Что такое код python


Содержание

Пример программы на Python. Особенности, описание и рекомендации

Язык программирования Python является мощным инструментом, славится красивым синтаксисом и легкостью в обучении. Буквально любой пользователь сможет за короткое время изучить азы этого языка и написать свою первую программу. В этой статье мы рассмотрим примеры программ для начинающих на Python.

Почему Python?

У многих возникают сложности при выборе первого языка программирования. Вот несколько основных причин, почему стоит остановить свой выбор именно на нем:

  • Легкость в изучении. Действительно, Python является очень легким языком. Освоить основы можно буквально за неделю. Некоторые придерживаются мнения, что если человек первым своим языком для изучения выбирает Python, то ему в будущем будет сложно изучать другие языки. Но если человек совсем не понимает в программировании, не знает, как все работает, ему очень сложно будет изучать Java, например. Для начала пользователь должен понять основы программирования, узнать, что такое ООП, как с этим работать.
  • Перспектива. На сегодняшний день множество IT-компаний переходят на Python. Пишутся сайты, делаются расчеты, создаются боты. «Питон» справляется со всеми задачами. И хороший специалист в этой области точно не пропадет. Раньше об этом языке мало говорили, но сейчас даже в школах заменяют Pascal на Python. При сдаче ЕГЭ можно решать задачи на «Питоне».
  • Много обучающего материала. Разные курсы, книги, уроки, примеры программ. Даже можно найти примеры программ на Python для Raspberry Pi. Это такой микрокомпьютер, который часто используют для построения умных домов, автоматических систем.

Какую версию Python выбрать

Существует две версии Python — 2 и 3. Начинающие при скачивании Python задаются вопросом о том, какую же версию стоит скачивать. Вторая версия уже устарела, и мало кто ею пользуется. Большинство уроков и примеры программ на Python — 3 версия. И в этой статье также используется Python 3 в примерах. Синтаксис не особо отличается, но некоторые библиотеки не поддерживают старую версию, в некоторых отличается немного синтаксис. Поэтому не стоит тратить время на вторую версию, нужно сразу скачивать и изучать третью.

Самая первая программа

Такая традиция сложилась у программистов, что первой программой на любом языке программирования служит вывод текста Hello World!, что переводится с английского как «Привет, Мир!». Для осуществления этой задачи необходимо прописать лишь один оператор — print. И в скобках написать в кавычках текст, который нужно вывести на экран. Таким образом, первый наш пример программы на Python выглядит следующим образом:

Любая программа работает по определенному алгоритму. Основными являются: линейный, разветвляющийся, циклический. Самый первый пример программы на Python, который был рассмотрен, то есть вывод текста, относится к линейному алгоритму. Зачастую в программах используются все виды алгоритмов. Ниже рассмотрим примеры простых программ на Python, относящихся к другим алгоритмам.

Ветвление

Ветвление, или же разветвляющийся алгоритм должен содержать хотя бы одну проверку условия. Для проверки условий в Python есть оператор if, что переводится как «если».

В примере выше можно увидеть пример работы с оператором IF в Python. Сначала программа просит ввести число, далее пользователь вводит число (оператор input). Это число записывается в переменную a. Следующим идет условие, если переменная «a» равна нулю, то переменная выводит на экран текст, после чего работа программы прекращается. Также есть оператор else переводится как «иначе». Дополним нашу программу таким образом, что, если человек введет число, отличное от нуля, она оповестит пользователя об этом при помощи вывода текста. Итак, готовая программа выглядит следующим образом:

Циклы в Python

Циклы служат для многократного повторения каких-либо действий. В Python для этого есть операторы for и while. Рассмотрим оба этих оператора.

Оператор While

Это циклы с условием, то есть тело цикла будет исполняться до того момента, пока условие истинно. Например, пока a = 0, прибавлять к переменной b переменную c.

Синтаксис выглядит следующим образом:

Пример программы на Python с использованием цикла While:

Эта программа выводит квадраты чисел от 1 до 10. В теле цикла можно увидеть, что программа выводит каждый раз переменную a в квадрате, затем прибавляет к этой же переменной 1. Цикл выполняется до тех пор, пока переменная a не будет равна или больше 10. Чтобы программа выглядела более законченно и красиво, можно воспользоваться оператором else. Пример использования:

То есть если переменная a становится больше или равна 10, то на экран выводится сообщение «Цикл завершен». Добавили всего 2 строчки кода, а программа выглядит уже более красиво. Да и к тому же в будущем легче будет ориентироваться, если возникнет какая-нибудь ошибка, не придется долго искать.

Оператор For

Цикл For является менее универсальным, чем цикл While, но зато он работает быстрее. В основном при помощи for перебирают какие-либо данные. Например, строки и словари. Пример программы на Python:

В этом примере можно увидеть, что цикл for перебирает строку Hello World! и каждый символ строки повторяет два раза.

Операторы break и continue

Операторы break и continue используются в циклах для выхода из цикла или пропуска до следующей итерации. Пример использования оператора continue:

В примере мы видим, что если переменная a равняется 5, то он пропускает 5 и начинает с 6. Так же применяется и оператор break, но вместо пропуска он будет выходить из цикла и переходить к другим действиям, если они есть. Если их нет — завершает программу.

Графический интерфейс программ

Далее пойдут примеры программ на Python с графическим интерфейсом. Для их создания потребуется набор библиотек PyQT5. Этот набор является одним из самых мощных для создания графического интерфейса программы. Также есть библиотека TKinter для создания графического интерфейса, но он уступает по мощности PyQT5, хотя для простых программ можно использовать и TKinter. Для начала следует установить эту библиотеку, так как изначально ее в Python нет.

Самый простой пример программы на Python с PyQT5:

Все очень гибко настраивается, можно настроить ширину экрана, высоту, название окна и много другого. Ниже можно увидеть окно, которое создается после выполнения кода выше.

Пример использования библиотеки math

Язык программирования Python частенько используют для расчетов. Даже в NASA используют Python для таких целей. Чтобы проводить операции с числами, проводить различные расчеты, поможет библиотека math. Это очень мощная библиотека, которая изначально идет в составе «Питона», дополнительно устанавливать ее не надо. Рассмотрим пару примеров использования этой библиотеки.

Допустим, необходимо вычислить факториал заданного числа. Сделать это можно одним лишь оператором. Пример программы на Python:

Узнать остаток от деления a на b:

Допустим, нам нужно вычислить обратный гиперболический косинус числа B, делается это тоже с помощью одного оператора:

Построение графиков

Python также может составлять графики. Для этого используется библиотека MatPlotLib. Этой библиотеки нет изначально, ее надо устанавливать отдельно. Делается это очень просто, в командной строке нужно написать одну строчку:

После чего стоит подождать некоторое время, пока библиотека не установится.

Пример кода для построения графиков синуса и косинуса:

После выполнения кода можно увидеть следующее:

Django

На Python написано немало сайтов. Все больше и больше сайтов с каждым днем пишется на этом чудесном языке. А возможность этого предоставляет фреймворк Django. Даже предполагают, что через несколько лет Python сможет обогнать PHP на рынке. Многие IT-компании уже работают с этим языком. Например, «Яндекс». А известный облачный сервис Dropbox и вовсе полностью написан на «Питоне». Можно писать не только сайты, но и полноценные веб-приложения. К тому же он абсолютно бесплатный.

IDE для программирования на Python

Инструмент программиста — всегда важно. Согласитесь, неудобно программировать на языке программирования Python в блокноте, тем более учитывая, как «Питон» относится к отступам. Существует несколько сред разработки, которыми чаще всего пользуются:

    PyCharm. Это, наверное, самый известный >

PEP 8 — руководство по написанию кода на Python

Этот документ описывает соглашение о том, как писать код для языка python, включая стандартную библиотеку, входящую в состав python.

PEP 8 создан на основе рекомендаций Гуидо ван Россума с добавлениями от Барри. Если где-то возникал конфликт, мы выбирали стиль Гуидо. И, конечно, этот PEP может быть неполным (фактически, он, наверное, никогда не будет закончен).

Ключевая идея Гуидо такова: код читается намного больше раз, чем пишется. Собственно, рекомендации о стиле написания кода направлены на то, чтобы улучшить читаемость кода и сделать его согласованным между большим числом проектов. В идеале, весь код будет написан в едином стиле, и любой сможет легко его прочесть.

Это руководство о согласованности и единстве. Согласованность с этим руководством очень важна. Согласованность внутри одного проекта еще важнее. А согласованность внутри модуля или функции — самое важное. Но важно помнить, что иногда это руководство неприменимо, и понимать, когда можно отойти от рекомендаций. Когда вы сомневаетесь, просто посмотрите на другие примеры и решите, какой выглядит лучше.

Две причины для того, чтобы нарушить данные правила:

  1. Когда применение правила сделает код менее читаемым даже для того, кто привык читать код, который следует правилам.
  2. Чтобы писать в едином стиле с кодом, который уже есть в проекте и который нарушает правила (возможно, в силу исторических причин) — впрочем, это возможность переписать чужой код.

Содержание

Внешний вид кода

Отступы

Используйте 4 пробела на каждый уровень отступа.

Продолжительные строки должны выравнивать обернутые элементы либо вертикально, используя неявную линию в скобках (круглых, квадратных или фигурных), либо с использованием висячего отступа. При использовании висячего отступа следует применять следующие соображения: на первой линии не должно быть аргументов, а остальные строки должны четко восприниматься как продолжение линии.

Закрывающие круглые/квадратные/фигурные скобки в многострочных конструкциях могут находиться под первым непробельным символом последней строки списка, например:

либо быть под первым символом строки, начинающей многострочную конструкцию:

Табуляция или пробелы?

Пробелы — самый предпочтительный метод отступов.

Табуляция должна использоваться только для поддержки кода, написанного с отступами с помощью табуляции.

Python 3 запрещает смешивание табуляции и пробелов в отступах.

Python 2 пытается преобразовать табуляцию в пробелы.

Когда вы вызываете интерпретатор Python 2 в командной строке с параметром -t, он выдает предупреждения (warnings) при использовании смешанного стиля в отступах, а запустив интерпретатор с параметром -tt, вы получите в этих местах ошибки (errors). Эти параметры очень рекомендуются!

Максимальная длина строки

Ограничьте длину строки максимум 79 символами.

Для более длинных блоков текста с меньшими структурными ограничениями (строки документации или комментарии), длину строки следует ограничить 72 символами.

Ограничение необходимой ширины окна редактора позволяет иметь несколько открытых файлов бок о бок, и хорошо работает при использовании инструментов анализа кода, которые предоставляют две версии в соседних столбцах.

Некоторые команды предпочитают большую длину строки. Для кода, поддерживающегося исключительно или преимущественно этой группой, в которой могут прийти к согласию по этому вопросу, нормально увеличение длины строки с 80 до 100 символов (фактически увеличивая максимальную длину до 99 символов), при условии, что комментарии и строки документации все еще будут 72 символа.

Стандартная библиотека Python консервативна и требует ограничения длины строки в 79 символов (а строк документации/комментариев в 72).

Предпочтительный способ переноса длинных строк является использование подразумеваемых продолжений строк Python внутри круглых, квадратных и фигурных скобок. Длинные строки могут быть разбиты на несколько строк, обернутые в скобки. Это предпочтительнее использования обратной косой черты для продолжения строки.

Обратная косая черта все еще может быть использована время от времени. Например, длинная конструкция with не может использовать неявные продолжения, так что обратная косая черта является приемлемой:

Ещё один случай — assert.

Сделайте правильные отступы для перенесённой строки. Предпочтительнее вставить перенос строки после логического оператора, но не перед ним. Например:

Пустые строки

Отделяйте функции верхнего уровня и определения классов двумя пустыми строками.

Определения методов внутри класса разделяются одной пустой строкой.

Дополнительные пустые строки возможно использовать для разделения различных групп похожих функций. Пустые строки могут быть опущены между несколькими связанными однострочниками (например, набор фиктивных реализаций).

Используйте пустые строки в функциях, чтобы указать логические разделы.

Python расценивает символ control+L как незначащий (whitespace), и вы можете использовать его, потому что многие редакторы обрабатывают его как разрыв страницы — таким образом логические части в файле будут на разных страницах. Однако, не все редакторы распознают control+L и могут на его месте отображать другой символ.


Кодировка исходного файла

Кодировка Python должна быть UTF-8 (ASCII в Python 2).

Файлы в ASCII (Python 2) или UTF-8 (Python 3) не должны иметь объявления кодировки.

В стандартной библиотеке, нестандартные кодировки должны использоваться только для целей тестирования, либо когда комментарий или строка документации требует упомянуть имя автора, содержащего не ASCII символы; в остальных случаях использование \x, \u, \U или \N — наиболее предпочтительный способ включить не ASCII символы в строковых литералах.

Начиная с версии python 3.0 в стандартной библиотеке действует следующее соглашение: все идентификаторы обязаны содержать только ASCII символы, и означать английские слова везде, где это возможно (во многих случаях используются сокращения или неанглийские технические термины). Кроме того, строки и комментарии тоже должны содержать лишь ASCII символы. Исключения составляют: (а) test case, тестирующий не-ASCII особенности программы, и (б) имена авторов. Авторы, чьи имена основаны не на латинском алфавите, должны транслитерировать свои имена в латиницу.

Проектам с открытым кодом для широкой аудитории также рекомендуется использовать это соглашение.

Импорты

Каждый импорт, как правило, должен быть на отдельной строке.

В то же время, можно писать так:

Импорты всегда помещаются в начале файла, сразу после комментариев к модулю и строк документации, и перед объявлением констант.

Импорты должны быть сгруппированы в следующем порядке:

  1. импорты из стандартной библиотеки
  2. импорты сторонних библиотек
  3. импорты модулей текущего проекта

Вставляйте пустую строку между каждой группой импортов.

Указывайте спецификации __all__ после импортов.

Рекомендуется абсолютное импортирование, так как оно обычно более читаемо и ведет себя лучше (или, по крайней мере, даёт понятные сообщения об ошибках) если импортируемая система настроена неправильно (например, когда каталог внутри пакета заканчивается на sys.path):

Тем не менее, явный относительный импорт является приемлемой альтернативой абсолютному импорту, особенно при работе со сложными пакетами, где использование абсолютного импорта было бы излишне подробным:

В стандартной библиотеке следует избегать сложной структуры пакетов и всегда использовать абсолютные импорты.

Неявные относительно импорты никогда не должны быть использованы, и были удалены в Python 3.

Когда вы импортируете класс из модуля, вполне можно писать вот так:

Если такое написание вызывает конфликт имен, тогда пишите:

И используйте «myclass.MyClass» и «foo.bar.yourclass.YourClass».

Шаблоны импортов (from import *) следует избегать, так как они делают неясным то, какие имена присутствуют в глобальном пространстве имён, что вводит в заблуждение как читателей, так и многие автоматизированные средства. Существует один оправданный пример использования шаблона импорта, который заключается в опубликовании внутреннего интерфейса как часть общественного API (например, переписав реализацию на чистом Python в модуле акселератора (и не будет заранее известно, какие именно функции будут перезаписаны).

Пробелы в выражениях и инструкциях

Избегайте использования пробелов в следующих ситуациях:

Непосредственно внутри круглых, квадратных или фигурных скобок.

Непосредственно перед запятой, точкой с запятой или двоеточием:

Сразу перед открывающей скобкой, после которой начинается список аргументов при вызове функции:

Сразу перед открывающей скобкой, после которой следует индекс или срез:

Использование более одного пробела вокруг оператора присваивания (или любого другого) для того, чтобы выровнять его с другим:

Другие рекомендации

Всегда окружайте эти бинарные операторы одним пробелом с каждой стороны: присваивания (=, +=, -= и другие), сравнения (==, , !=, <>, =, in, not in, is, is not), логические (and, or, not).

Если используются операторы с разными приоритетами, попробуйте добавить пробелы вокруг операторов с самым низким приоритетом. Используйте свои собственные суждения, однако, никогда не используйте более одного пробела, и всегда используйте одинаковое количество пробелов по обе стороны бинарного оператора.

Не используйте пробелы вокруг знака =, если он используется для обозначения именованного аргумента или значения параметров по умолчанию.

Не используйте составные инструкции (несколько команд в одной строке).

Иногда можно писать тело циклов while, for или ветку if в той же строке, если команда короткая, но если команд несколько, никогда так не пишите. А также избегайте длинных строк!

Комментарии

Комментарии, противоречащие коду, хуже, чем отсутствие комментариев. Всегда исправляйте комментарии, если меняете код!

Комментарии должны являться законченными предложениями. Если комментарий — фраза или предложение, первое слово должно быть написано с большой буквы, если только это не имя переменной, которая начинается с маленькой буквы (никогда не изменяйте регистр переменной!).

Если комментарий короткий, можно опустить точку в конце предложения. Блок комментариев обычно состоит из одного или более абзацев, составленных из полноценных предложений, поэтому каждое предложение должно оканчиваться точкой.

Ставьте два пробела после точки в конце предложения.

Программисты, которые не говорят на английском языке, пожалуйста, пишите комментарии на английском, если только вы не уверены на 120%, что ваш код никогда не будут читать люди, не знающие вашего родного языка.

Блоки комментариев

Блок комментариев обычно объясняет код (весь, или только некоторую часть), идущий после блока, и должен иметь тот же отступ, что и сам код. Каждая строчка такого блока должна начинаться с символа # и одного пробела после него (если только сам текст комментария не имеет отступа).

Илон Маск рекомендует:  Книги о доменах

Абзацы внутри блока комментариев разделяются строкой, состоящей из одного символа #.

«Встрочные» комментарии

Старайтесь реже использовать подобные комментарии.

Такой комментарий находится в той же строке, что и инструкция. «Встрочные» комментарии должны отделяться по крайней мере двумя пробелами от инструкции. Они должны начинаться с символа # и одного пробела.

Комментарии в строке с кодом не нужны и только отвлекают от чтения, если они объясняют очевидное. Не пишите вот так:

Впрочем, такие комментарии иногда полезны:

Строки документации

Пишите документацию для всех публичных модулей, функций, классов, методов. Строки документации необязательны для приватных методов, но лучше написать, что делает метод. Комментарий нужно писать после строки с def.

PEP 257 объясняет, как правильно и хорошо документировать. Заметьте, очень важно, чтобы закрывающие кавычки стояли на отдельной строке. А еще лучше, если перед ними будет ещё и пустая строка, например:

Для однострочной документации можно оставить закрывающие кавычки на той же строке.

Контроль версий

Если вам нужно использовать Subversion, CVS или RCS в ваших исходных кодах, делайте вот так:

Вставляйте эти строки после документации модуля перед любым другим кодом и отделяйте их пустыми строками по одной до и после.

Соглашения по именованию

Соглашения по именованию переменных в python немного туманны, поэтому их список никогда не будет полным — тем не менее, ниже мы приводим список рекомендаций, действующих на данный момент. Новые модули и пакеты должны быть написаны согласно этим стандартам, но если в какой-либо уже существующей библиотеке эти правила нарушаются, предпочтительнее писать в едином с ней стиле.

Главный принцип

Имена, которые видны пользователю как часть общественного API должны следовать конвенциям, которые отражают использование, а не реализацию.

Описание: Стили имен

Существует много разных стилей. Поможем вам распознать, какой стиль именования используется, независимо от того, для чего он используется.

Обычно различают следующие стили:

  • b (одиночная маленькая буква)
  • B (одиночная заглавная буква)
  • lowercase (слово в нижнем регистре)
  • lower_case_with_underscores (слова из маленьких букв с подчеркиваниями)
  • UPPERCASE (заглавные буквы)
  • UPPERCASE_WITH_UNDERSCORES (слова из заглавных букв с подчеркиваниями)
  • CapitalizedWords (слова с заглавными буквами, или CapWords, или CamelCase). Замечание: когда вы используете аббревиатуры в таком стиле, пишите все буквы аббревиатуры заглавными — HTTPServerError лучше, чем HttpServerError.
  • mixedCase (отличается от CapitalizedWords тем, что первое слово начинается с маленькой буквы)
  • Capitalized_Words_With_Underscores (слова с заглавными буквами и подчеркиваниями — уродливо!)

Ещё существует стиль, в котором имена, принадлежащие одной логической группе, имеют один короткий префикс. Этот стиль редко используется в python, но мы упоминаем его для полноты. Например, функция os.stat() возвращает кортеж, имена в котором традиционно имеют вид st_mode, st_size, st_mtime и так далее. (Так сделано, чтобы подчеркнуть соответствие этих полей структуре системных вызовов POSIX, что помогает знакомым с ней программистам).

В библиотеке X11 используется префикс Х для всех public-функций. В python этот стиль считается излишним, потому что перед полями и именами методов стоит имя объекта, а перед именами функций стоит имя модуля.

В дополнение к этому, используются следующие специальные формы записи имен с добавлением символа подчеркивания в начало или конец имени:

_single_leading_underscore: слабый индикатор того, что имя используется для внутренних нужд. Например, from M import * не будет импортировать объекты, чьи имена начинаются с символа подчеркивания.

single_trailing_underscore_: используется по соглашению для избежания конфликтов с ключевыми словами языка python, например:

__double_leading_underscore: изменяет имя атрибута класса, то есть в классе FooBar поле __boo становится _FooBar__boo.

__double_leading_and_trailing_underscore__ (двойное подчеркивание в начале и в конце имени): магические методы или атрибуты, которые находятся в пространствах имен, управляемых пользователем. Например, __init__, __import__ или __file__. Не изобретайте такие имена, используйте их только так, как написано в документации.

Предписания: соглашения по именованию

Имена, которых следует избегать

Никогда не используйте символы l (маленькая латинская буква «эль»), O (заглавная латинская буква «о») или I (заглавная латинская буква «ай») как однобуквенные идентификаторы.

В некоторых шрифтах эти символы неотличимы от цифры один и нуля. Если очень нужно l, пишите вместо неё заглавную L.

Имена модулей и пакетов

Модули должны иметь короткие имена, состоящие из маленьких букв. Можно использовать символы подчеркивания, если это улучшает читабельность. То же самое относится и к именам пакетов, однако в именах пакетов не рекомендуется использовать символ подчёркивания.

Так как имена модулей отображаются в имена файлов, а некоторые файловые системы являются нечувствительными к регистру символов и обрезают длинные имена, очень важно использовать достаточно короткие имена модулей — это не проблема в Unix, но, возможно, код окажется непереносимым в старые версии Windows, Mac, или DOS.

Когда модуль расширения, написанный на С или C++, имеет сопутствующий python-модуль (содержащий интерфейс высокого уровня), С/С++ модуль начинается с символа подчеркивания, например, _socket.

Имена классов

Имена классов должны обычно следовать соглашению CapWords.

Вместо этого могут использоваться соглашения для именования функций, если интерфейс документирован и используется в основном как функции.

Обратите внимание, что существуют отдельные соглашения о встроенных именах: большинство встроенных имен — одно слово (либо два слитно написанных слова), а соглашение CapWords используется только для именования исключений и встроенных констант.

Имена исключений

Так как исключения являются классами, к исключениями применяется стиль именования классов. Однако вы можете добавить Error в конце имени (если, конечно, исключение действительно является ошибкой).


Имена глобальных переменных

Будем надеяться, что глобальные переменные используются только внутри одного модуля. Руководствуйтесь теми же соглашениями, что и для имен функций.

Добавляйте в модули, которые написаны так, чтобы их использовали с помощью from M import *, механизм __all__, чтобы предотвратить экспортирование глобальных переменных. Или же, используйте старое соглашение, добавляя перед именами таких глобальных переменных один символ подчеркивания (которым вы можете обозначить те глобальные переменные, которые используются только внутри модуля).

Имена функций

Имена функций должны состоять из маленьких букв, а слова разделяться символами подчеркивания — это необходимо, чтобы увеличить читабельность.

Стиль mixedCase допускается в тех местах, где уже преобладает такой стиль, для сохранения обратной совместимости.

Аргументы функций и методов

Всегда используйте self в качестве первого аргумента метода экземпляра объекта.

Всегда используйте cls в качестве первого аргумента метода класса.

Если имя аргумента конфликтует с зарезервированным ключевым словом python, обычно лучше добавить в конец имени символ подчеркивания, чем исказить написание слова или использовать аббревиатуру. Таким образом, class_ лучше, чем clss. (Возможно, хорошим вариантом будет подобрать синоним).

Имена методов и переменных экземпляров классов

Используйте тот же стиль, что и для имен функций: имена должны состоять из маленьких букв, а слова разделяться символами подчеркивания.

Используйте один символ подчёркивания перед именем для непубличных методов и атрибутов.

Чтобы избежать конфликтов имен с подклассами, используйте два ведущих подчеркивания.

Python искажает эти имена: если класс Foo имеет атрибут с именем __a, он не может быть доступен как Foo.__a. (Настойчивый пользователь все еще может получить доступ, вызвав Foo._Foo__a.) Вообще, два ведущих подчеркивания должны использоваться только для того, чтобы избежать конфликтов имен с атрибутами классов, предназначенных для наследования.

Примечание: есть некоторые разногласия по поводу использования __ имена (см. ниже).

Константы

Константы обычно объявляются на уровне модуля и записываются только заглавными буквами, а слова разделяются символами подчеркивания. Например: MAX_OVERFLOW, TOTAL.

Проектирование наследования

Обязательно решите, каким должен быть метод класса или экземпляра класса (далее — атрибут) — публичный или непубличный. Если вы сомневаетесь, выберите непубличный атрибут. Потом будет проще сделать его публичным, чем наоборот.

Публичные атрибуты — это те, которые будут использовать другие программисты, и вы должны быть уверены в отсутствии обратной несовместимости. Непубличные атрибуты, в свою очередь, не предназначены для использования третьими лицами, поэтому вы можете не гарантировать, что не измените или не удалите их.

Мы не используем термин «приватный атрибут», потому что на самом деле в python таких не бывает.

Другой тип атрибутов классов принадлежит так называемому API подклассов (в других языках они часто называются protected). Некоторые классы проектируются так, чтобы от них наследовали другие классы, которые расширяют или модифицируют поведение базового класса. Когда вы проектируете такой класс, решите и явно укажите, какие атрибуты являются публичными, какие принадлежат API подклассов, а какие используются только базовым классом.

Теперь сформулируем рекомендации:

Открытые атрибуты не должны иметь в начале имени символа подчеркивания.

Если имя открытого атрибута конфликтует с ключевым словом языка, добавьте в конец имени один символ подчеркивания. Это более предпочтительно, чем аббревиатура или искажение написания (однако, у этого правила есть исключение — аргумента, который означает класс, и особенно первый аргумент метода класса (class method) должен иметь имя cls).

Назовите простые публичные атрибуты понятными именами и не пишите сложные методы доступа и изменения (accessor/mutator, get/set, — прим. перев.) Помните, что в python очень легко добавить их потом, если потребуется. В этом случае используйте свойства (properties), чтобы скрыть функциональную реализацию за синтаксисом доступа к атрибутам.

Примечание 1: Свойства (properties) работают только в классах нового стиля (в Python 3 все классы являются таковыми).

Примечание 2: Постарайтесь избавиться от побочных эффектов, связанным с функциональным поведением; впрочем, такие вещи, как кэширование, вполне допустимы.

Примечание 3: Избегайте использования вычислительно затратных операций, потому что из-за записи с помощью атрибутов создается впечатление, что доступ происходит (относительно) быстро.

Если вы планируете класс таким образом, чтобы от него наследовались другие классы, но не хотите, чтобы подклассы унаследовали некоторые атрибуты, добавьте в имена два символа подчеркивания в начало, и ни одного — в конец. Механизм изменения имен в python сработает так, что имя класса добавится к имени такого атрибута, что позволит избежать конфликта имен с атрибутами подклассов.

Примечание 1: Будьте внимательны: если подкласс будет иметь то же имя класса и имя атрибута, то вновь возникнет конфликт имен.

Примечание 2: Механизм изменения имен может затруднить отладку или работу с __getattr__(), однако он хорошо документирован и легко реализуется вручную.

Примечание 3: Не всем нравится этот механизм, поэтому старайтесь достичь компромисса между необходимостью избежать конфликта имен и возможностью доступа к этим атрибутам.

Общие рекомендации

Код должен быть написан так, чтобы не зависеть от разных реализаций языка (PyPy, Jython, IronPython, Pyrex, Psyco и пр.).

Например, не полагайтесь на эффективную реализацию в CPython конкатенации строк в выражениях типа a+=b или a=a+b. Такие инструкции выполняются значительно медленнее в Jython. В критичных к времени выполнения частях программы используйте ».join() — таким образом склеивание строк будет выполнено за линейное время независимо от реализации python.

Сравнения с None должны обязательно выполняться с использованием операторов is или is not, а не с помощью операторов сравнения. Кроме того, не пишите if x, если имеете в виду if x is not None — если, к примеру, при тестировании такая переменная может принять значение другого типа, отличного от None, но при приведении типов может получиться False!

При реализации методов сравнения, лучше всего реализовать все 6 операций сравнения (__eq__, __ne__, __lt__, __le__, __gt__, __ge__), чем полагаться на то, что другие программисты будут использовать только конкретный вид сравнения.

Для минимизации усилий можно воспользоваться декоратором functools.total_ordering() для реализации недостающих методов.

PEP 207 указывает, что интерпретатор может поменять y > х на х = х на х . Однако, лучше всего осуществить все шесть операций, чтобы не возникало путаницы в других местах.

Всегда используйте выражение def, а не присваивание лямбда-выражения к имени.

Наследуйте свой класс исключения от Exception, а не от BaseException. Прямое наследование от BaseException зарезервировано для исключений, которые не следует перехватывать.

Используйте цепочки исключений соответствующим образом. В Python 3, «raise X from Y» следует использовать для указания явной замены без потери отладочной информации.

Когда намеренно заменяется исключение (использование «raise X» в Python 2 или «raise X from None» в Python 3.3+), проследите, чтобы соответствующая информация передалась в новое исключение (такие, как сохранение имени атрибута при преобразовании KeyError в AttributeError или вложение текста исходного исключения в новом).

Когда вы генерируете исключение, пишите raise ValueError(‘message’) вместо старого синтаксиса raise ValueError, message.

Старая форма записи запрещена в python 3.

Такое использование предпочтительнее, потому что из-за скобок не нужно использовать символы для продолжения перенесенных строк, если эти строки длинные или если используется форматирование.

Когда код перехватывает исключения, перехватывайте конкретные ошибки вместо простого выражения except:.

К примеру, пишите вот так:

Простое написание «except:» также перехватит и SystemExit, и KeyboardInterrupt, что породит проблемы, например, сложнее будет завершить программу нажатием control+C. Если вы действительно собираетесь перехватить все исключения, пишите «except Exception:».

Хорошим правилом является ограничение использования «except:», кроме двух случаев:

  1. Если обработчик выводит пользователю всё о случившейся ошибке; по крайней мере, пользователь будет знать, что произошла ошибка.
  2. Если нужно выполнить некоторый код после перехвата исключения, а потом вновь «бросить» его для обработки где-то в другом месте. Обычно же лучше пользоваться конструкцией «try. finally».

При связывании перехваченных исключений с именем, предпочитайте явный синтаксис привязки, добавленный в Python 2.6:

Это единственный синтаксис, поддерживающийся в Python 3, который позволяет избежать проблем неоднозначности, связанных с более старым синтаксисом на основе запятой.

При перехвате ошибок операционной системы, предпочитайте использовать явную иерархию исключений, введенную в Python 3.3, вместо анализа значений errno.

Постарайтесь заключать в каждую конструкцию try. except минимум кода, чтобы легче отлавливать ошибки. Опять же, это позволяет избежать замаскированных ошибок.

Когда ресурс является локальным на участке кода, используйте выражение with для того, чтобы после выполнения он был очищен оперативно и надёжно.

Менеджеры контекста следует вызывать с помощью отдельной функции или метода, всякий раз, когда они делают что-то другое, чем получение и освобождение ресурсов. Например:

Последний пример не дает никакой информации, указывающей на то, что __enter__ и __exit__ делают что-то кроме закрытия соединения после транзакции. Быть явным важно в данном случае.

Используйте строковые методы вместо модуля string — они всегда быстрее и имеют тот же API для unicode-строк. Можно отказаться от этого правила, если необходима совместимость с версиями python младше 2.0.

В Python 3 остались только строковые методы.

Пользуйтесь ».startswith() и ».endswith() вместо обработки срезов строк для проверки суффиксов или префиксов.

startswith() и endswith() выглядят чище и порождают меньше ошибок. Например:

Сравнение типов объектов нужно делать с помощью isinstance(), а не прямым сравнением типов:

Когда вы проверяете, является ли объект строкой, обратите внимание на то, что строка может быть unicode-строкой. В python 2 у str и unicode есть общий базовый класс, поэтому вы можете написать:

Отметим, что в Python 3, unicode и basestring больше не существуют (есть только str) и bytes больше не является своего рода строкой (это последовательность целых чисел).

Для последовательностей (строк, списков, кортежей) используйте тот факт, что пустая последовательность есть false:

Не пользуйтесь строковыми константами, которые имеют важные пробелы в конце — они невидимы, а многие редакторы (а теперь и reindent.py) обрезают их.

Не сравнивайте логические типы с True и False с помощью ==:

Что такое код python

В этой статье собраны примеры небольших программ на языке программирования Python, демонстрирующих его синтаксис и некоторые из возможностей.

Нахождение 10 наиболее частых слов на web странице

Данный пример чисто демонстрационный, так как его можно значительно улучшить.

Примеры работы с последовательностями

Иллюстрируют особенности индексации элементов и срезов: при взятии среза нумеруются не сами элементы, а промежутки между ними.

Функции подобные range() поддерживают то же правило:

Реализация перегрузки функций

Это пример простой реализации поддержки перегрузки функций на Python. Она демонстрирует, как, используя уже имеющиеся в Python средства, можно обойти одно из ограничений базовой реализации. Поддерживается минимум возможностей (только фиксированное количество позиционных аргументов, нет именованных аргументов, нет приведения типов (например int -> float ) и т. п.), но работает достаточно быстро.

Управление контекстом выполнения

Следующий пример из PEP343 иллюстрирует применение оператора with для защиты блока кода от одновременного выполнения двумя потоками:

Генератор чисел Фибоначчи

Пример генератора чисел Фибоначчи и его использования:

Альтернативный синтаксис доступа к элементам словаря

Можно определить словарь, который в дополнение к обычному синтаксису доступа к значению по ключу d[key] может предоставлять синтаксически более наглядный доступ к атрибуту d.key в случае алфавитно-цифровых ключей:

Функтор с генерацией байтокода


Пример эффективной реализации функтора, основанный на генерации байтокода во время исполнения. Этот пример демонстрирует следующие возможности/особенности Python:

  • Возможность реализации специфических средств функционального программирования наработками, уже имеющимися в языке
  • Работать с байтокодом в Python достаточно просто
  • Зачастую генерация байтокода способна значительно ускорить исполнение.

Это только пример, он реализует всего одну операцию — сложение и имеет несколько других ограничений.

Код SlowFunctor можно посмотреть здесь.
Приведенные значения времени следует рассматривать только в сравнении друг с другом.
ipython — расширение интерпретатора Python для интерактивной работы.

Используя эту технику, можно создать полноценный функтор, добавив функции для других операций ( __sub__, __div__ и другие) и расширив его на случай нескольких входных функций с разными аргументами.

Транспонирование матрицы

Пример лаконичной реализации операции транспонирования матриц с использованием парадигмы функционального программирования.

Wikimedia Foundation . 2010 .

Смотреть что такое «Примеры программ на языке Python» в других словарях:

Python — У этого термина существуют и другие значения, см. Python (значения). Python Класс языка: му … Википедия

Список программного обеспечения, написанного на языке программирования Python — Python стабильный и распространённый язык. Он используется во многих проектах и в различных качествах: как основной язык программирования или для создания расширений и интеграции приложений. На Python реализовано большое количество проектов … Википедия

Функциональное программирование на Python — Функциональное программирование является одной из парадигм, поддерживаемых языком программирования Python. Основными предпосылками для полноценного функционального программирования в Python являются: функции высших порядков, развитые средства… … Википедия

Пайтон — Python Класс языка: функциональный, объектно ориентированный, императивный, аспектно ориентированный Тип исполнения: интерпретация байт кода, компиляция в MSIL, компиляция в байт код Java Появился в: 1990 г … Википедия

Функциональное программирование на Питоне — Функциональное программирование является одной из парадигм, поддерживаемых языком программирования Python. Основными предпосылками для полноценного функционального программирования в Python являются: функции высших порядков, развитые средства… … Википедия

Ассоциативный массив — (словарь) абстрактный тип данных (интерфейс к хранилищу данных), позволяющий хранить пары вида «(ключ, значение)» и поддерживающий операции добавления пары, а также поиска и удаления пары по ключу: INSERT(ключ, значение) FIND(ключ)… … Википедия

Oz (язык программирования) — Oz Семантика: функциональный, процедурный, декларативный, объектно ориентированный, вычисления с ограничениями, Н модели, параллельные вычисления Тип исполнения: компилируемый Появился в: 1991 Автор(ы): Gert Smolka his students Релиз … Википедия

Structured Text — (ST) язык программирования стандарта IEC61131 3. Предназначен для программирования промышленных контроллеров и операторских станций. Широко используется в SCADA/HMI/SoftLogic пакетах. По структуре ближе всего к языку программирования… … Википедия

Tcl — Запрос «TCL» перенаправляется сюда; о минидистрибутиве Linux см. Tiny Core Linux. Tcl Семантика: императивный … Википедия

Haskell — Класс языка: функциональный, ленивый, модульный Тип исполнения: компилируемый, интерпретируемый Появился в: 1990 … Википедия

Новые интересные функции в Python 3.8

В статье описывается улучшения и новый функционал добавленные в недавно выпущенную очередную версию Python 3.8.

Содержание

Выпущена новейшая версия Python! Python 3.8 был доступен в бета-версиях с лета 2020, а 14 октября 2020 года вышла первая официальная версия. Теперь мы все сможем поиграть с новым функционалом и воспользоваться последними улучшениями.

Илон Маск рекомендует:  @media в CSS

Что нового в Python 3.8? В официальной документация приведен хороший обзор новых функций. Тем не менее, эта статья более подробно расскажет о некоторых самых значительных изменениях и покажет, как вы сможете воспользоваться преимуществами Python 3.8.

В этой статье вы узнаете о:

  • Использование выражений присваивания для упрощения некоторых конструкций кода
  • Применение только позиционных аргументов в ваших собственных функциях
  • Задания более точных подсказок типов
  • Использование f-строк для более простой отладки

За некоторыми исключениями, Python 3.8 содержит множество небольших улучшений по сравнению с более ранними версиями. В конце статьи вы увидите многие из этих менее привлекающих внимание изменений, а также мы рассмотрим некоторые оптимизации, которые Python 3.8 делает быстрее, чем его предшественники. Наконец, вы получите несколько советов по обновлению до новой версии.

Морж в комнате: выражение присваивания

Самое большое изменение в Python 3.8 – это введение выражений присваивания. Они написаны с использованием новой записи (: =). Этого оператора часто называют оператор морж (walrus), так как он напоминает глаза и бивни моржа на боку.

Выражения присваивания позволяют вам присваивать и возвращать значение в одном выражении. Например, если вы хотите присвоить переменную и вывести ее значение, вы обычно делаете что-то вроде этого:

В Python 3.8 вам разрешено объединять эти два оператора в один, используя оператор walrus:

Выражение присваивания позволяет присвоить True walrus и сразу же вывести значение. Но имейте в виду, что оператор walrus не делает ничего такого чего нельзя было бы сделать без него. Он только делает некоторые конструкции более удобными, и иногда может более четко сообщать о намерениях вашего кода.

Один из примеров, демонстрирующий некоторые сильные стороны оператора walrus, – это циклы while, где вам нужно инициализировать и обновить переменную. Например, следующий код запрашивает ввод у пользователя, пока он не наберет quit:

Этот код не идеален. Вы повторяете оператор input() два раза, так как вам нужно каким-то образом получить current, прежде чем зайти в цикл. Лучшее решение – установить бесконечный цикл while и использовать break для остановки цикла:

Этот код эквивалентен приведенному выше, но избегает повторения и каким-то образом сохраняет строки в более логичном порядке. Если вы используете выражение присваивания, вы можете еще больше упростить этот цикл:

PEP 572 описывает более подробно выражения присваивания, включая некоторые обоснования для их введения в язык, а также дает несколько примеров того, как можно использовать оператор walrus.

Только позиционные аргументы

Встроенная функция float() может использоваться для преобразования текстовых строк и чисел в float объекты. Рассмотрим следующий пример:

Посмотрите внимательно на float(). Обратите внимание на косую черту (/) после параметра. Что это значит?

Примечание. Для более подробного обсуждения нотации / см. PEP 457 – Нотация только позиционных параметров.

Оказывается, что хотя один параметр float() называется x, вы не можете использовать его имя:

При использовании float() вам разрешено указывать аргументы только по позиции, а не по ключевому слову. До Python 3.8 такие позиционные аргументы были возможны только для встроенных функций. Не было простого способа указать, что аргументы должны быть только позиционными в ваших собственных функциях:

Можно было имитировать только позиционные аргументы, используя *args, но это менее гибко, менее читабельно и заставляет вас реализовать собственный анализ аргументов. В Python 3.8 вы можете использовать /, чтобы обозначить, что все аргументы перед ним должны быть указаны только позицией. Вы можете переписать incr(), чтобы принимать только позиционные аргументы:

Добавляя / после x, вы указываете, что x является позиционным аргументом. Вы можете комбинировать обычные аргументы с позиционными только, поместив обычные аргументы после косой черты:

В greet() косая черта помещается между name и greeting. Это означает, что name является позиционным аргументом, а greeting является обычным аргументом, который может передаваться либо по позиции, либо по ключевому слову.

На первый взгляд, позиционные аргументы могут показаться немного ограниченными и противоречащими мантре Python о важности читабельности. Вы, вероятно, обнаружите, что не так много случаев, когда позиционные аргументы улучшают ваш код.

Однако при правильных обстоятельствах позиционные аргументы могут дать вам некоторую гибкость при разработке функций. Во-первых, позиционные аргументы имеют смысл, когда у вас есть аргументы, которые имеют естественный порядок, но трудно дать хорошие, описательные имена.

Другое возможное преимущество использования позиционных аргументов состоит в том, что вы можете легче реорганизовать свои функции. В частности, вы можете изменить имя ваших параметров, не беспокоясь о том, что другой код зависит от этих имен.

Позиционные аргументы хорошо дополняют аргументы только с ключевыми словами. В любой версии Python 3 вы можете указать аргументы только для ключевых слов, используя звездочку (*). Любой аргумент после * должен быть указан с помощью ключевого слова:

celsius является аргументом только для ключевых слов, поэтому Python выдает ошибку, если вы пытаетесь указать его на основе позиции, без ключевого слова.

Вы можете комбинировать только позиционные, обычные и ключевые слова, указав их в этом порядке через / и *. В следующем примере text является позиционным аргументом, border является обычным аргументом со значением по умолчанию, а width является аргументом только для ключевого слова со значением по умолчанию:

Поскольку text только позиционный, то вы не можете использовать ключевое слово text:

border, с другой стороны, может быть указана как с ключевым словом, так и без него:

Наконец, width должна быть указана только с помощью ключевого слова:

Вы можете прочитать больше о позиционных аргументах в PEP 570.

Более точные подсказки для типов

На данный момент система данных Python достаточно развита. Однако в Python 3.8 были добавлены некоторые новые функции для типов, чтобы обеспечить более точную типизацию:

  • тип Literal
  • Типизированные словари
  • объекты Final
  • Protocols

Python поддерживает необязательные подсказки типов, обычно в виде аннотаций в вашем коде:

В этом примере вы говорите, что number должно быть числом с плавающей точкой, и функция double() также должна возвращать float. Тем не менее, Python рассматривает эти аннотации как подсказки. Они не применяются во время выполнения:

double() с радостью принимает в качестве аргумента слово «I’m not a float», хотя это и не число с плавающей точкой. Существуют библиотеки, которые могут использовать типы во время выполнения, но это не основной вариант использования системы типов Python.

Вместо этого подсказки типов позволяют статическим средствам проверки типов выполнять проверку типов вашего кода Python без фактического запуска ваших сценариев. Это напоминает компиляторы, улавливающие ошибки типов в других языках, таких как Java, Rust и Crystal. Кроме того, подсказки типа действуют как документация вашего кода, облегчая чтение, а также улучшая автозаполнение в вашей IDE.

Примечание. Доступно несколько средств проверки статического типа, в том числе Pyright, Pytype и Pyre. В этой статье вы будете использовать Mypy. Вы можете установить Mypy из PyPI, используя pip:

В некотором смысле Mypy является эталонной реализацией средства проверки типов для Python и разрабатывается в Dropbox под руководством Юкки Лехтасало. Так же создатель Python, Гвидо ван Россум, является частью команды Mypy.

Вы можете найти больше информации о подсказках типов в Python в исходном PEP 484, а также в Python Type Check (Руководство).

Было создано четыре новых PEP о проверке типов, которые были приняты и включены в Python 3.8. Вы рассмотрим короткие примеры для каждого из них.

PEP 586 вводит тип Literal . Literal немного особенный в том смысле, что он представляет одно или несколько конкретных значений. Одним из вариантов использования Literal является возможность точного добавления типов, когда строковые аргументы используются для описания конкретного поведения. Рассмотрим следующий пример:

Программа пройдет проверку статического типа, даже если «up» является недопустимым направлением. Средство проверки типов только проверяет, что «up» является строкой. В этом случае было бы точнее сказать, что направление должно быть либо литеральной строкой «horizontal», либо литеральной строкой «vertical». Используя Literal, вы можете сделать именно это:

Выставив допустимые значения direction для средства проверки типов, теперь вы будете предупреждены об ошибке:

Основной синтаксис Literal[
]
. Например, Literal [38] представляет буквальное значение 38. Вы можете выразить одно из нескольких литеральных значений, используя Union:

Поскольку это довольно распространенный вариант использования, вы можете (и, вероятно, должны) использовать вместо него более простую нотацию Literal[“horizontal”, “vertical”]. Если вы внимательно посмотрите на вывод Mypy, приведенный выше, то увидите, что он перевел простую запись в нотацию Union внутри.

Есть случаи, когда тип возвращаемого значения функции зависит от входных аргументов. Одним из примеров является open(), который может возвращать текстовую строку или байтовый массив в зависимости от значения mode. Это может быть решено путем перегрузки.

В следующем примере показан скелет калькулятора, который может возвращать ответ либо в виде обычных чисел (38), либо в виде римских цифр (XXXVIII):

Код имеет правильные подсказки типа: результат add() будет либо str, либо int. Однако часто этот код вызывается с литералом True или False в качестве значения to_roman, и в этом случае вы хотите, чтобы средство проверки типов точно определило, возвращается или str или int. Это можно сделать, используя Literal вместе с @overload:

Добавленные сигнатуры @overload помогут вашему контролеру типов выводить str или int в зависимости от литеральных значений to_roman. Обратите внимание, что (…) являются буквальной частью кода. Они заменяют тело функции в перегруженных сигнатурах.

В дополнение к Literal, PEP 591 представляет Final . Этот квалификатор указывает, что переменная или атрибут не должны быть переназначены или переопределены. Ниже приведена ошибка ввода:

Mypy выделит строку >

Кроме того, декоратор @final , можно применять к классам и методам. Классы, декорируемые @final, не могут быть разделены на подклассы, в то время как методы @final не могут быть переопределены подклассами:

Mypy пометит этот пример сообщением об ошибке Cannot inherit from final class “Base”. Чтобы узнать больше о Final и @final, см. PEP 591.

Третий PEP, допускающий более конкретные подсказки типов, – это PEP 589, который вводит TypedDict . Это можно использовать для указания типов для ключей и значений в словаре с использованием нотации, аналогичной типизированному NamedTuple .

Традиционно, словари были аннотированы с помощью Dict . Проблема заключается в том, что это разрешает только один тип для ключей и один тип для значений, что часто приводит к аннотациям, таким как Dict[str, Any]. В качестве примера рассмотрим словарь, который регистрирует информацию о версиях Python:

Значение, соответствующее version, является строкой, а release_year является целым числом. Это не может быть точно представлено с помощью Dict. С новым TypedDict вы можете сделать следующее:

Затем средство проверки типов сможет сделать вывод, что py38 [“version”] имеет тип str, а py38 [“release_year”] является int. Во время выполнения TypedDict является обычным dict, а подсказки типов игнорируются как обычно. Вы также можете использовать TypedDict исключительно в качестве аннотации:


Mypy сообщит вам, если какое-либо из ваших значений имеет неправильный тип, или если вы используете ключ, который не был объявлен. См. PEP 589 для большего количества примеров.

Mypy уже некоторое время поддерживает Protocols. Однако официальное принятие произошло только в мае 2020 года.

Протоколы – это способ формализовать поддержку Python утиного типа данных:

Когда я вижу птицу, которая ходит, как утка, и плавает, как утка, и крякает, как утка, я называю эту птицу уткой. (Источник)

Утиный тип позволяет, например, читать .name для любого объекта, имеющего атрибут .name, не заботясь о типе объекта. Это может показаться нелогичным для системы типов, чтобы поддержать это.

Например, вы можете определить протокол с именем Named, который может идентифицировать все объекты с атрибутом .name:

Здесь greet() принимает любой объект, если он определяет атрибут .name. См. PEP 544 и документацию Mypy для получения дополнительной информации о протоколах.

Более простая отладка с помощью f-строк

f-строки были введены в Python 3.6 и стали очень популярными. Они могут быть самой распространенной причиной поддержки библиотек Python только в версии 3.6 и более поздних. F-строка – это форматированный строковый литерал. Вы можете узнать его по ведущему символу f:

Когда вы используете f-строки, вы можете заключать переменные и даже выражения в фигурные скобки. Затем они будут оценены во время выполнения и включены в строку. Вы можете иметь несколько выражений в одной f-строке:

В последнем выражении вы также используете спецификатор формата. Спецификаторы формата отделяются от выражений двоеточием.

.2f означает, что область отформатирована как число с плавающей запятой с двумя десятичными знаками. Спецификаторы формата такие же, как и для .format (). См. официальную документацию для полного списка разрешенных спецификаторов формата.

В Python 3.8 вы можете использовать выражения присваивания внутри f-строк. Просто убедитесь, что выражение присваивания заключено в круглые скобки:

Однако настоящая новость в Python 3.8 – это новый спецификатор отладки. Теперь вы можете добавить = в конце выражения, и оно напечатает как выражение, так и его значение:

Это сокращенный вариант, который обычно будет наиболее полезен при интерактивной работе или добавлении операторов печати для отладки сценария. В более ранних версиях Python вам нужно было дважды прописать переменную или выражение, чтобы получить ту же информацию:

Вы можете добавить пробелы вокруг = и использовать спецификаторы формата как обычно:

Спецификатор формата >10 говорит, что имя должно быть выровнено по правому краю в строке из 10 символов. = работает и для более сложных выражений:

Руководящий совет Python

Технически руководство Python не должно заниматься разработкой языка. Тем не менее, Python 3.8 является первой версией Python, разработку которой не вел Гвидо ван Россума. Язык Python теперь регулируется руководящим советом, состоящим из пяти основных разработчиков:

Дорога к новой модели управления для Python была интересным исследованием самоорганизации. Гвидо ван Россум (Guido van Rossum) создал Python в начале 1990-х годов и с любовью получил звание «Пожизненный доброжелательный диктатор» (BDFL Benevolent Dictator for Life). На протяжении многих лет все больше и больше решений о языке Python принималось с помощью предложений по улучшению Python (PEP). Тем не менее, у Гвидо официально было последнее слово в любой новой языковой функции.

После долгой и продолжительной дискуссии о выражениях присваивания, Гвидо объявил в июле 2020 года, что уходит в отставку с поста BDFL (на этот раз по-настоящему). Он целенаправленно не назвал преемника. Вместо этого он попросил команду разработчиков ядра выяснить, как Python должен управляться в будущем.

К счастью, процесс PEP уже хорошо отработан, поэтому было естественно использовать PEP для обсуждения и принятия решения о новой модели управления. Осенью 2020 года было предложено несколько моделей, в том числе избрание нового BDFL (переименованного в Gracious Umpire, ответственного за принятие решений: GUIDO) или переход к модели сообщества, основанной на консенсусе и голосовании, без централизованного руководства. В декабре 2020 года модель руководящего совета была выбрана после голосования среди основных разработчиков.

Руководящий совет Python на PyCon 2020. Слева направо: Барри Варшава, Бретт Кэннон, Кэрол Виллинг, Гвидо ван Россум и Ник Коглан (Изображение: Geir Arne Hjelle)

Руководящий совет состоит из пяти членов сообщества Python, как указано выше. После каждого основного выпуска Python будут выборы нового руководящего совета. Другими словами, после выпуска Python 3.8 пройдут выборы.

Хотя это и открытые выборы, ожидается, что большинство, если не все, инаугурационного руководящего совета будут переизбраны. Руководящий совет обладает широкими полномочиями принимать решения о языке Python, но должен стремиться использовать эти полномочия как можно меньше.

Вы можете прочитать все о новой модели управления в PEP 13, в то время как процесс принятия решения о новой модели описан в PEP 8000. Для получения дополнительной информации см. PyCon 2020 Keynote и прослушайте Brett Cannon на Talk Python To Me и на The Changelog podcast. Вы можете следить за обновлениями в Руководящем совете через GitHub.

Другие довольно интересные функции

До сих пор вы видели заголовки новостей о том, что нового в Python 3.8. Тем не менее, есть много других изменений, которые тоже довольно крутые. В этом разделе вы познакомитесь с некоторыми из них.

importlib.metadata

В стандартной библиотеке Python 3.8 доступен один новый модуль: importlib.metadata. С помощью этого модуля вы можете получить доступ к информации об установленных пакетах в вашей установке Python. Вместе с сопутствующим модулем importlib.resources, importlib.metadata улучшает функциональность более старых pkg_resources.

Например, вы можете получить информацию о pip:

На данный момент установлена версия pip 19.2.3. metadata() предоставляет доступ к большей части информации, которую вы можете увидеть в PyPI. Например, вы можете видеть, что для этой версии pip требуется либо Python 2.7, либо Python 3.5 или выше. С помощью files() вы получите список всех файлов, которые составляют пакет pip. В этом случае существует почти 700 файлов.

files() возвращает список объектов Path . Это дает вам удобный способ просмотра исходного кода пакета, используя read_text(). В следующем примере выводится __init__.py из пакета realpython-reader:

Вы также можете получить доступ к зависимостям пакетов:

requires() перечисляет зависимости пакета. Вы можете видеть, что realpython-reader, например, использует feedparser в фоновом режиме для чтения и анализа потока статей.

В PyPI имеется резервный бэкпорт importlib.metadata, который работает в более ранних версиях Python. Вы можете установить его используя pip:

Вы можете использовать бэкпорт PyPI в своем коде следующим образом:

См. документацию для получения дополнительной информации о importlib.metadata.

Новые и улучшенные функции math и statistics

Python 3.8 вносит множество улучшений в существующие стандартные библиотечные пакеты и модули. math в стандартной библиотеке имеет несколько новых функций. math.prod() работает аналогично встроенной функции sum(), но для мультипликативных продуктов:

Два утверждения эквивалентны. prod() будет проще использовать, когда у вас уже есть множители, сохраненные в итерируемом объекте.

Еще одна новая функция – math.isqrt(). Вы можете использовать isqrt(), чтобы найти целую часть квадратных корней:

Квадратный корень из 9 равен 3. Вы можете видеть, что isqrt() возвращает целочисленный результат, тогда как math.sqrt() всегда возвращает float. Квадратный корень из 15 почти 3,9. Обратите внимание, что isqrt() усекает ответ до следующего целого числа, в данном случае 3.

Наконец, теперь вы можете проще работать с n-мерными точками и векторами в стандартной библиотеке. Вы можете найти расстояние между двумя точками с помощью math.dist() и длину вектора с помощью math.hypot():

Это облегчает работу с точками и векторами с использованием стандартной библиотеки. Однако, если вы будете делать много вычислений для точек или векторов, вам лучше работать с NumPy.

Модуль statistics также имеет несколько новых функций:

  • statistics.fmean() вычисляет среднее число float.
  • statistics.geometric_mean() вычисляет среднее геометрическое число float.
  • statistics.multimode() находит наиболее часто встречающиеся значения в последовательности.
  • statistics.quantiles() вычисляет точки разреза для разделения данных на n непрерывных интервалов с равной вероятностью.

В следующем примере показаны используемые функции:

В Python 3.8 появился новый класс statistics.NormalDist , который делает его более удобным для работы с нормальным гауссовым распределением.

Чтобы увидеть пример использования NormalDist, вы можете попробовать сравнить скорость новой statistics.fmean() и традиционной statistics.mean():

В этом примере мы используем timeit для измерения времени выполнения mean() и fmean(). Чтобы получить надежные результаты, мы позволяем timeit выполнять каждую функцию 100 раз и собираем 30 таких временных выборок для каждой функции. На основе этих примеров мы создаем два объекта NormalDist. Обратите внимание: если вы запускаете код самостоятельно, сбор различных временных примеров может занять до минуты.

NormalDist имеет много удобных атрибутов и методов. Смотрите документацию для полного списка. Изучив .mean и .stdev, вы увидите, что старый statistics.mean() выполняется за 0,826 ± 0,078 секунды, а новый statistics.fmean() тратит 0,0105 ± 0,0009 секунды. Другими словами, fmean() примерно в 80 раз быстрее для этих данных.

Илон Маск рекомендует:  Паралельная загрузка скрипта javascript и выполнение по onDomReady.

Если вам нужна более сложная статистика в Python, чем предлагает стандартная библиотека, посмотрите statsmodels и scipy.stats.

Предупреждения об опасном синтаксисе

В Python есть SyntaxWarning , которое может предупреждать о сомнительном синтаксисе, который обычно не является ошибкой синтаксиса SyntaxError. Python 3.8 добавляет несколько новых, которые могут помочь вам во время кодирования и отладки.

Разница между is и == может сбивать с толку. Последний проверяет наличие одинаковых значений, в то время как значение True является истинным, только если объекты совпадают. Python 3.8 попытается предупредить вас о случаях, когда вы должны использовать == вместо is:

Запятую легко пропустить, когда вы пишете длинный список, особенно при его вертикальном форматировании. Если забыть запятую в списке кортежей, появится сообщение об ошибке о том, что кортежи не могут быть вызваны. Python 3.8 дополнительно выдает предупреждение, указывающее на реальную проблему:

Предупреждение правильно идентифицирует пропущенную запятую как настоящего преступника.

Оптимизации

Для Python 3.8 сделано несколько оптимизаций. Некоторые заставляют код работать быстрее, другие уменьшают используемый объем памяти. Например, поиск полей в namedtuple значительно быстрее в Python 3.8 по сравнению с Python 3.7:

Вы можете видеть, что поиск .twitter в namedtuple на 30-40% быстрее в Python 3.8. Списки сохраняют некоторое пространство, когда они инициализируются из итераций с известной длиной. Это может сэкономить память:

В этом случае список использует примерно на 11% меньше памяти в Python 3.8 по сравнению с Python 3.7.

Другие оптимизации включают более высокую производительность в subprocess , более быстрое копирование файлов с помощью shutil , улучшенную производительность по умолчанию для pickle и более быстрые операции operator.itemgetter . Смотрите официальную документацию для полного списка оптимизаций.

Итак, стоит ли переходить на Python 3.8?

Давайте начнем с простого ответа. Если вы хотите опробовать какие-либо новые функции, которые вы видели здесь, вам нужно иметь возможность использовать Python 3.8. Такие инструменты, как pyenv и Anaconda, позволяют легко устанавливать несколько версий Python одновременно. Кроме того, вы можете запустить официальный контейнер Python 3.8 Docker.

Теперь для более сложных вопросов. Следует ли обновить производственную среду до Python 3.8? Должны ли вы сделать свой собственный проект зависимым от Python 3.8, чтобы воспользоваться новыми возможностями?

У вас должно быть очень мало проблем с выполнением кода Python 3.7 в Python 3.8. Поэтому обновление среды для работы с Python 3.8 довольно безопасно, и вы сможете воспользоваться преимуществами оптимизаций, сделанных в новой версии. Различные бета-версии Python 3.8 были доступны в течение нескольких месяцев, так что, надеюсь, большинство ошибок уже исправлено. Однако, если вы хотите быть консервативным, вы можете подождать до тех пор, пока выйдет первый выпуск поддержки (Python 3.8.1).

После того, как вы обновили свою среду, вы можете начать экспериментировать с функциями, которые есть только в Python 3.8, такими как выражения присваивания и позиционные аргументы. Однако вам следует помнить о том, зависят ли другие люди от вашего кода, поскольку это также заставит их обновить свою среду. Популярные библиотеки, вероятно, будут поддерживать Python 3.6 еще довольно долго.

См. Портирование на Python 3.8 для получения дополнительной информации о подготовке вашего кода для Python 3.8.

Десять основных советов кодирования для начинающих в Python

Главное меню » Язык программирования Python » Десять основных советов кодирования для начинающих в Python

Это привычка, которую вы также должны развивать, так как это помогает в быстром пересмотре концепций в обучении.

Таким образом, в этой статье мы делим список из десяти советов кодирования в Python для быстрой справки.

Для вашей информации, мы тщательно проверили каждый из советов по кодированию в Python, прежде чем добавить их к этому посту. И это только первый набор советов и трюков, которые мы делимся сегодня.

Советы по кодированию в Python – для начинающих и опытных.

1. Запуск скриптов Python.

На большинстве систем UNIX, вы можете запускать скрипты Python из командной строки следующим образом.

2. Запуск программы Python из интерпретатора Python.

Интерактивный интерпретатор Python очень прост в использовании. Вы можете попробовать свои первые шаги в программировании и использовать любую команду Python. Просто наберите команду в консоли Python, один за другим.

Консоль Python может быть запущена с помощью команды:

В этой статье, весь код, начиная с символа >>>, призван дать ответ на приглашение Python.

3. Используя функцию enumerate().

Функция enumerate() добавляет счетчик на циклический объект. Циклический объект имеет метод __iter__ , который возвращает цикл. Он может принимать последовательные индексы, начиная с нуля. И не поднимает IndexError когда индексы больше не действительны.

Типичный пример функции iterable() заключается в цикл по списку и отслеживать индекс. Для этого мы можем использовать переменный счетчик. Но Python дает нам более хороший синтаксис для этого с помощью функции iterable().

4. Тип данных SET.

Тип данных «SET» является своего рода коллекции. Она была частью Python, начиная с версии 2.4. Набор содержит неупорядоченную коллекцию уникальных и неизменяемых объектов. Это один из типов данных Python, который является реализацией из мира математики. Этот факт объясняет, почему множества в отличие от списков или tuples не может иметь несколько экземпляров одного и того же элемента.


Если вы хотите создать набор, просто используйте встроенную функцию set() с последовательностью или другой итерацию объекта.

Советы кодирования в Python – создать набор

Советы кодирования в Python – Добавить объекты в набор

5. Динамический ввод.

В Java, C ++ и других статически типизированных языках, вы должны указать тип данных возвращаемого значения функции, а также вид каждого аргумента функции. С другой стороны, Python является динамически типизированным языком. В Python, вы явно не указываете типы данных. На основе присвоенного значения, Python отслеживает тип данных внутренне. Еще одно хорошее определение динамической типизации, заключающееся в следующем.

“Имена связаны с объектами во время выполнения с помощью операторов присваивания. А можно прикрепить имя к объектам различных типов во время выполнения программы”.

В следующем примере показано, как функция может проверить свои аргументы. И делать разные вещи в зависимости от их типов.

Советы кодирования в Python – Динамическая типизация

6. Операторы == и =.

Python использует «==» для сравнения и «=» для задания. Python не поддерживает встроенное назначение. Таким образом, нет никаких шансов случайно присваиваивать значение, если вы хотите сравнить его.

7. Условные выражения.

Python позволяет условные выражения. Вот интуитивный способ написания условных выражений в Python. Пожалуйста, следуйте за приведенным ниже примером.

Советы кодирования в Python – Пример

8. Конкатенации строк.

Вы можете использовать «+» для конкатенации строк следующим образом.

Советы кодирования в Python – Пример

9. Способ __init__.

Метод __init__ вызывается вскоре после того, как создается класса объекта. Этот метод полезен для выполнения любой инициализации, которую вы планируете. Метод __init__ аналогично конструктору в C ++, C # или Java.

Советы кодирования в Python – Пример

Выход выше код будет выглядеть, как показано ниже.

Советы кодирования в Python – Вывод

10. Модули.

Чтобы сохранить свои программы управляемыми, как они растут, вы можете разбить их на несколько файлов. Python позволяет поместить несколько определений функций в файл и использовать их в качестве модуля. Вы можете импортировать эти модули в другие скрипты и программы. Эти файлы должны иметь расширение .py.

Определение модуля – my_function.py

Использование Модуля – Пример.

Мы надеемся, что вам понравились эти советы по кодированию в Python.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Функция Python main с примерами: __main__

Дата публикации: 2020-06-13

От автора: прежде чем мы углубимся в рассмотрения кодирования на Python, мы познакомимся с функцией Python main и ее важностью.

Рассмотрим следующий код:

Здесь у нас есть два фрагмента на вывод, один из которых определен в функции main — «Hello World», а другой — «Guru99». Когда вы запускаете функцию def main():

Выводится только «Guru99″

а не код «Hello World».

Это потому, что мы не объявили функцию вызова «if__name __ ==» __main__».

Когда интерпретатор Python читает исходный файл, он выполняет весь найденный в нем код.

Когда Python запускает «исходный файл» в качестве основной программы, он устанавливает для специальной переменной (__name__) значение («__main__»).

Когда вы выполняете функцию main, она читает оператор «if» и проверяет, действительно ли __name__ равно __main__.

В Python «if__name __ ==« __main__ » позволяет запускать файлы Python как многократно используемые модули или как отдельные программы.

Как и C, Python использует == для сравнения, а = для назначения. Интерпретатор Python использует функцию main двумя способами:

импорт: __name __ = имя файла модуля — если оператор == false, скрипт в __main__ не будет выполнен

прямой запуск: __ name __ = __ main__ — если Statement == True, скрипт в _main_ будет выполнен

поэтому, когда код выполняется, он проверяет имя модуля с помощью «if».

Важно, чтобы после определения функции main вы вызывали код с помощью if__name __ == «__main__», а затем запускали код, только тогда вы получите вывод «hello world!» в консоли программирования, как показано ниже.

Примечание. Убедитесь, что после определения функции main вы задали некоторый отступ и не объявляете код прямо под функцией def main(): в противном случае она выдаст ошибку отступа.

Для чего нужен язык программирования Python

Какие компании используют язык в работе, сложно ли его учить и насколько востребованы программисты на Python.

Python — это скриптовый язык программирования. Он универсален, поэтому подходит для решения разнообразных задач и многих платформ, начиная с iOS и Android и заканчивая серверными ОС. Он используется в веб-разработке, создании десктопных и мобильных приложений, программировании игр, а также в аналитике и машинном обучении.

Это интерпретируемый язык — он не компилируется, то есть до запуска представляет из себя обычный текстовый файл. Программировать можно практически на всех платформах, язык хорошо спроектирован и логичен.

Разработка на нем в разы быстрее, потому что приходится писать меньше кода, чем на Java, С и других языках, — он отлично подходит новичкам.

Для чего используется Python

Python подходит для разработки любых проектов на разных платформах. Его можно встретить в вебе, на мобильных устройствах, в приложениях, решениях, связанных с машинным обучением (нейросети и искусственный интеллект), и даже в качестве встроенной системы.

Веб-разработка

Чаще всего Python используется в веб-разработке. Для работы с ним используются фреймворки: Pyramid, Pylons, TurboGears, Flask, CherryPy и — самый популярный — Django.

Существуют и движки для создания сайтов на Python:

Часто язык используют для написания парсеров, которые собирают информацию в интернете.

Программы

Хоть Python и не компилируется, его можно использовать для создания десктопных программ. Вот небольшой список того, что было разработано на Python:

  • GIMP — визуальный редактор в ОС Linux;
  • Ubuntu Software Center — центр приложений в ОС Ubuntu (один из дистрибутивов Linux);
  • BitTorrent до 6 версии (позже программу переписали на C++, но сети peer-to-peer все еще работают на Python) — менеджер торрент-закачек;
  • Blender — программа для создания 3D-графики.

Также некоторые программы частично написаны на Python, об этом читайте дальше.

Мобильные приложения

Мобильная разработка на Python менее популярна. Для устройств на Android чаще пишут на Java, C#, C++ или Kotlin, а для iOS — на Swift или Objective-C. На Python обычно программируют серверную часть приложения. Например, клиент Instagram для iOS написан на Objective-C, а сервер — на Python.

Многие компьютерные игры были полностью или частично написаны на Python. Существует заблуждение, что этот язык не подходит для серьезных проектов, но на самом деле он использовался в разработке таких хитов, как:

  • Battlefield 2;
  • World of Tanks;
  • Civilization IV;
  • EVE Online.

Несмотря на то что в Python есть возможность реализации пользовательского интерфейса и работы с графикой, чаще всего язык используют для написания скриптов — например, взаимодействия персонажей, запуска сцен, а также обработки событий.

Встроенные системы (embedded systems)

На Python часто разрабатывают встроенные системы для различных устройств. Например, его используют в Raspberry Pi (компьютер размером с карту памяти) и в «Сбербанке» для управления банкоматами.

Еще проекты со встроенной системой на Python:

  • The Owl Embedded Python System;
  • Python Embedded Tools;
  • Embedded Python.

Язык применяется во встроенных системах станков с ЧПУ, средствах автоматического регулирования (температуры, расхода жидкостей, давления и так далее) и телекоммуникационном оборудовании.

Создание скриптов

Python можно использовать для написания плагинов и скриптов к уже готовым программам. Например, для реализации игровой логики. Также он может использоваться для создания дополнительных модулей.

Часто на Python пишут скрипты, которые встраивают в программы на других языках, чтобы автоматизировать какие-либо задачи.

Где используется Python

Python широко распространен во многих сферах, от системного администрирования до Data Science.

Системное администрирование

Python часто используется системными администраторами для автоматизации задач. Он простой, мощный и поддерживает специальные пакеты, которые повышают его эффективность. И, самое главное, он по умолчанию установлен на все серверы с ОС Linux.

Благодаря лаконичности Python можно быстро прочесть код и найти слабые места. Форматирование в языке — часть синтаксиса.

Научные исследования

В Python есть несколько библиотек, которые можно использовать для проведения исследований и вычислений:

  • SciPy — библиотека с научными инструментами;
  • NumPy — расширение, которое добавляет поддержку матриц и многомерных массивов, а также математические функции для работы с ними;
  • Matplotlib — библиотека для работы с 2D- и 3D-графикой.

Благодаря библиотекам и простоте освоения языка многие ученые выбирают Python — особенно он популярен у математиков и физиков.

Data Science


Python — один из самых используемых в Data Science языков. На нем пишут алгоритмы программ с машинным обучением и аналитические приложения. С помощью него обслуживают хранилища данных и облачные сервисы.

Также с его помощью можно парсить (scrapping) данные из интернета. Например, в Google Python применяют для индексации сайтов.

Какие компании используют Python

В основном Python используется стартапами и компаниями, которые разрабатывают крупные проекты. Вот лишь часть огромного списка:

  • Alphabet использует язык для скраппинга в поисковике Google и реализации сервиса YouTube;
  • One Laptop Per Child — для разработки интерфейса и модели функционирования;
  • BitTorrent — для реализации сетей peer-to-peer;
  • Агентство национальной безопасности США — для шифрования и анализа разведданных;
  • ESRI — как инструмент настройки геоинформационных программ;
  • Maya — для создания мультипликации;
  • Pixar, Industrial Light & Magic — для создания анимационных фильмов;
  • Intel, Cisco, HP, Seagate, Qualcomm и IBM — для тестирования;
  • JPMorgan Chase, UBS, Getco и Citadel — для прогнозирования финансового рынка;
  • NASA, Los Alamos, Fermilab, JPL — для научных вычислений;
  • iRobot — для разработки коммерческих роботизированных устройств;
  • IronPort — для реализации почтового сервера.

Кроме того, его используют в Instagram, Positive Technologies, Houdini, Facebook, Yahoo, Red Hat, Dropbox, Pinterest, Quora, Mail.ru и «Яндексе».

Недостатки языка Python

Несмотря на все достоинства, у языка есть и недостатки. Программы на нем считаются одними из самых медленных. Для сравнения: приложения для iOS на Swift работают в 8,7 раз быстрее, чем приложения на Python.

У Python существует реализация PyPy, которая по скорости близка к Java, но в ней есть не все возможности оригинального языка. Python не подходит для задач, требующих большого объема памяти, — их лучше решать вставками на C или C++.

Другим недостатком является сильная зависимость языка от системных библиотек, из-за чего затрудняется перенос на другие системы. Для этих целей существует инструмент Virtualenv, но и он с недостатками: избыточность полных методов изоляции, костыли, дублирование системных библиотек.

Еще одна проблема — в том, что Global Interpreter Lock (GIL) не позволяет выполнять несколько потоков Python одновременно в реализации CPython. Однако GIL можно отключить на какое-то время, как это сделано в математическом пакете NumPy.

Трудоустройство и средняя зарплата Python-разработчика

По данным с hh.ru на начало 2020 года, в России

4500 вакансий для Python-разработчиков, из них

2000 в Москве и

700 в Санкт-Петербурге. Это меньше, чем по запросу «Java» (

5500), но больше, чем по запросу «PHP» (

3600), — можно заметить тенденцию, что Python медленно забирает позиции PHP с рынка веб-разработки. Хотя на PHP все еще написано около 80% всех сайтов в интернете.

Минимальная зарплата по России начинается с 70 000 рублей, а в Москве — с 80 000 рублей. В основном ищут опытных разработчиков, junior-специалисты менее востребованы.

На должность стажера или младшего специалиста можно устроиться только в крупную компанию, а расположены они в больших городах типа Москвы и Санкт-Петербурга. Из-за этого новичкам крайне сложно устроиться в регионах — остается искать заказы на фрилансе.

Если вас заинтересовал Python, пройдите курс от Skillbox — на нем вы не только получите необходимые знания и навыки, но и сможете составить привлекательное резюме и добавить дипломную работу в портфолио.

Что такое код python

Синтаксис языка Python во многом похож на синтаксис таких языков, как Perl, C и Java, но вместе с этим имеет ряд отличий от этих языков программирования. В этой статье мы рассмотрим необходимые основы этого языка программирования.

Первая программа на Python:

Во-первых, следует отметить, что на Python вы можете программировать в двух режимах: интерактивном и скриптовом

Интерактивный режим программирования:

Запуск в командной строке python без передачи в качестве аргумента названия файла запустит интерпретатор Python:

Введите следующий текст после строки приглашения Python и нажмите Enter:

Если вы все сделали правильно, то интерпретатор выдаст строку:

Если вы получили ошибку — удостоверьтесь, что правильно переписали код и что используете интерпретатор версии 2.х (для версии 3.х следует использовать команду print («Hello, Python»))

Скриптовый режим программирования:

Запуск в командной строке python с названием файла (он еще называется скрипт) в качестве параметра, начнет выполнение кода, записанного в данном файле. После завершения выполнения скрипта, интерпретатор будет снова неактивен.

Давайте, создадим простую программу-скрипт на Python. Откройте любой текстовый редактор (Sublime, Notepad++, gedit. ), создайте в нем файл с именем test и расширением .py (все файлы, содержащие код на Python должны иметь расширение .py) и запишите в этот файл уже знакомый нам код и сохраните файл:

(Предполагается, что интерпретатор Python у вас задан в переменной PATH, то есть вы находясь в любой директории можете ввести python для запуска интерпретатора)

После этого введите следующую строку в командной строке и нажмите Enter:

Идентификаторы в Python:

Идентификаторы в Python это имена используемые для обозначения переменной, функции, класса, модуля или другого объекта. Идентификатор должен начинаться с буквы (от a до Z) или со знака подчеркивания (_), после которых может идти произвольное количество букв, знаков подчеркивания и чисел (от 0 до 9).

В Python недопустимо использование знаков препинания или специальных символов, таких как @, $ или % в качестве идентификаторов. Кроме того, Python чуствителен к регистру, то есть cat и Cat это два разных имени.

В Python существует следующая договоренность для названия идентификаторов:

  • Имена классов начинаются с большой буквы, все остальные идентификаторы — с маленькой.
  • Использования знака подчеркивания в качестве первого символа идентификатора означает, что данный идентификатор является частным (закрытым от использования вне класса).
  • Если идентификатор начинается и заканчивается двумя знаками подчеркивания (например, __init__ ) это означает, что он является специальным именем, определенным внутри языка.

Зарезервированые (ключевые) слова в Python:

В данной таблице собраны все ключевые слова Python.

Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL