до целой части означает записать лишь ту часть числа, которая находится до запятой. Округлить до десятых означает записать целую часть и после запятой одну цифру; округлить до сотых — после запятой две цифры; до тысячных — три цифры и т.д.

Округлить 8,759123. с точностью до целой части.

Округлить 8,759123. с точностью до десятой части.

Округлить 8,759123. с точностью до сотой части.

Округлить 8,759123. с точностью до тысячной части.

Целые числа

Натуральные числа, а также все числа противоположные им по знаку, и число ноль называют целыми числами.

Целые числа на оси

На числовой оси целые числа выглядят так:

Наибольшего и наименьшего целого числа не существует.

Натуральные числа также называют положительными целыми числами, то есть слова «натуральное число» и «положительное целое число» означают одно и то же.

Естественно, среди целых чисел не может быть ни обыкновенных, ни десятичных дробей.

Множество целых чисел обозначается большой буквой « Z ».

Множество натуральных чисел « N » входит во множество целых чисел « Z ».

Множество целых чисел

К множеству целых чисел относятся все положительные или отрицательные числа, не являющиеся дробями, и нуль. Например, . -3, -2, -1, 0, 1, 2, 3 . Множество целых чисел бесконечно. Положительные целые числа также называются натуральными. Существование отрицательных целых чисел и нуля позволяет производить вычитание любого целого числа из другого целого числа и получать в результате целое число.

Так же множество целых чисел можно охарактеризовать так:

Множество целых чисел определяется как замыкание множества натуральных чисел относительно арифметических операций сложения (+) и вычитания (-). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из положительных натуральных чисел (1, 2, 3), чисел вида -n (n) и числа нуль.

Необходимость рассмотрения целых чисел продиктована невозможностью (в общем случае) вычесть из одного натурального числа другое. Целые числа являются кольцом относительно операций сложения и умножения.

Обозначается множество целых чисел Z

Записать множество целых чисел можно так Z=

  • Узнать больше о множестве целых чисел Вы можете с видео урока «Числовые множества»

Целые числа

Читайте также:

  1. R–отбор – отбор на плодовитость – характеризуется следующими результатами: увеличение числа потомков, быстрое развитие, раннее размножение, однократное размножение.
  2. T Десятичные числа
  3. T Числа в форме с плавающей запятой
  4. Абсолютная и относительная погрешность числа.
  5. Аномалии числа зубов
  6. Аномалии числа хромосом
  7. Арифметические действия над двоичными числами
  8. Арифметические операции над десятичными числами
  9. Арифметические операции с отрицательными числами
  10. Арифметические операции с числами, представленными в формате с плавающей запятой
  11. Арктангес числа
  12. Билет №21. Извлечение корня из комплексного числа в тригонометрической форме. Вывод формулы для нахождения корней степени n из единицы. Их расположение на комплексной плоскости.


Потребности в вычислениях не позволяют ограничиться только натуральными числами. Естественно дополнить натуральные числа числом 0 и отрицательными числами. Число 0 , по определению, обладает следующими свойствами: для любого натурального числа выполняются равенства .

Нетрудно доказать, что 0 определяется этими свойствами единственным образом. .В самом деле, если мы предположим, что есть два элемента, обладающих указанными свойствами, например, , то получим, что .

Точно также, для произвольного натурального числа определим противоположное ему число как такое, что выполняется равенство , т.е. как решение уравнения Натуральные числа, им противоположные числа и число 0 образуют новое множество, называемое множеством целых чисел. Множество целых чисел обозначается Z.

Мы не будем подробно останавливаться на том, как операции сложения и умножения и отношение неравенства переносятся с множества натуральных чисел на множество целых чисел, считая это известным, а просто перечислим свойства целых чисел.Сложение целых чисел обладает следующими свойствами:

1. (ассоциативность, или сочетательный закон).

2. (коммутативность, или переместительный закон).

3. Существует нейтральный элемент по сложению, называемый 0, такой, что для любого целого числа выполняются равенства .

4. Для произвольного целого числа существует противоположное ему число такое, что выполняется равенство .

Свойство 4 позволяет определить на множестве целых чисел операцию вычитания с помощью равенства .

С алгебраической точки зрения эти свойства означают, что множество целых чисел с введённой на нём операцией сложения образует коммутативную группу

Умножение целых чисел обладает следующими свойствами:

1. (ассоциативность, или сочетательный закон).

2. (коммутативность, или переместительный закон).

3. (дистрибутивность умножения относительно сложения, или

4. Существует нейтральный элемент по умножению такой, что для любого .

С алгебраической точки зрения эти свойства означают, что множество целых чисел с введёнными на нём операциями сложения умножения образует кольцо

Для целых чисел естественно вводится отношение порядка меньше или равно, обозначаемое , и для любых чисел либо , либо .

Отношение порядка обладает такими свойствами:

1. Если одновременно и , то .

3. Если , то для всех выполняется: .

4. Если , то для всех натуральных выполняется: , а для всех отрицательных целых чисел — противоположное неравенство .

Для целых чисел можно определить понятие делимости. Говорят, что целое число делится на целое число без остатка, если существует целое число такое, что .(Обычно это обозначают следующим образом: .) Число называется делимым, число – делителем, число – частным от деления. Если же не делится на число без остатка, то его можно единственным образом представить в виде , где .

Тем самым, мы получили равенство , верное при .

Зафиксируем произвольное целое число и назовём два целых числа сравнимыми по модулю (что обозначается ), если разность делится на . Легко видеть, определённое таким образом отношение обладает всеми свойствами отношения эквивалентности. Классы эквивалентности называются классами вычетов по модулю , в качестве системы представителей можно взять всевозможные остатки от деления на , т.е. числа . Это множество обозначается Z .

Сумму вычетов и определяем, как остаток от деления на числа , произведение вычетов и определяем, как остаток от деления на числа . Операции над вычетами обладают теми же свойствами, что и операции над целыми числами.

Дата добавления: 2015-04-24 ; Просмотров: 332 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Целые числа

Познакомившись с понятием натуральные числа и основными арифметическими действиями над ними, можно перейти к следующему виду чисел.

Целые числа Z получают путем объединения натуральных чисел с множеством отрицательных и нулем. На письме это обозначается таким образом: Z = <. -2, -1, 0, 1, 2, . >.

Из этого следует, что целые числа замкнуты относительно сложения, вычитания и умножения.

Точное определение звучит так: множество целых чисел Z = <. -2, -1, 0, 1, 2, . >определяется как замыкание множества натуральных чисел N относительно арифметических операций сложения (+) и вычитания (-). Следовательно, сумма, разность и произведение двух целых чисел дают целые числа.

Целое число состоит из положительных натуральных чисел (1, 2, 3) и чисел вида -n и числа ноль.

Отрицательные числа впервые введены в математический тезаурус Михаэлем Штифелем в книге «Полная арифметика», написанной в 1544 году.

К основным алгебраическим свойствам сложения и умножения любых целых чисел относятся:

Замкнутость: при сложении — a + b = целое, при умножении a × b = целое;
Ассоциативность: при сложении a + (b + c) = (a + b) + c, при умножении a × (b × c) = (a × b) × c;
Коммутативность: при сложении a + b = b + a, при умножении a × b = b × a
Нейтральный эелемент: при сложении a + 0 = a; при умножении a × 1 = a;
Противоположный элемент: при сложении a + (−a) = 0; при умножении a × 1/a = 1;
Дистрибутивность умножения относительно сложения: a × (b + c) = (a × b) + (a × c)
Первые пять вышеперечисленных свойств сложения целых чисел, свидетельствуют о том, что Z является циклической группой. Это следует из того, что каждый ненулевой элемент Z может быть записан в виде конечной суммы 1 + 1 + . 1 или (−1) + (−1) + . + (−1). Таким образом, Z является единственной бесконечной циклической группой по сложению по причине того, что любая бесконечная циклическая группа подобна группе (Z, +).

Первые четыре свойства умножения показывают то, что Z не является группой по умножению, и, следовательно, не является полем. Наименьшее поле, состоящее из целых чисел — это множество рациональных чисел Q.

Операция обычного деления для множества целых чисел не определена. Однако установлено так называемое деление с остатком. Таким образом, для любых целых чисел a и b, , b <> 0 существует один единственный набор целых чисел q и r, где a = b*q + r и , где |b| — абсолютная величина (модуль) числа b. То есть, a — делимое, b — делитель, q — частное, r — остаток. На основе деления с остатком разработан алгоритм Евклида нахождения наибольшего общего делителя двух целых чисел.

Положительным называют целое число в том случае, если оно больше нуля, отрицательным — если меньше нуля.

Кстати сказать, что нуль не является положительным или отрицательным.

Для любых целых чисел справедливы следующие соотношения:

если a bc.)
Целые числа играют основополагающую роль во всех основных языках программирования. В настоящее время разрабатываются теоретические модели цифровых компьютеров, которые будут иметь потенциально бесконечное, но счетное пространство.

Илон Маск рекомендует:  Что такое код ncurses_inch

Наибольшее общее кратное и наименьший общий делитель. Признаки делимости и методы группировки (2020)


Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Чтобы НАМНОГО упростить себе жизнь когда надо что-то вычислить, чтобы выиграть драгоценное время на ОГЭ или ЕГЭ, чтобы сделать меньше глупых ошибок — читай этот раздел!

Вот чему ты научишься:

  • как быстрее, легче и точнее считать, используя группировку чисел при сложении и вычитании,
  • как без ошибок, быстро умножать и делить, используя правила умножения и признаки делимости,
  • как значительно ускорить расчеты с помощью наименьшего общего кратного (НОК) и наибольшего общего делителя (НОД).

Владение приемами этого раздела может перевесить чашу весов в ту или иную сторону. поступишь ты в ВУЗ мечты или нет, придется тебе или твоим родителям платить огромные деньги за обучение или ты поступишь на бюджет.

Let’s dive right in. (Поехали!)

Множество целых чисел состоит из 3 частей:

  1. натуральные числа (рассмотрим их подробнее чуть ниже);
  2. числа, противоположные натуральным (все станет на свои места, как только ты узнаешь, что такое натуральные числа);
  3. ноль — «« (куда уж без него?)

Множество целых чисел обозначается буквой Z.

Натуральные числа

«Бог создал натуральные числа, всё остальное – дело рук человеческих» (c) Немецкий математик Кронекер.

Натуральные числа – это числа, которые мы употребляем для счета предметов и именно на этом основывается их история возникновения – необходимости считать стрелы, шкуры и т.д.

1, 2, 3, 4. n

Множество натуральных чисел обозначается буквой N.

Соответственно, в это определение не входит (не можешь же ты посчитать то, чего нет?) и тем более не входят отрицательные значения (разве бывает яблоко?).

Кроме этого, не входят и все дробные числа (мы также не можем сказать « у меня есть ноутбука», или «я продал машины»)

Любое натуральное число можно записать с помощью 10 цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Таким образом, 14 – это не цифра. Это число. Из каких цифр оно состоит? Правильно, из цифр и .

Натуральные числа можно складывать, вычитать, умножать и делить.

Сложение. Группировка при сложении чтобы быстрей считать и меньше ошибаться

Что интересного ты можешь сказать про эту процедуру?

Конечно, ты сейчас ответишь «от перестановки слагаемых значение суммы не меняется».

Казалось бы, примитивное, знакомое с первого класса правило, однако, при решении больших примеров оно моментально забывается!

Не забывай про него — используй группировку , чтобы облегчить себе процесс подсчета и снизить вероятность ошибок, ведь на ЕГЭ калькулятора у тебя не будет.

Смотри сам, какое выражение легче сложить?

​​Конечно же второе! Хотя результат один и тот же. Но! считая вторым способом у тебя меньше шансов ошибиться и ты все сделаешь быстрее!

Итак, ты в уме считаешь вот так:

4 + 5 + 3 + 6 = 4 + 6 + 5 + 3 = 10 + 5 + 3 = 18

Вычитание. Группировка при вычитании, чтобы быстрее считать и меньше ошибаться

При вычитании мы также можем группировать вычитаемые числа, например:

32 — 5 — 2 — 6 = (32 — 2) — 5 — 6 = 30 — 5 — 6 = 19

А что, если вычитание чередуется в примере со сложением? Так же можно группировать, ответишь ты, и это правильно. Только прошу, не забывай о знаках перед числами, например: 32 — 5 — 2 — 6 = (32 — 2) — (6 + 5) = 30 — 11 = 19

Помни: неправильно проставленные знаки приведут к ошибочному результату.

Умножение. Как умножать в уме

Очевидно, что от перемены мест множителей значение произведения также не изменится:

2 ⋅ 4 ⋅ 6 ⋅ 5 = ( 2 ⋅ 5 ) ⋅ ( 4 ⋅ 6 ) = 1 0 ⋅ 2 4 = 2 4 0

Я не буду говорить тебе «используй это при решении примеров» (ты и сам понял намек, правда?), а лучше расскажу, как быстро умножать некоторые числа в уме.

Итак, внимательно смотри таблицу:


И еще немного об умножении. Конечно, ты помнишь два особых случая …

Догадываешься о чем я?

Ну что здесь можно сказать интересного?

Число может делиться на другое нацело (то есть, без остатка) и с остатком, который всегда меньше делителя, что вполне логично.

Особые случаи, если при делении у нас есть 0.

Чему будет равен пример, если 0 является делителем и чему равен пример, если он делимое?

нельзя!

Ах да, еще рассмотрим признаки делимости.

Всего существует 7 правил по признакам делимости, из которых первые 3 ты точно уже знаешь!

А вот остальные совсем не сложно запомнить.

7 признаков делимости чисел, которые помогут тебе быстро считать в уме!

  • Первые три правила ты, конечно же, знаешь.
  • Четвертое и пятое легко запомнить – при делении на и мы смотрим, делится ли на это сумма цифр, составляющих число.
  • При делении на мы обращаем внимание на две последние цифры числа — делится ли число, которое они составляют на ?
  • При делении на число должно одновременно делиться на и на . Вот и вся премудрость.

Ты сейчас думаешь — «зачем мне все это»?

Во-первых, ЕГЭ проходит без калькулятора и данные правила помогут тебе сориентироваться в примерах.

А во-вторых, ты же слышал задачи про НОД и НОК? Знакомая аббревиатура? Начнем вспоминать и разбираться.

Наибольший общий делитель (НОД) — нужен для сокращения дробей и быстрых вычислений

Допустим, у тебя есть два числа: и .

На какое наибольшее число делятся оба этих числа? Ты, не задумываясь, ответишь , потому что знаешь, что:

12 = 4 * 3 = 2 * 2 * 3

8 = 4 * 2 = 2 * 2 * 2

Какие цифры в разложении общие?

Правильно, 2 * 2 = 4. Вот и твой ответ был .

Держа в голове этот простой пример, ты не забудешь алгоритм, как находить НОД.

Попробуй «выстроить» его у себя в голове. Получилось?

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на , например, 3, 7, 11, 13 и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Понимаешь, зачем нам нужны были признаки делимости?

Чтобы ты посмотрел на число и мог начать делить без остатка.

Для примера найдем НОД чисел 290 и 485

Глядя на него, ты сразу можешь сказать, что оно делится на , запишем:

больше разделить ни на что нельзя, а вот можно – и , получаем:

Возьмем еще одно число — 485.

По признакам делимости оно должно без остатка делиться на , так как на заканчивается. Делим:

Проанализируем изначальное число.

  • На оно делиться не может (последняя цифра – нечетная),
  • – не делится на , значит число тоже не делится на ,
  • на и на также не делится (сумма цифр, входящих в число, не делится на и на )
  • на тоже не делится, так как не делится на и ,
  • на тоже не делится, так как не делится на и .
  • нельзя разделить на нацело,

Значит, число можно разложить только на и .

А теперь найдем НОД этих чисел ( и ). Какое это число? Правильно, .

Совет: глядя на числа можно иногда сразу найти хотя бы один общий делитель. Раздели сначала на него, а потом уже раскладывай дальше. При этом, необязательно общий делитель раскладывать на его составляющие – все равно потом ты будешь их снова перемножать.

Задача №1. Найти НОД чисел 6240 и 6800

1) Делю сразу на , так как оба числа 100% делятся на :

Задача №2. Найти НОД чисел 345 и 324


Здесь не могу быстро найти хоть один общий делитель, так что просто раскладываю на простые множители (как можно меньше):

Наименьшее общее кратное (НОК) — экономит время, помогает решить задачи нестандартно

Допустим, у тебя есть два числа – и . Какое существует самое маленькое число, которое делится и без остатка (то есть нацело)? Сложно представить? Вот тебе визуальная подсказка:

Ты же помнишь, что обозначается буквой ? Правильно, как раз целые числа. Так какое наименьшее число подходит на место х? :

В данном случае .

Из этого простого примера вытекает несколько правил.

Правила быстрого нахождения НОК

Правило 1. Если одно из двух натуральных чисел делится на другое число, то большее из этих двух чисел является их наименьшим общим кратным.

Найди у следующих чисел:

Конечно, ты без труда справился с этой задачей и у тебя получились ответы – , , и .

Заметь, в правиле мы говорим о ДВУХ числах, если чисел будет больше, то правило не работает.

Например, НОК (7;14;21) не равно 21, так как не делится без остатка на .

Правило 2. Если два (или более двух) числа являются взаимно простыми, то наименьшее общее кратное равно их произведению.

Найди НОК у следующих чисел:

Посчитал? Вот ответы – , , ; .

Как ты понимаешь, не всегда можно так легко взять и подобрать этот самый х, поэтому для чуть более сложных чисел существует следующий алгоритм:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

Найдем наименьшее общее кратное — НОК (345; 234)

Найди наименьшее общее кратное (НОК) самостоятельно

Какие ответы у тебя получились?

Вот, что вышло у меня:

Сколько времени ты потратил на нахождение НОК? Мое время – 2 минуты, правда я знаю одну хитрость, которую предлагаю тебе открыть прямо сейчас!

Если ты очень внимателен, то ты наверное заметил, что по заданным числам мы уже искали НОД и разложение на множители этих чисел ты мог взять из того примера, тем самым упростив себе задачу, но это далеко не все.

Посмотри на картинку, возможно к тебе придут еще какие-нибудь мысли:

Ну что? Сделаю подсказку: попробуй перемножить НОК и НОД между собой и запиши все множители, которые будут при перемножении. Справился? У тебя должна получиться вот такая цепочка:

Присмотрись к ней повнимательней: сравни множители с тем, как раскладываются и .

Какой вывод ты можешь сделать из этого? Правильно! Если мы перемножим значения НОК и НОД между собой, то мы получим произведение этих чисел.

Соответственно, имея числа и значение НОД (или НОК), мы можем найти НОК (или НОД) по такой схеме:

1. Находим произведение чисел:

2. Делим получившееся произведение на наш НОД (6240; 6800) = 80:

Запишем правило в общем виде:

Попробуй найти НОД, если известно, что:

Отрицательные числа – «лжечисла» и их признание человечеством.

Как ты уже понял, это числа, противоположные натуральным, то есть:

Отрицательные числа можно складывать, вычитать, умножать и делить – все как в натуральных.

Казалось бы, что в них такого особенного?

А дело в том, что отрицательные числа «отвоевывали» себе законное место в математике аж до XIX века (до этого момента было огромное количество споров, существуют они или нет).

Илон Маск рекомендует:  Что такое код swf_mulcolor

Само отрицательное число возникло из-за такой операции с натуральными числами, как «вычитание».

Действительно, из вычесть – вот и получается отрицательное число. Именно поэтому, множество отрицательных чисел часто называют «расширением множества натуральных чисел».

Отрицательные числа долго не признавались людьми.

Так, Древний Египет, Вавилон и Древняя Греция – светочи своего времени, не признавали отрицательных чисел, а в случае получения отрицательных корней в уравнении (например, как у нас ), корни отвергались как невозможные.

Впервые отрицательные числа получили свое право на существование в Китае, а затем в VII веке в Индии.


Как ты думаешь, с чем связано это признание?

Правильно, отрицательными числами стали обозначать долги (иначе — недостачу).

Считалось, что отрицательные числа – это временное значение, которое в результате изменится на положительное (то есть, деньги кредитору все же вернут). Однако, индийский математик Брахмагупта уже тогда рассматривал отрицательные числа наравне с положительными.

В Европе к полезности отрицательных чисел, а также к тому, что они могут обозначать долги, пришли значительно позже, эдак, на тысячелетие.

Первое упоминание замечено в 1202 году в «Книге абака» Леонарда Пизанского (сразу говорю — к Пизанской башне автор книги отношения никакого не имеет, а вот числа Фибоначчи – это его рук дело (прозвище Леонардо Пизанского — Фибоначчи)).

Далее европейцы пришли к тому, что отрицательные числа могут обозначать не только долги, но и нехватку чего бы то ни было, правда, признавали это не все.

Так, в XVII веке Паскаль считал что .

Как думаешь, чем он это обосновывал?

Верно, «ничто не может быть меньше НИЧЕГО».

Отголоском тех времен остается тот факт, что отрицательное число и операция вычитания обозначается одним и тем же символом – минусом «-». И правда: . Число « » положительное, которое вычитается из , или отрицательное, которое суммируется к . Что-то из серии «что первое: курица или яйцо?» Вот такая вот, своеобразная эта математическая философия.

Отрицательные числа закрепили свое право на существование с появлением аналитической геометрии, иначе говоря, когда математики ввели такое понятие как числовая ось.

Именно с этого момента наступило равноправие. Однако все равно вопросов было больше чем ответов, например:

Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?

Давай рассуждать вместе « » больше, чем « » верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс.

В итоге, математики договорились до того, что Карл Гаусс (да, да, это тот самый, который считал сумму (или ) чисел) в 1831 году поставил точку.

Он сказал, что отрицательные числа имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, так как дроби так же не применимы ко многим вещам (не бывает так, что яму роют землекопа, нельзя купить билета в кино и т.д.).

Успокоились математики только в XIX веке, когда Уильямом Гамильтоном и Германом Грассманом была создана теория отрицательных чисел.

Вот такие они спорные, эти отрицательные числа.

Возникновение «пустоты», или биография нуля.

В математике – особенное число.

С первого взгляда, это ничто: прибавить , отнять – ничего не изменится, но стоит только приписать его справа к « », и полученное число будет в раз больше изначального.

Умножением на ноль мы все превращаем в ничто, а разделить на «ничто», то есть , мы не можем. Одним словом, волшебное число)

История нуля длинная и запутанная.

След нуля найден в сочинениях китайцев во 2 тыс. н.э. и ещё раньше у майя. Первое использование символа нуля, каковым он является в наши дни, было замечено у греческих астрономов.

Существует множество версий, почему было выбрано именно такое обозначение «ничего».

Некоторые историки склоняются к тому, что это омикрон, т.е. первая буква греческого слова ничто – ouden. Согласно другой версии, жизнь символу ноля дало слово «обол» (монета, почти не имеющая ценности).

Ноль (или нуль) как математический символ впервые появляется у индийцев (заметь, там же стали «развиваться» отрицательные числа).

Первые достоверные свидетельства о записи нуля относятся к 876 г., и в них « » – составляющая числа .

В Европу ноль также пришел с запозданием — лишь в 1600г., и также как и отрицательные числа, сталкивался с сопротивлением (что поделаешь, такие они, европейцы).

«Нуль часто ненавидели, издавна боялись, а то и запрещали» — пишет американский математик Чарльз Сейф.

Так, турецкий султан Абдул-Хамид II в конце XIXв. приказал своим цензорам вычеркнуть из всех учебников химии формулу воды H2O, принимая букву «О» за нуль и не желая, чтобы его инициалы порочились соседством с презренным нулём».

На просторах интернета можно встретить фразу: «Ноль — самая могущественная сила во Вселенной, он может всё! Ноль создаёт порядок в математике, и он же вносит в неё хаос». Абсолютно верно подмечено:)

Краткое изложение раздела и основные формулы

Множество целых чисел состоит из 3 частей:

  • натуральные числа (рассмотрим их подробнее чуть ниже);
  • числа, противоположные натуральным;
  • ноль — » «

Множество целых чисел обозначается буквой Z.

1. Натуральные числа

Натуральные числа – это числа, которые мы употребляем для счета предметов.

Множество натуральных чисел обозначается буквой N.

В операциях с целыми числами понадобится умение находить НОД и НОК.

Наибольший общий делитель (НОД)

Чтобы найти НОД необходимо:


  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на , например, и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Наименьшее общее кратное (НОК)

Чтобы найти НОК необходимо:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

2. Отрицательные числа

это числа, противоположные натуральным, то есть:

Теперь я хочу слышать тебя.

Надюсь ты оценил супер-полезные «трюки» этого раздела и понял как они помогут тебе на экзамене.

И что более важно — в жизни. Я об этом не говорю, но, поверь, этот так. Умение быстро и без ошибок считать спасает во многих жизненных ситуациях.

Теперь твой ход!

Напиши, будешь ли ты применять методы группировки, признаки делимости, НОД и НОК в расчетах?

Может быть ты применял их ранее? Где и как?

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях как тебе статья.

И удачи на экзаменах!

P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ :)

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для успешной сдачи ОГЭ или ЕГЭ, для перехода в 10-й класс или поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это — не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю.

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время.

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте — нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Я рекомендую использовать для этих целей наш учебник «YouClever» (который ты сейчас читаешь) и решебник и программу подготовки «100gia».

И в заключение.

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” — это совершенно разные навыки. Тебе нужны оба.

Целое число

Множество целых чисел $ \mathbb=\ <\dots,-2,-1,0,1,2,\dots\>$ определяется как замыкание множества натуральных чисел $ \mathbb $ относительно арифметических операций сложения (+) и вычитания (-). Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из положительных натуральных чисел (1, 2, 3), чисел вида -n (n $ \in\mathbb $ ) и числа нуль.

Необходимость рассмотрения целых чисел продиктована невозможностью (в общем случае) вычесть из одного натурального числа другое. Целые числа являются кольцом относительно операций сложения и умножения. Отрицательные числа ввели в математический обиход Михаэль Штифель (M. Stiffel, 1487—1567), в книге «Полная арифметика» 1544 года, и Никола Шюке (N. Chuquet, 1445—1500) — его работа была обнаружена в 1848 году.

Определение

Арифметические операции и порядок


Пользуясь имеющимися операциями сложения и умножения на множестве натуральных чисел, введём соответствующие операции на построенном множестве целых чисел:

$ \bigl[(m_1,n_1)\bigr] + \bigl[(m_2,n_2)\bigr] = \bigl[(m_1+n_1,m_2 + n_2)\bigr]; $ $ \bigl[(m_1,n_1)\bigr] \cdot \bigl[(m_2,n_2)\bigr] = \bigl[(m_1 \cdot m_2 +n_1 \cdot n_2,m_1 \cdot n_2 + m_2 \cdot n_1)\bigr]. $

Определённые выше операции корректны, то есть не зависят от выбора представителей соответствующий классов эквивалентности. Сходным образом возможно использовать стандартный порядок на натуральных числах для определения частичного порядка на целых числах:

$ \bigl[(m_1,n_1)\bigr] \le \bigl[(m_2,n_2)\bigr] \Leftrightarrow m_1 + n_2 \le m_2 + n_1. $

Такой порядок является корректным и полным. Из архимедовости натуральных чисел следует, что множество целых чисел не обладает ни наибольшим, ни наименьшим элементом.

Стандартные обозначения и терминология

Пусть $ \bigl[(m,n)\bigr] \in \mathbb $ . Введём обозначение

$ \bigl[(m,n)\bigr] \equiv \left\ < \beginm-n, & m \ge n, \\ -(n-m), & m

В частности натуральные числа могут быть идентифицированы с парами вида

$ m \equiv \bigl[(m,0)\bigr],\quad m \in \mathbb. $

Легко убедиться, что введённые выше бинарные операции и порядок на целых числах согласнованы с уже имеющимися операция и порядком на множестве натуральных чисел. Таким образом с точностью до изоморфизма можно считать, что $ \mathbb \subset \mathbb. $ Множество $ \mathbb \setminus \ <0\>\equiv \ <1,2,3,\ldots \>$ называется множество положительных целых чисел. Подмножество целых чисел вида

$ -n \equiv \bigl[ (0,n) \bigr],\quad n \in \mathbb\setminus \ <0\>$

называется множеством отрицательных целых чисел. Из определения порядка, данного выше, следует, что

Алгебраические свойства

Основные алгебраические свойства введённых арифметических операций на целых числах суммированы в следующей таблице:

Тангенс сложение умножение
ассоциативность: $ a+(b+c) = (a+b)+c $ $ a \cdot(b \cdot c ) =(a \cdot b) \cdot c $
коммутативность: $ a + b = b + a $ $ a \cdot b = b \cdot a $
существование нейтрального элемента: $ a+0 = a $ $ a \cdot 1 = a $
существование противоположного элемента: $ a + (-a) = 0 $
дистрибутивность умножения относительно сложения: $ a \cdot (b+c) = a \cdot b + a \cdot c $
  • $ (\mathbb,+) $ является абелевой группой, а также циклической группой, порождённой элементами $ 1 $ и $ -1 $ .
  • Любая бесконечная циклическая группа изоморфна $ (\mathbb,+) $ .
  • $ (\mathbb,\cdot) $ является коммутативным моноидом, но не является группой.
  • Суммируя, $ (\mathbb,+,\cdot) $ представляет собой коммутативное кольцо с нейтральным элементами относительно обеих операций.

Обычное деление не определено на множестве целых чисел, но определено так называемое деление с остатком: для любых целых a и b, $ b \not= 0 $ , существует единственный набор целых чисел q и r, что a = bq + r и $ 0 \le r , где |b| — абсолютная величина (модуль) числа b. Здесь a — делимое, b — делитель, q — частное, r— остаток. На этой операции основан алгоритм Евклида нахождения наибольшего общего делителя двух целых чисел.

Теоретико-множественные свойства

$ \mathbb $ — линейно упорядоченное множество без верхней и нижней границ. Порядок в нём задается соотношениями:

Целое число называется положительным, если оно больше нуля, отрицательным, если меньше нуля. Нуль не является положительным или отрицательным.

Для целых чисел справедливы следующие соотношения:

Целые числа в вычислительной технике

Тип целое цисло — зачастую один из основных типов данных в языках программирования. Тем не менее эти «целые числа» — лишь имитация класса $ \mathbb $ в математике, так как это множество бесконечно и всегда найдётся целое число, которое данный компьютер не сможет хранить в своей памяти. Целые типы данных обычно реализуются как фиксированный набор битов, но любые представления в конце концов приведут к тому, что свободное место на носителе (жёстком диске) закончится. С другой стороны, теоретические модели цифровых компьютеров имеют потенциально бесконечное (но счётное) пространство.

Целые числа

Что значит целое число

Итак, рассмотрим, какие числа называют целыми.

Если вспомнить курс математики, то целыми числами являются натуральные числа, нуль и числа, противоположные натуральным.

Таким образом, целыми будут обозначаться такие числа: $0$, $±1$, $±2$, $±3$, $±4$ и т.д.

Множество натуральных чисел есть подмножеством множества целых чисел, т.е. любое натуральное будет являться целым числом, но не любое целое является натуральным числом.

Целые положительные и целые отрицательные числа

Целыми положительными числами являются целые числа со знаком плюс.

Числа $3, 78, 569, 10450$ – целые положительные числа.

Целыми отрицательными числами являются целые числа со знаком минус.

Числа $−3, −78, −569, -10450$ – целые отрицательные числа.

Число ноль не относится ни к целым положительным, ни к целым отрицательным числам.

Целыми положительными числами являются целые числа, большие нуля.

Целыми отрицательными числами являются целые числа, меньшие нуля.

Попробуй обратиться за помощью к преподавателям

Множество натуральных целых чисел являет собой множество всех целых положительных чисел, а множество всех противоположных натуральным числам являет собой множество всех целых отрицательных чисел.

Целые неположительные и целые неотрицательные числа

Все целые положительные числа и число нуль называются целыми неотрицательными числами.


Целыми неположительными числами являются все целые отрицательные числа и число $0$.

Таким образом, целым неотрицательным числом являются целые числа, большие нуля или равные нулю, а целым неположительным числом – целые числа, меньшие нуля или равные нулю.

Например, целые неположительные числа: $−32, −123, 0, −5$, а целые неотрицательные числа: $54, 123, 0, 856 342.$

Описание изменения величин при помощи целых чисел

Целые числа применяются для описания изменения числа каких-либо предметов.

Пусть в магазине продается какое-то число наименований товара. Когда в магазин поступит $520$ наименований товаров, то число наименований товара в магазине увеличится, а число $520$ показывает изменение числа в положительную сторону. Когда в магазине продастся $50$ наименований товара, то число наименований товара в магазине уменьшится, а число $50$ будет выражать изменение числа в отрицательную сторону. Если в магазин не будут ни привозить, ни продавать товар, то число товара будет оставаться неизменным (т.е. можно говорить о нулевом изменении числа).

В приведенном примере изменение числа товара описывается с помощью целых чисел $520$, $−50$ и $0$ соответственно. Положительное значение целого числа $520$ указывает на изменение числа в положительную сторону. Отрицательное значение целого числа $−50$ указывает на изменение числа в отрицательную сторону. Целое число $0$ указывает на неизменность числа.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Целые числа удобно использовать, т.к. не нужно явное указание на увеличение числа или уменьшение, – знак целого числа указывает на направление изменения, а значение – на количественное изменение.

С помощью целых чисел можно выразить не только изменение количества, но и изменение любой величины.

Рассмотрим пример изменения стоимости товара.

Повышение стоимости, например, на $20$ рублей выражается с помощью положительного целого числа $20$. Понижение стоимости, например, на $5$ рублей описывается с помощью отрицательного целого числа $−5$. Если изменений стоимости нет, то такое изменение определяется с помощью целого числа $0$.

Отдельно рассмотрим значение отрицательных целых чисел как размера долга.

Например, у какого-либо человека есть $5 000$ рублей. Тогда с помощью целого положительного числа $5 000$ можно показать количество рублей, которые у него есть. Человек должен оплатить квартплату в размере $7 000$ рублей, но у него таких денег нет, в таком случае подобная ситуация описывается отрицательным целым числом $−7 000$. В таком случае человек имеет $−7 000$ рублей, где «–» указывает на долг, а число $7 000$ показывает количество долга.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Целые числа

Целые числа могут быть указаны в десятичной (основание 10), шестнадцатеричной (основание 16), или восьмеричной (основание 8) системе счисления, с необязательным предшествующим знаком (- or +).

Для записи в восьмеричной системе счисления, предварите число (нулем). Для записи в шестнадцатеричной системе счисления, необходимо поставить перед числом 0x.

Пример #1 Целые литералы

Формально, структуру целых литералов можно записать так:

Размер integer зависит от платформы, хотя, как правило, максимальное значение примерно равно 2 миллиардам (это 32-битное знаковое). 64-битные платформы обычно имеют максимальное значение около 9E18. PHP не поддерживает беззнаковые целые. С версии PHP 4.4.0 и PHP 5.0.5 размер integer может быть определен с помощью константы PHP_INT_SIZE, а его максимальное значение — с помощью константы PHP_INT_MAX.

Если в восьмеричном integer будет обнаружена неверная цифра (например, 8 или 9), оставшаяся числа будет проигнорирована.

Пример #2 Странности с восьмеричными числами

Переполнение целых чисел

Если PHP обнаружил, что число превышает размер integer , он будет интерпретировать его в качестве float . Аналогично, если результат операции лежит за границами типа, он будет преобразован в float .

Пример #3 Переполнение целых на 32-битных системах

= 2147483647 ;
var_dump ( $large_number ); // int(2147483647)

$large_number = 2147483648 ;
var_dump ( $large_number ); // float(2147483648)

$million = 1000000 ;
$large_number = 50000 * $million ;
var_dump ( $large_number ); // float(50000000000)
?>

Пример #4 Переполнение целых на 64-битных системах

= 9223372036854775807 ;
var_dump ( $large_number ); // int(9223372036854775807)

$large_number = 9223372036854775808 ;
var_dump ( $large_number ); // float(9.2233720368548E+18)

$million = 1000000 ;
$large_number = 50000000000000 * $million ;
var_dump ( $large_number ); // float(5.0E+19)
?>

В PHP не существует оператора деления целых чисел. Результатом 1/2 будет float 0.5. Если привести значение к integer , оно будет округлено вниз. Для большего контроля над округлением используйте функцию round() .

Преобразование в целое

Для явного преобразования в integer , используйте приведение (int) или (integer). Однако, в большинстве случаев, в приведении типа нет необходимости, так как значение будет автоматически преобразовано, если оператор, функция или управляющая структура требует аргумент типа integer . Значение также может быть преобразовано в integer с помощью функции intval() .

Из булевого типа

Из чисел с плавающей точкой

При преобразовании из float в integer , число будет округлено в сторону нуля.

Если число с плавающей точкой превышает размеры integer (обычно +/- 2.15e+9 = 2^31 на 32-битных системах и +/- 9.22e+18 = 2^63 на 64-битных системах), результат будет неопределенным, так как float не имеет достаточной точности, чтобы вернуть верный результат. В этом случае не будет выведено ни предупреждения, ни даже замечания!

Никогда не приводите неизвестную дробь к integer , так как это иногда может дать неожиданные результаты.

SBP-Program


Натуральные, целые, рациональные, иррациональные, действительные числа

Натуральные числа

Натуральные числа определение – это целые положительные числа. Натуральные числа используют для счета предметов и многих иных целей. Вот эти числа:

Это натуральный ряд чисел.
Ноль натуральное число? Нет, ноль не является натуральным числом.
Сколько натуральных чисел существует? Существует бесконечное множество натуральных чисел.
Каково наименьшее натуральное число? Единица — это наименьшее натуральное число.
Каково наибольшее натуральное число? Его невозможно указать, ведь существует бесконечное множество натуральных чисел.

Сумма натуральных чисел есть натуральное число. Итак, сложение натуральных чисел a и b:

с — это всегда натуральное число.

Произведение натуральных чисел есть натуральное число. Итак, произведение натуральных чисел a и b:

с — это всегда натуральное число.

Разность натуральных чисел Не всегда есть натуральное число. Если уменьшаемое больше вычитаемого, то разность натуральных чисел есть натуральное число, иначе — нет.

Частное натуральных чисел Не всегда есть натуральное число. Если для натуральных чисел a и b

где с — натуральное число, то это значит, что a делится на b нацело. В этом примере a — делимое, b — делитель, c — частное.

Делитель натурального числа — это натуральное число, на которое первое число делится нацело.

Каждое натуральное число делится на единицу и на себя.

Простые натуральные числа делятся только на единицу и на себя. Здесь имеется ввиду делятся нацело. Пример, числа 2; 3; 5; 7 делятся только на единицу и на себя. Это простые натуральные числа.

Единицу не считают простым числом.

Числа, которые больше единицы и которые не являются простыми, называют составными. Примеры составных чисел:

Единицу не считают составным числом.

Множество натуральных чисел составляют единица, простые числа и составные числа.

Множество натуральных чисел обозначается латинской буквой N.

Свойства сложения и умножения натуральных чисел:

переместительное свойство сложения

сочетательное свойство сложения

переместительное свойство умножения

сочетательное свойство умножения

распределительное свойство умножения

Целые числа

Целые числа — это натуральные числа, ноль и числа, противоположные натуральным.

Числа, противоположные натуральным — это целые отрицательные числа, например:

Множество целых чисел обозначается латинской буквой Z.

Рациональные числа

Рациональные числа — это целые числа и дроби.

Любое рациональное число может быть представлено в виде периодической дроби. Примеры:

Из примеров видно, что любое целое число есть периодическая дробь с периодом ноль.

Любое рациональное число может быть представлено в виде дроби m/n, где m целое число,n натуральное число. Представим в виде такой дроби число 3,(6) из предыдущего примера:

Другой пример: рациональное число 9 может быть представлено в виде простой дроби как 18/2 или как 36/4.

Ещё пример: рациональное число -9 может быть представлено в виде простой дроби как -18/2 или как -72/8.

Множество рациональных чисел обозначается латинской буквой Q.

Подробнее о рациональных числах в разделе Рациональные числа.

Иррациональные числа

Иррациональные числа — это бесконечные непериодические десятичные дроби. Примеры:

Подробнее об иррациональных числах в разделе Иррациональные числа.

Действительные числа

Действительные числа – это все рациональные и все иррациональные числа.

Множество действительных чисел обозначается латинской буквой R.

Илон Маск рекомендует:  scaleY() в CSS
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL