Dos fn 1bh дать информацию fat (текущий диск)

Содержание

MS-DOS для программиста

3.1. Получение справочной информации

В этом разделе мы опишем наиболее нужные, на наш взгляд, функции MS-DOS, предназначенные для получения справочной информации о состоянии дисковой системы.

Текущий диск и текущий каталог

В любой момент времени программа может определить текущий диск или текущий каталог, а также сменить текущий диск или текущий каталог. Для этого она должна использовать специальные функции прерывания INT 21h .

Для того чтобы узнать номер текущего диска, программа может воспользоваться функцией 19h:

На входе: AH 19h
На выходе: AL Номер текущего устройства НГМД или НМД (0 — А:, 1 — В:, и т. д.).

Для установки текущего диска можно использовать функцию 0Eh, которая имеет следующие параметры вызова:

На входе: AH 0Eh
DL Номер устройства НГМД или НМД (0 — А:, 1 — В:, и т. д.)
На выходе: AL Общее количество дисковых устройств в системе. Эта величина соответствует параметру LASTDRIVE из файла CONFIG.SYS

Для того чтобы узнать текущий каталог, вы можете воспользоваться функцией 47h:

На входе: AH 47h
DL Номер устройства НГМД или НМД (0 — текущий, 1 — А:, 2 — В:, и т. д.)
DS:SI Адрес буфера для записи пути текущего каталога
На выходе: AX Код ошибки, если установлен флаг переноса CF

Буфер должен иметь размер не менее 64 байт. Функция 47h возвращает текущий каталог в формате ASCIIZ (то есть строку, закрытую двоичным нулем, например: «path\dirname»,0) без символа, обозначающего диск. Если текущим является корневой каталог, регистровая пара DS:SI будет указывать на нулевую строку (состоящую из одного двоичного нуля).

Функция 3Bh предназначена для установки текущего каталога:

На входе: AH 3Bh
DL Номер устройства НГМД или НМД (0 — текущий, 1 — А:, 2 — В:, и т. д.)
DS:DX Адрес буфера, содержащего путь к каталогу, который должен стать текущим
На выходе: AX Код ошибки, если установлен флаг переноса CF

Буфер может иметь максимальный размер 64 байт. Он должен содержать путь в формате ASCIIZ. Строка не должна содержать символ, обозначающий диск. Если текущим должен стать корневой каталог, строка должна состоять только из одного двоичного нуля.

Определение размера кластера и сектора

Функции MS-DOS могут помочь вам в получении информации, необходимой для организации доступа к диску на уровне секторов и кластеров. При этом вы будете избавлены от необходимости читать в память и анализировать содержимое загрузочного сектора логического диска.

Информация о таблице размещения файлов FAT для текущего диска может быть получена с помощью функции 1Bh прерывания INT 21h , имеющего следующие параметры вызова:

На входе: AH 1Bh
На выходе: DS:BX Адрес первого байта FAT . Это байт идентификации среды носителя данных, соответствует байту media в блоке параметров BIOS
DX Общее количество кластеров на диске
AL Количество секторов в одном кластере
CX Количество байт в одном секторе

Дополнительно эта функция возвращает общее количество кластеров на диске, размер кластера в секторах и размер сектора в байтах.

Для старых версий MS-DOS регистровая пара DS:BX указывала на FAT , считанный в память. Более поздние версии операционной системы могут содержать по этому адресу только часть таблицы размещения файлов .

Для получения аналогичной информации не о текущем, а о любом диске, используйте функцию 1Ch. Эта функция полностью аналогична предыдущей, за исключением того, что в регистре DL должен быть указан номер НГМД или НМД: 0 — текущий, 1 — А:, 2 — В: и т. д.

Определение размера свободного пространства

Если вас интересует размер свободного места на диске, вы можете его узнать с помощью функции 36h:

На входе: AH 36h
DL Номер устройства НГМД или НМД (0 — текущий, 1 — А:, 2 — В:, и т. д.)
На выходе: AX Количество секторов в кластере или 0FFFFh, если был задан неправильный номер устройства
BX Количество свободных кластеров на диске
CX Количество байт в одном секторе
DX Общее количество кластеров на диске

Эта функция возвращает в регистре AX число 0FFFFh, если вы неправильно указали номер устройства.

Блок управления устройством DDCB

При обсуждении векторной таблицы связи в предыдущем томе «Библиотеки системного программиста» мы рассказывали о блоках управления устройствами DDCB . Поле dev_cb векторной таблицы связи содержит дальний адрес цепочки этих блоков.

Для получения адреса блока DDCB можно воспользоваться недокументированной функцией 32h:

На входе: AH 32h
DL Номер устройства НГМД или НМД (0 — текущий, 1 — А:, 2 — В:, и т. д.)
На выходе: AL 0, если был задан правильный номер устройства;
0FFh, если был задан неправильный номер устройства
DS:BX Адрес блока DDCB

Для получения адреса блока DDCB текущего диска можно также воспользоваться недокументированной функцией 1Fh, которая имеет формат, аналогичный функции 32h, за исключением того, что для нее не надо задавать номер устройства в регистре DL.

Флаг прерывания

С помощью функции 33h программа может проверить или установить флаг прерывания при помощи комбинации клавиш и, кроме того, узнать номер диска, с которого выполнялась загрузка операционной системы:

На входе: AH 33h
AL Код операции:
0 — Проверить текущее состояние флага прерывания при помощи комбинации клавиш ;
1 — Установить флаг прерывания при помощи комбинации клавиш ;
5 — Определить номер диска, который был использован для загрузки операционной системы
DL Значение флага прерывания при помощи комбинации клавиш операции с кодом 1:0 — запретить прерывание,1 — разрешить прерывание
На выходе: DL Текущее состояние флага прерывания при помощи комбинации клавиш для операции с кодом 0; Номер диска, использованного для загрузки операционной системы для операции 5 (1 — А:, 2 — В:, и т. д.)

Сведения о диске, который был использован для загрузки операционной системы, могут понадобиться вам, например, для поиска файла командного интерпретатора.

Состояние флага прерывания при помощи комбинации клавиш влияет на возможность прервать выполнение программы. Если прерывание запрещено, MS-DOS проверяет эту комбинацию клавиш только при вызове функций стандартного ввода/вывода на консоль, принтер и последовательный порт. Если же прерывание разрешено, указанная комбинация клавиш проверяется и при вызове других функций MS-DOS. Если пользователь нажал комбинацию клавиш , операционная система выполняет прерывание INT 23h , которое завершает работу текущей программы.

Адрес области DTA

Функция 2Fh возвращает в регистровой паре ES:BX адрес текущей области DTA (Disk Transfer Area ), которая используется при поиске файлов в каталогах. Этот адрес необходим резидентным программам, о чем мы говорили в предыдущем томе «Библиотеки системного программиста».

Флаг проверки записи

Функция 54h позволяет программе узнать текущее состояние флага проверки записи информации на диск. В регистре AL эта функция возвращает текущее состояние флага.

Если содержимое регистра равно 1, после записи сектора операционная система считывает его для проверки. Разумеется, такая проверка снижает скорость работы программы. Если после вызова функции регистр AL содержит 0, проверка записи не выполняется.

Для установки флага проверки записи можно использовать функцию 2Eh. Перед вызовом функции в регистр AL необходимо занести новое значение флага проверки: 0 — проверка не нужна; 1 — должна выполняться проверка записанной информации.

Функции библиотеки Borland C++

Стандартная библиотека Borland C++ содержит несколько функций, облегчающих получение справочной информации о состоянии дисковой системы.

_dos_getdiskfree

Функция _dos_getdiskfree использует функцию 36h для получения информации о диске. Файл dos.h содержит такое описание этой функции:

Параметр drive задает номер используемого устройства: 0 — текущий, 1 — А:, и т. д.

Информация возвращается в структуре diskfree_t, которая определена также в файле dos.h:

Поля этой структуры описаны ниже:

Поле Описание
unsigned total_clusters Общее количество кластеров на диске
unsigned avail_clusters Количество свободных кластеров
unsigned sectors_per_cluster Количество секторов, занимаемых одним кластером
unsigned bytes_per_sector Размер сектора в байтах

_dos_getdrive и _dos_setdrive

Для получения номера текущего диска и для установки номера текущего диска можно использовать, соответственно, функции _dos_getdrive и _dos_setdrive .

Функция _dos_getdrive имеет следующий прототип:

Она пользуется функцией 19h для получения номера текущего диска, который записывается по адресу, задаваемому параметром drive. Значение 1 соответствует диску А:, 2 — В:, и т. д.

Функция _dos_setdrive предназначена для установки текущего диска и может быть использована для определения общего числа дисков в системе:

Параметр drive определяет текущий диск (1 — А:, и т. д.). В переменную, адрес которой передается через второй параметр, функция записывает общее количество логических дисков, установленных в системе. Функция _dos_setdrive использует функцию 0Eh прерывания INT 21h .

Программа DISKINF2

Для иллюстрации способов использования функций _dos_getdrive , _dos_setdrive и _dos_getdiskfree мы составили программу DISKINF2 (листинг 3.1).

Листинг 3.1. Файл diskinf2\diskinf2.cpp

Исследование файловых систем. FAT. Глава 1.

Начинаю готовить новый цикл статей, посвященных исследованию файловых систем.

И начну я с наиболее простой (для разогрева) файловой системы FAT12/16.

Вначале немного истории. Файловая система FAT (расшифровывается никак не иначе, как File Allocation Table) разработана Биллом Гейтсом (основатель Microsoft corp.) и Марком МакДональдом в 1977 году и изначально использовалась в ОС 86-DOS. Для сохранения переносимости программ из операционной системы CP/M в 86-DOS, в ней сохранились ранее принятые ограничения на длину имени файла и используемые символы. Позднее, ОС 86-DOS была куплена Microsoft и стала прообразом для ОС MS-DOS 1.0, увидевшей свет в августе 1981 года.

Файловая система FAT была предназначена для работы с гибкими дисками размером менее 1 Mb, в начале даже не поддерживала жесткие диски. В настоящее время файловая система FAT поддерживает разделы и файлы размером до 2 Gb.

Используемое программное обеспечение.

Для просмотра 16-ричного дампа диска и анализа всех параметров здесь и далее буду использовать утилиту WinHEX, мощный редактор. Обо всех функциях буду рассказывать по мере повествования. Так как этот софт я сам пока ещё не знаю, но планирую узнать. Итак, главное окно программы:

Структуру файловой системы FAT можно условно представить в виде таблицы.

Структура файловой системы FAT:

Нулевой сектор, называемый также загрузочным (Boot), содержит таблицу с параметрами диска и начальный загрузчик ОС. Первые 3 байта сектора содержат команду перехода JMP на начало загрузчика: либо байт 0E9h и 1 байт короткого смещения, после которых следует команда NOP (код 90h), либо байт 0EBh и два байта длинного смещения, которое используется, если загрузчик расположен в зарезервированной области.

Что из себя представляет загрузчик?

Загрузчик – короткая программа, загружающая ОС или только её ядро; так же он может являться менеджером загрузки (средством для выбора загружаемых операционных систем).

Далее расположено поле из 8 байт, содержащее текстовый идентификатор версии ОС.

Далее располагается таблица параметров диска, позволяющая вычислить правильный физический адрес на диске по данному номеру логического сектора.

Важно: байты читаются в обратном порядке!

Это мы уже увидели. Теперь немного расскажу, как нужно ориентироваться в WinHEX и вообще в 16-ричном дампе.

Смешение – это сдвиг от начала исследуемой области. После каждого 16-ричного числа ставится символ h (hex) что означает, что число 16-ричное. Вот краткий хелп, как ориентироваться в дампе:

Байт – это пара смежных символов 16-ричного алфавита. Слово – 2 байта, иначе говоря WORD. Двойное слово – 4 байта (DWORD). Поиск байта по смещению – это сложение смещения по строке и по столбцу. Например, ищем байт по смещению A5h. Для этого ищем по вертикали 000000A0, а по горизонтали откладываем 5. На пересечении будет находиться байт 46h [1]. Точно так же для примера я нашёл байт по смещению 2Dh [2]. Нужно привыкать к такому поиску, потому что будем часто перемещаться на произвольное смещение.

Смещение Длина Назначение
0Bh 2 BytesPerSector – количество байт в секторе, обычно равно 512 (200h)
0Dh 1 SectorPerCluster – количество секторов в кластере
0Eh 2 ReservedSectors – количество зарезервированных секторов
10h 1 NumberOfFATs – количество FAT таблиц
11h 2 RootEntries – максимальное число 32-байтных элементов корневого каталога
13h 2 TotalSectors – общее число секторов на томе. 0000h означает, что диск большого объема (> 32 Mb, поэтому число задается DWORD по смещению 20h, параметр BigTotSects
15h 1 MediaDescriptor – дескриптор носителя (то же,что и в первом байте FAT таблицы)
16h 2 SectorPerFat – число секторов в одной таблице FAT
18h 2 SectorPerTrack – число секторов на треке
1Ah 2 Heads – число головок
1Ch 4 HiddenSectors – число скрытых секторов
20h 4 BigTotalSectors – число секторов (для раздела >32 Mb)
24h 1 PhysicalDiskNumber – физический номер устройства, номер присваивается в процессе форматирования (80h – первый десткий диск в системе)
25h 1 CurrentHead – зарезервировано
26h 1 Signature – сигнатура расширенного загрузчика (29h)
27h 4 VolumeSerialNumber – серийный номер тома (устанавливается при форматировании)
2Bh 11 VolumeLabel – метка тома (строка символов)
36h 8 SystemID – символьный код идентификатора файловой системы, например FAT16.
3Eh 448 Область кода загрузчика
1FEh 2 BootSignature – сигнатура 55AAh – конец загрузочного сектора

1. Количество байт в секторе

Итак, смещение 0Bh, длина – два байта.Мы видим там значения 00h 02h. Напоминаю, что у нас тут обратный порядок байт, то есть читаем с конца. 02h 00h = 0200h. Переводя в десятичное – 512. Кстати, в опциях рекомендую включить View -> Show -> Data Interperter. А в опциях Options -> Data Interpreter включить 8 bit (unsigned), 16 bit (unsigned), 32 bit (unsigned), Assembler opcodes, Digit Grouping. Тогда в плавающем окошке будет отображаться как у меня. Ставим курсор на первое число, и, поскольку у нас 2 байта – смотрим значение в поле 16 bit (для длины 1 байт смотрим 8 bit, для длины 4, dword, смотрим 32 бит, очень удобно.

Итак, переводим 0200h в десятичное число. 0200h = 512.

И действительно, на флешке у нас размер сектора 512 байт.

2. Количество секторов в кластере

Находим смещение 0Dh, так как длина поля 1 байт, смотрим значение 8 bit в Data Interpreter. Оно равно 64. Верно, 0Dh = 64 (dec).

Отсюда можно легко вычислить количество байт в кластере. Первое число умножаем на второе.

Количество байт в кластере = 512 * 64 = 32 768.

3. Число зарезервированных секторов

Согласно таблице, открываем смещение 0Eh и читаем 2 байта.

Значение равно 0002h, что в переводе на десятичные равно так же 2. Значит два сектора зарезервированы под загрузчик. Размер сектора – 512 байт, следовательно зарезервировано 2 * 512 = 1024 байта.

4. Количество копий FAT.

Я пометил это на предыдущем скриншоте, легко увидеть, что судя по значению байта по смещению 10h, используется 2 копии FAT.

5. Максимальное число 32-байтных элементов корневого каталога

Считываем два байта по смещению 11h и видим, сколько может уместиться 32-байтных элементов в корневом каталоге. И количество их равно 512. Что это значит – разберём немного позже.

6. Общее число секторов на томе.

Следующие два байта по смещению 13h – общее количество секторов. Для дисков, объем которых превышает 32 Mb, эти два байта заполнены нулями, и реальное количество секторов указывается по смещению 20h в четырёх байтах. Об этом скажу чуть ниже.

7. Дескриптор носителя

Этот дескриптор содержится в первом байте FAT-таблицы. В байте по смещению 15h мы видим значение F8. Забегая вперёд я хочу привести скрин FAT-таблицы, чтобы не быть голословным.

Некоторые параметры я пропущу, ввиду их очевидности. Итак, идём дальше.

8. Общее число секторов.

Для разделов > 32 Mb у нас находится по смещению 20h и занимает 4 байта.

Там мы видим последовательность байт: 80 B0 3B 00. Читаем их в обратном порядке 00 3B B0 80, переводим это число в десятичный вид: 3911808. Это число показывает, сколько секторов у нас на разделе. Умножаем на размер сектора в байт (см. пункт 1) и получаем 3911808 * 512 = 2 002 845 696 байт. В общем флешка на 2 Gb.

В калькуляторе преобразовывать числа из систем счисления не сложно. Запускаем калькулятор, Вид->Инженерный. Переключаем режим на Hex (16-ричные числа), вводим наше число 3BB080.

Затем переключаем режим на Dec (десятичные) и видим уже преобразованное число в десятичные.

Конец загрузчика.

Сигнатура конца бутового раздела – последовательность байт 55AAh – увидите её внизу. Показывает, что загрузочный сектор закончился. Эта сигнатура присутствует во всех файловых системах, поэтому можно легко идентифицировать конец загрузочного сектора.

DOS Fn 35H: дать вектор прерывания

Читайте также:

  1. N-МЕРНОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО».
  2. X1, X2, … , Xn – вектора множества X
  3. Аннулирующий многочлен вектора, пространства
  4. Базис и координаты вектора.
  5. Базис системы векторов. Координаты вектора в данном базисе. Разложение вектора по базису — существование и единственность.
  6. Базис. Координаты вектора в базисе
  7. Базис. Координаты вектора в базисе
  8. Базис. Розкладання вектора по базису
  9. В векторной графике
  10. В векторной форме
  11. В этой формуле тензор устанавливает соответствие в 4-пространстве между векторными полями и .

Выход

Вход

DOS Fn 34H: адрес статуса реентерабельности DOS

Выход

Вход

  • AH = 33H
  • AL = 0 чтобы опросить текущий статус контроля Ctrl-Break
  • AL = 1 чтобы установить статус контроля Ctrl-Break
  • DL = требуемый статус (0=OFF, 1=ON) (только при AL=1)
  • DL = текущий статус (0=OFF, 1=ON)

Описание:

если AL=0, в DL возвращается текущий статус контроля Ctrl-Break. если AL=1, в DL возвращается новый текущий статус. когда статус ON, DOS проверяет на Ctrl-Break с консоли для большинства функций (исключая 06H и 07H). при обнаружении, выполняется INT 23H (если оно не перехватывется, то это снимает процесс). когда статус OFF, DOS проверяет на Ctrl-Break лишь при операциях стандартного в/в, стандартной печати и стандартных операциях AUX.

  • AH = 34H НЕТ В ДОКУМЕНТАЦИИ
  • ES:BX = адрес флага активности DOS

Описание:

Эту недокументированную функцию использует PRINT (фоновый процессор печатного спулинга) в момент его установки, так что он может позднее определить, можно ли использовать файловые функции DOS.

При возврате из этой функции ES:BX содержит адрес внутреннего флага DOS, указывающего, выполняется ли в данный момент какая-либо функция DOS. когда спулеру PRINT требуется открыть файл (или использовать какую-либо функцию DOS), он проверяет этот флаг. если ES:[BX] содержит не 0, фоновая программа (TSR, либо popup) НЕ ДОЛЖНА использовать никаких функций DOS.

Резидентные popup-программы часто активизируются по прерыванию от таймера или клавиатуры. так как это может произойти в любой момент, не исключено, что в этот момент будет выполняться какая-либо функция DOS. если теперь popup вызовет функцию DOS, это разрушит стек DOS и, вероятно, приведет к катастрофической ошибке. Путем проверки этого флага popup может определить, возможны ли вызовы функций DOS.

Это, однако, осложняется тем фактом, что COMMAND.COM и некоторые другие программы проводят большую часть времени, запросив ввод с клавиатуры через функцию 0aH (дать строку). таким образом, флаг почти всегда взведен, и на службу DOS наложено табу.

Вы можете выйти из положения, перехватывая INT 21H и отслеживая вызовы функции 0aH. когда приходит такой запрос, не выполняйте его немедленно. Вместо этого организуйте цикл, в котором с некоторой задержкой вызывайте функцию 0bH (дать статус ввода). Циклите, пока не заметите, что нажата клавиша. после этого можно выйти из цикла и вызвать функцию 0aH. Понятно, что при таком способе всегда существует окно времени, в котором проснувшийся popup может без боязни использовать функции DOS. можно также перехватывать INT 28H, если вы любите рисковать.

Предупреждение:

Эта функция не документирована, и опираться на нее рискованно. большинство popup-программ перехватывают INT 21H и отслеживают статус DOS индивидуально (ибо им и так приходится отслеживать 0aH).

| следующая лекция ==>
DOS Fn 33H: установить/опросить статус Ctrl-Break | DOS Fn 40H: писать в файл через описатель

Дата добавления: 2014-01-20 ; Просмотров: 399 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Программирование в среде однозадачной операционной системы

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«ПЕНЗЕНСКАЯ ГОСУДАРСТВЕННАЯ ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ

Е.В. Грачева

Системное программное обеспечение

Персональных ЭВМ

доктор технических наук, пофессор

зав.кафедрой «Вычислительные машины и системы»

доктор технических наук, пофессор

кафедры «Информационно-вычислительные системы»

Пензенского государственного университета

Грачева Е.В.

Системное программное обеспечение персональных ЭВМ:

Учебнле пособие /Е.В. Грачева – Пенза

Учебное пособие подготовлено на кафедре «Вычислительные машины и системы»

Пензенской государственной технологической академиии и предназначено для студентов высших учебных заведений,обучающихся поспециальности 230101.

Программирование в операционной среде

Операционной средой называется набор функций ОС, сервисов и правила обращения к ним. Поскольку каждая операционная система имеет свой набор функций и правил обращения к ним, программирование в операционной среде каждой ОС должно рассматриваться отдельно [1].

Программирование в среде однозадачной операционной системы

Программы для MS DOS могут быть одного из двух форматов: COM или EXE.

Программы типа COM не могут быть размером более 64 Кб и состоят только из одного сегмента – сегмента кода.

Размер программы типа EXE может превышать 64 кб.

В современных операционных средах приложения пользуются системными вызовами, число которых превышает 2000, в то время как в MS-DOS подобных функций гораздо меньше.

Главным входом большинства функций DOS служит прерывание, вызываемое с помощью команды INT 21h. Параметры функциям DOS передаются через регистры микропроцессора: AX (AH и AL), BX, CX, DX; регистровые пары DS:DX и ES:BX используются в основном при передаче адреса ячейки памяти. Через эти же регистры возвращаются результат работы функции DOS, кроме того могут быть установлены флаги в регистре флагов.

Как и любая операционная система, DOS загружает и выполняет программы. При загрузке программы в начале отводимого для нее блока памяти (для СОМ-программ это вся свободная на данный момент память) создается структура данных PSP (префикс программного сегмента) размером 256 байт (100h). Затем DOS создает копию текущего окружения для загружаемой программы, помещает полный путь и имя программы в конец окружения, заполняет поля PSP следующим образом:

+00h: слово – CDh 20h – команда INT 20h. Если СОМ-программа завершается командой RETN, управление передается на эту команду.

+02h: слово – сегментный адрес первого байта после области памяти, выделенной для программы

+04h: байт – не используется DOS

+05h: 5 байт – 9Ah F0h FEh 1Dh F0h – команда CALL FAR на абсолютный адрес 000C0h, записанная так, чтобы второй и третий байты составляли слово, равное размеру первого сегмента для СОМ-файлов (в этом примере FEF0h). Введено для совместимости с командой СР/М CALL 5.

+0Ah: 4 байта – адрес обработчика INT 22h (выход из программы)

+0Eh: 4 байта – адрес обработчика INT 23h (обработчик нажатия Ctrl-Break).

+12h: 4 байта – адрес обработчика INT 24h (обработчик критических ошибок)

+16h: слово – сегментный адрес PSP процесса, из которого был запущен текущий.

+18h: 20 байт – JFT – список открытых идентификаторов, один байт на идентификатор, FFh – конец списка.

+2Ch: слово – сегментный адрес копии окружения для процесса.

+2Eh: 2 слова – SS:SP процесса при последнем вызове INT 21h.

+32h: слово – число элементов JFT (по умолчанию 20).

+34h: 4 байта – дальний адрес JFT (по умолчанию PSP:0018).

+38h: 4 байта – дальний адрес предыдущего PSP.

+3Ch: байт – флаг, указывающий, что консоль находится в состоянии ввода 2-байтного символа.

+3Dh: байт – флаг, устанавливаемый функцией В711h прерывания 2Fh (при следующем вызове INT 21h для работы с файлом имя файла будет замечено на полное).

+3Eh: слово – не используется в DOS.

+40h: слово – версия DOS, которую вернет функция DOS 30h (DOS 5.0+).

+42h: 12 байт – не используется в DOS.

+50h: 2 байта – CDh 21h – команда INT 21h.

+54h: 7 байт – область для расширения первого FCB (FCB, FileControlBlok — это метод работы с файлами, являющийся рудиментом от ранних версий DOS’а. При его использовании можно работать только с файлами в текущем каталоге, причем даже нет возможности сменить каталог (точнее, даже понятия «каталог» в момент создания этих функций вообще не было). Современные программы эти функции не используют. MS-DOS обеспечивает две технологии обслуживания файлов. Первая была разработана при создании версий 1.Х. Эта технология основана на использовании структур данных, называемых блоками управления файлом (FCB). В то время подавляющее большинство компьютеров работало под управлением операционной системы CPM. Блоки FCB обеспечивали совместимость файлов MS-DOS с файлами этой системы. При разработке MS-DOS версий 2.Х, когда была предложена иерархическая структура организации файлов, была разработана вторая технология их обслуживания. Она основана на использовании ссылок на управляющую запись файла и не требует организации FCB. После того, как эта технология была опробована на операционной системе UNIX, она получила широкое распространение.).

+5Ch: 16 байт – первый FCB, заполняемый из первого аргумента командной строки.

+6Ch: 16 байт – второй FCB, заполняемый из второго аргумента командной строки.

+7Ch: 4 байта – не используется в DOS.

+80h: 128 байт – командная строка и область DTA по умолчанию.

Затем DOS записывает программу в память, начиная с адреса PSP:0100h.

Если загружается ЕХЕ-программа, использующая дальние процедуры или сегменты данных, DOS модифицирует эти команды так, чтобы используемые в них сегментные адреса соответствовали сегментным адресам, которые получили эти процедуры и сегменты данных при загрузке программы в память.

При запуске СОМ-программы регистры устанавливаются следующим образом:

AL = FFh, если первый параметр командной строки содержит неправильное имя диска (например, z:/something), иначе – 00h.

АН = FFh, если второй параметр содержит неправильное имя диска, иначе 00h.

CS = DS = ES = SS = сегментный адрес PSP.

SP = адрес последнего слова в сегменте (обычно FFFEh; меньше, если не хватает памяти).

При запуске ЕХЕ-программы регистры SS:SP устанавливаются в соответствии с сегментом стека, определенным в программе, затем в любом случае в стек помещается слово 0000h и выполняется переход на начало программы (PSP:0100h для СОМ, собственная точка входа для ЕХЕ).

Все эти действия выполняет одна функция DOS – DOS 4Bh – загрузить и выполнить программу. В качестве параметров этой функции передаются:

AL = 00h – загрузить и выполнить;

AL = 01h – загрузить и не выполнять;

DS:DX – адрес ASCIZ-строки с полным именем программы
ES:BX – адрес блока параметров ЕРВ:

+00h: слово – сегментный адрес окружения, которое будет скопировано для нового процесса (или 0, если используется текущее окружение)
+02h: 4 байта – адрес командной строки для нового процесса
+06h: 4 байта – адрес первого FCB для нового процесса
+0Ah: 4 байта – адрес второго FCB для нового процесса
+0Eh: 4 байта – здесь будет записан SS:SP нового процесса после его завершения (только для AL = 01)
+12h: 4 байта – здесь будет записан CS:IP (точка входа) нового процесса после его завершения (только для AL = 01)

AL = 03h – загрузить как оверлей;
DS:DX – адрес ASCIZ-строки с полным именем программы
ES:BX – адрес блока параметров:

+00h: слово – сегментный адрес для загрузки оверлея
+02h: слово – число, которое будет использовано в командах, использующих непосредственные сегментные адреса, – обычно то же самое число, что и в предыдущем поле. 0 для СОМ-файлов

AL = 05h – подготовиться к выполнению (используется в ОС MS DOS начиная с версии 5.0 и выше)
DS:DX – адрес следующей структуры:

+00h: слово – 00h
+02h: слово:

бит 0 – программа – ЕХЕ
бит 1 – программа – оверлей

+04h: 4 байта – адрес ASCIZ-строки с именем новой программы
+08h: слово – сегментный адрес PSP новой программы
+0Ah: 4 байта – точка входа новой программы
+0Eh: 4 байта – размер программы, включая PSP

CF = 0, если операция выполнена, ВХ и DX модифицируются,
CF = 1, если произошла ошибка, АХ = код ошибки (2 – файл не найден, 5 – доступ к файлу запрещен, 8 – не хватает памяти, 0Ah – неправильное окружение, 0Bh – неправильный формат).

Как уже отмечалось, прерывание INT 21h (сервис DOS) служит главным входом большинства функций DOS. Программа, запрашивающая сервис DOS, должна подготовить всю необходимую информацию в регистрах и управляющих блоках, указать в регистре AH номер желаемой функции DOS и затем вызвать прерывание INT 21H.

В таблице 1 приведены функции прерывания INT 21h.

Таблица 1 -Функции прерывания INT21h

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10034 — | 7499 — или читать все.

Чтение DBR больших тома формата DOS Boot Record в FAT32 тома

Номер функции Название Входные данные Выходные данные Описание
Функции ввода/вывода данных
01H Ввод с клавиатуры AH = 01H AL = символ, полученный из стандартного ввода Считывает (ожидает) символ со стандартного входного устройства. Отображает этот символ на стандартное выходное устройство (эхо). При распознавании Ctrl-Break выполняется INT 23H. Замечание: Ввод расширенных клавиш ASCII (F1-F12, pgup, курсор и т.п.) требует двух обращений к этой функции. Первый вызов возвращает AL=0. Второй вызов возвращает в AL расширенный код ASCII.
02H Вывод на дисплей AH = 02H DL = символ, выводимый на стандартный вывод Посылает символ из DL на стандартный вывод. Обрабатывает символ Backspace (ASCII 8), перемещая курсор влево на одну позицию и оставляя его в новой позиции. При обнаружении Ctrl-Break выполняется INT 23H.
03H Вспомогательный ввод AH = 03H AL = символ, полученный со стандартного вспомогательного устр-ва Считывает (ожидает) символ со стандартного вспомогательного устройства, COM1 или AUX и возвращает этот символ в AL. Замечание: Ввод не буферизуется и должен опрашиваться (не управляется прерываниями). При запуске DOS порт AUX (COM1) инициализируется так: 2400 бод, без проверки на четность, 1 стоп-бит, 8-битовые слова. Команда DOS MODE используется для установки иных характеристик.
04H Вспомогательный вывод AH = 04H DL = символ, записываемый на стандартное вспомогательное устр-во Посылает символ в DL на стандартное вспомогательное устройство, COM1 или AUX.
05H Вывод на принтер AH = 05H DL = символ, записываемый на стандартный принтер Посылает символ в DL на стандартное устройство принтера, обычно LPT1. Замечание: Команда DOS «MODE» может перенаправить этот вывод в последовательный порт.
06H Консольн. ввод-вывод AH = 06H DL = символ (от 0 до 0feh), посылаемый на стандартный вывод DL = 0ffh запрос ввода со стандартного ввода ZF = Сброшен (NZ), если символ готов при запросе ввода При DL = 0ffh выполняет ввод с консоли «без ожидания», возвращая взведенный флаг нуля (ZF), если на консоли нет готового символа. Если символ готов, сбрасывает флаг ZF (NZ) и возвращает считанный символ в AL. Если DL не равен 0ffh, то DL направляется на стандартный вывод. Замечание: Не проверяет Ctrl-Break. Вызывайте дважды для расширенного ASCII.
07H Нефильтрующий консольный ввод без эха AH = 07H AL = символ, полученный через стандартный ввод Считывает (ожидает) символ со стандартного входного устройства и возвращает этот символ в AL. Не фильтрует: Не проверяет на Ctrl-Break, backspace и т.п. Замечания Вызывайте дважды для ввода расширенного символа ASCII. Используйте функцию 0bh для проверки статуса (если не хотите ожидать нажатия клавиши).
08H Консольный ввод без эха AH = 08H AL = символ, полученный через стандартный ввод Считывает (ожидает) символ со стандартного входного устройства и возвращает этот символ в AL. При обнаружении Ctrl-Break выполняется прерывание INT 23H. Замечание: Вызывайте дважды для ввода расширенного символа ASCII.
09H Выдать строку на дисплей AH = 09H DS:DX = адрес строки, заканчивающейся символом ‘$’ (ASCII 24H) Строка, исключая завершающий ее символ ‘$’, посылается на стандартный вывод. Символы Backspace обрабатываются как в функции 02H Display Char. Обычно, чтобы перейти на новую строку, включают в текст пару CR/LF (ASCII 0dh и ASCII 0ah). Строки, содержащие ‘$’, можно выдать через 40H Write Handle (BX=0).
0ah Ввод строки в буфер AH = 0ah DS:DX = адрес входного буфера (смотри ниже) Буфер содержит ввод, заканчивающийся символом CR (ASCII 0dh) При входе буфер по адресу DS:DX должен быть оформлен так:
Max * * * *

Где max – максимальная допустимая длина ввода (от 1 до 254)

При выходе буфер заполнен следующим образом:

Max Len T E X T 0dh

Где len– действительная длина данных без завершающего CR (здесь — 04H). Символы считываются со стандартного ввода вплоть до CR (ASCII 0dh) или до достижения длины MAX-1. Если достигнут MAX-1, включается консольный звонок для каждого очередного символа, пока не будет введен возврат каретки CR (нажатие Enter).

Второй байт буфера заполняется действительной длиной введенной строки, не считая завершающего CR. Последний символ в буфере — всегда CR (который не засчитан в байте длины). Символы в буфере (включая LEN) в момент вызова используются как «шаблон». В процессе ввода действительны обычные клавиши редактирования: Esc выдает «\» и начинает с начала, F3 выдает буфер до конца шаблона, F5 выдает «@» и сохраняет текущую строку как шаблон, и т.д. Большинство расширенных кодов ASCII игнорируются. При распознавании Ctrl-Break выполняется прерывание INT 23H (буфер остается неизменным).

0bh Проверить статус ввода AH = 0bh AL = 0ffh, если символ доступен со стандартного ввода Проверяет состояние стандартного ввода. При распознавании Ctrl-Break выполняется INT 23H. Замечание: используйте перед функциями 01H 07H и 08H, чтобы избежать ожидания нажатия клавиши. Эта функция дает простой неразрушающий способ проверки Ctrl-Break в процессе длинных вычислений или другой обработки, обычно не требующей ввода. Это позволяет вам снимать счет по нажатию Ctrl-Break.
0ch Ввод с очисткой AH = 0ch AL = номер функции ввода DOS (01H, 06H, 07H, 08H или 0ah) Очищает буфер опережающего ввода стандартного ввода, а затем вызывает функцию ввода, указанную в AL. Это заставляет систему ожидать ввод очередного символа. Следующие значения допустимы в AL: 01H ввод с клавиатуры 06H ввод с консоли 07H Нефильтрующий без эха 08H ввод без эха 0ah буферизованный ввод
Операции с файлами
3ch Создать файл через описатель (дескриптор) AH = 3ch DS:DX = адрес строки ASCIIZ с именем файла CX = атрибут файла AX = код ошибки если CF установлен и описатель файла если ошибки нет DS:DX указывает на строку ASCIIZ в формате: «d:\путь\имяфайла»,0. Если диск и/или путь опущены, они принимаются по умолчанию. Файл создается в указанном (или умалчиваемом) оглавлении Файл открывается в режиме доступа чтение/запись Вы должны сохранить описатель (дескриптор, handle) для последующих операций. Если файл уже существует: При открытии файл усекается до нулевой длины Если атрибут файла — только чтение, открытие отвергается (атрибут можно изменить функцией 43H изменить атрибут) CONFIG.SYS специфицирует число доступных описателей в системе Используйте функцию 5bh создать Новый файл, если вы не хотите перекрывать (усекать) существующий файл.
3dh Открыть описатель файла AH = 3dh DS:DX = адрес строки ASCIIZ с именем файла AL = режим открытия AX = код ошибки если CF установлен и описатель файла если нет ошибки. DS:DX указывает на строку ASCIIZ в формате: «d:\путь\имяфайла»,0. Если диск и/или путь опущены, они принимаются по умолчанию. Файл должен существовать. См. Функцию 3ch (создать файл). Файл открывается в выбранном режиме доступа / режиме открытия для совместимости с DOS 2.x и избежания сетевых режимов, задавайте: AL = 0 чтобы открыть для чтения AL = 1 чтобы открыть для записи AL = 2 чтобы открыть для чтения и записи Указатель чтения/записи устанавливается в 0. См. 42H (LSEEK) Вы должны сохранить описатель (handle) для последующих операций Разделение файлов должно быть активизировано (команда DOS SHARE), если запрашивается открытие в одном из режимов разделения. CONFIG.SYS специфицирует число доступных описателей файлов.
3eh Закрыть описатель файла AH = 3eh BX = описатель файла AX = код ошибки если CF установлен BX содержит описатель файла (handle), возвращенный при открытии. Файл, представленный этим описателем, закрывается, его буфера сбрасываются, и оглавление обновляется корректными размером, временем и датой. Из-за нехватки описателей файлов (максимум 20, по умолчанию 8), вам может понадобиться закрыть часть умалчиваемых описателей, как, например, описатель 3 (стандартный AUX).
3fh Читать файл через описатель AH = 3fh BX = описатель файла DS:DX = адрес буфера для чтения данных CX = число считываемых байт AX = код ошибки если CF установлен или число действительно прочитанных байт CX байт данных считываются из файла или устройства с описателем, указанным в BX. Данные читаются с текущей позиции указателя чтения/записи файла и помещаются в буфер вызывающей программы, адресуемый через DS:DX. Используйте функцию 42H LSEEK, чтобы установить указатель файла, если необходимо (OPEN сбрасывает указатель в 0). Модифицирует указатель чтения/записи файла, подготавливая его к последующим операциям чтения или записи. Вы должны всегда сравнивать возвращаемое значение AX (число прочитанных байт) с CX (запрошенное число байт): Если AX = CX, (и CF сброшен) — чтение было корректным без ошибок Если AX = 0, достигнут конец файла (EOF) Если AX При чтении с устройства — входная строка имеет длину AX байт При чтении из файла — в процессе чтения достигнут EOF Замечания: Эта функция превосходит сложные и неудобные FCB-функции. Она эффективно сочетает произвольный и последовательный доступ, позволяя пользователю выполнять свое собственное блокирование. Удобно использовать эту функцию для чтения стандартных описателей, таких как описатели стандартного в/в, взамен многочисленных буферизующих и посимвольных FCB-функций ввода. Когда вы читаете с устройства, AX возвращает длину считанной строки с учетом завершающего возврата каретки CR (ASCII 0dh).
40H Писать в файл через описатель AH = 40H BX = описатель файла DS:DX = адрес буфера, содержащего записываемые данные CX = число записываемых байт AX = код ошибки если CF установлен AL = число реально считанных байт (лучший тест для ошибок) CX байт данных записывается в файл или на устройство с описателем, заданным в BX. Данные берутся из буфера, адресуемого через DS:DX. Данные записываются, начиная с текущей позиции указателя чтения/записи файла. Используйте функцию 42H LSEEK, чтобы установить указатель файла, если необходимо (OPEN сбрасывает указатель в 0). Обновляет указатель чтения/записи файла, чтобы подготовиться к последующим операциям последовательного чтения или записи. Вы должны всегда сравнивать возвращаемое значение AX (число записанных байт) с CX (запрошенное число байт для записи). Если AX = CX, запись была успешной Если AX Замечание: Эта функция превосходит сложные и неудобные FCB-функции. Она эффективно сочетает произвольный и последовательный доступ, позволяя пользователю осуществлять собственное блокирование. Удобно использовать эту функцию для вывода на умалчиваемые устройства, такие как стандартный вывод, взамен использования различных функций вывода текста.
42H Установить указатель файла – LSEEK AH = 42H BX = описатель файла CX:DX = на сколько передвинуть указатель: (CX 65536) + DX AL = 0 переместить к началу файла + CX:DX AL = 1 переместить к текущей позиции + CX:DX AL = 2 переместить к концу файла + CX:DX AX = код ошибки если CF установлен DX:AX = новая позиция указателя файла (если нет ошибки) Перемещает логический указатель чтения/записи к нужному адресу. Очередная операция чтения или записи начнется с этого адреса. Замечание: Вызов с AL=2, CX=0, DX=0 возвращает длину файла в DX:AX. DX здесь старшее значащее слово: действительная длина (DX 65536) + AX.
Операции с файловой системой
0dh Сброс диска AH = 0dh Сбрасывает (пишет на диск) все файловые буфера. Если размер файла изменился, такой файл должен быть предварительно закрыт (при помощи функций 10H или 3eh).
0eh Установить текущий диск DOS AH = 0eh DL = номер диска (0=A, 1=B и т.д.), который становится текущим AL = общее число дисководов в системе Диск, указанный в DL, становится текущим (умалчиваемым) в DOS. Проверка: используйте функцию 19H «дать текущий» для проверки. В регистре AL возвращается число дисководов всех типов, включая твердые диски и «логические» диски (как B: в 1-floppy системе).
19H Дать текущий диск DOS AH = 19H AL = номер текущего умалчиваемого диска (0=A, 1=B, и т.д.) Возвращает номер дисковода текущего умалчиваемого диска DOS.
1bh Дать информацию FAT (текущий диск) AH = 1bh DS:BX = адрес байта FAT > Возвращает информацию о размере и типе умалчиваемого диска. Размер диска в байтах = (DX*AL*CX). Ищите свободную память функциями 36h Disk Free или 32h Disk Info. Версии: DOS 1.x держит FAT в памяти и возвращает DS:BX => FAT. DOS 2.0+ может держать в памяти лишь порцию всей FAT. Предупреждение: Эта функция изменяет содержимое регистра DS.
1ch Дать информацию FAT (любой диск) AH = 1ch DL = номер диска (0=текущий, 1=A, и т.д.) DS:BX = адрес байта FAT > Аналогична функции 1bh Get FAT Cur, с той разницей, что регистр DL указывает диск, для которого вы хотите получить информацию. Версии: Недоступна для DOS 1.x.
32H Дать информацию DOS о диске AH = 32H DL = номер диска (0=текущий, 1=A, и т.д.) AL = 0 если DL задавал корректный диск FF = 0ffh если диск задан неверно DS:BX = адрес блока информации диска для запрошенного устройства Возвращает блок информации, представляющей интерес для приложений и утилит, выполняющих доступ к диску, поддерживаемый драйверами устройств, на уровне секторов. Некоторые дисководы (особенно незагружаемые) функционируют исключительно через свои драйверы устройств. Такие диски могут содержать неверную информацию в корневой записи и таблице разделов, что делает очень трудным определение, например, размера корневого оглавления, числа таблиц FAT, и т.п. Блок информации диска содержит все данные такого рода в хорошо форматированной структуре. Это может быть единственным способом определить адрес драйвера устройства. Предупреждение: Изменяет сегментный регистр DS. Эта недокументированная функция может измениться в будущих версиях.
36H Дать свободную память диска AH = 36H DL = номер диска (0=текущий, 1=A, и т.д.) AX = 0ffffh, если AL содержал неверный номер диска или число секторов на кластер, если нет ошибок. BX = доступных кластеров. CX = байт на сектор. DX = всего кластеров на диске. Возвращает данные для подсчета общей и доступной дисковой памяти. Если в AX возвращено 0ffffh, значит, вы задали неверный диск. Иначе, свободная память в байтах = (AX*BX*CX) всего памяти в байтах = (AX*CX*DX)
39H Создать новое оглавление — MKDIR AH = 39H DS:DX = адрес строки ASCIIZ с именем оглавления AX = код ошибки если CF установлен DS:DX указывает на строку ASCIIZ в формате: «d:\путь\имяоглавл»,0 если диск и/или корневой путь опущены, то принимаются по умолчанию. Подоглавление создается и связывается с существующим деревом. Если флаг CF установлен при возврате, то AX содержит код ошибки, и оглавление не создается.
3ah Удалить оглавление – RMDIR AH = 3ah DS:DX = адрес строки ASCIIZ с именем оглавления AX = код ошибки если CF установлен DS:DX указывает на строку ASCIIZ в формате: «d:\путь\имяоглавл»,0. Если диск и/или корневой путь опущены, то принимаются по умолчанию. Подоглавление удаляется из структуры оглавления. Если флаг CF установлен при возврате, то AX содержит код ошибки, и оглавление не удаляется. Замечание: Оглавление не должно содержать файлов и подоглавлений и не должно быть связано возможными ограничениями DOS (например, не должно быть задействовано в активных командах JOIN или SUBST).
3bh Установить умалчиваемое оглавление DOS – CHDIR AH = 3bh DS:DX = адрес строки ASCIIZ с именем оглавления AX = код ошибки если CF установлен DS:DX указывает на строку ASCIIZ в формате: «d:\путь\имяоглавл»,0. Если диск и/или корневой путь опущены, то принимаются по умолчанию. Указанное подоглавление для указанного диска становится текущим (умалчиваемым) оглавлением DOS для этого (или текущего) диска. Если флаг CF установлен при возврате, то AX содержит код ошибки, и текущее оглавление для выбранного диска не изменяется.
41H Удалить файл AH = 41H DS:DX = адрес строки ASCIIZ с именем файла AX = код ошибки если CF установлен DS:DX указывает на строку ASCIIZ в формате: «d:\путь\имяфайла»,0. Если диск и/или путь опущены, они принимаются по умолчанию. Имя файла не может содержать обобщенные символы (‘?’ и ‘*’). Файл удаляется из заданного оглавления заданного диска. Если файл имеет атрибут только чтение, то перед удалением необходимо изменить этот атрибут через функцию 43H CHMOD.
43H Установить/опросить атрибут файла – CHMOD AH = 43H DS:DX = адрес строки ASCIIZ с именем файла AL — код подфункции: = 0 — извлечь текущий атрибут файла AL = 1 — установить атрибут файла CX = новый атрибут файла (для подфункции 01H) AX = код ошибки если CF установлен CX = текущий атрибут файла (для подфункции 00H) DS:DX указывает на строку ASCIIZ в формате: «d:\путь\имяфайла»,0. Если диск и/или путь опущены, они принимаются по умолчанию. Атрибут файла извлекается или устанавливается, согласно коду в AL. Замечание: Чтобы спрятать оглавление, используйте CX=02H (а не 12H, как вы, возможно, ожидали, см. описание файловой системы FAT, аттрибуты файлов).
45H Дублировать описатель файла – DUP AH = 45H BX = существующий описатель файла AX = новый описатель файла, дублирующий оригинал или код ошибки если CF установлен. Создает дополнительный описатель файла, ссылающийся на тот же поток в/в, что и существующий описатель. Любое продвижение указателя чтения/записи для одного описателя действует на его дубликат — включая любые операции чтения, записи или перемещения указателя посредством функции 42H LSEEK. Новый описатель наследует ограничения режима открытия оригинала. Эта функция используется с одной главной целью: вы можете закрыть описатель, заставляя DOS записать файловые буфера. Такой способ DUP/CLOSE — быстрее, чем закрытие и повторное открытие файла. Оставить комментарий – для сохранения файла без его закрытия – CTRL+S
46H Переназначить описатель – FORCDUP AH = 46H BX = целевой описатель файла (должен уже существовать) CX = исходный описатель файла (должен уже существовать) AX = код ошибки если CF установлен Заставляет описатель файла (handle) ссылаться на другой файл или устройство. Описатель в CX (источник) закрывается, если он открыт, а затем становится дубликатом описателя в BX (назначения). Иными словами, описатели в CX и BX будут ссылаться на один и тот же физический файл или устройство. Используется для переназначения стандартного в/в. Пример: Откроем файл «C:\STDOUT.TXT» через функцию 3dh Open File и получим описатель (например, 05). Установим BX=05, CX=01 и вызовем эту функцию. (замечание: описатель 01 — это предопределенный описатель «стандартного выходного устройства»). Теперь можно вызвать функцию 3eh Close File и закрыть handle 05. Можно обращаться к файлу STDOUT.TXT через описатель 01. Стало быть, дисковый файл «C:\STDOUT.TXT» будет отныне получать весь вывод, создаваемый всеми процессами (текущим и порожденными) через любую функцию символьного в/в DOS, так же как и любой вывод в описатель файла 01 через функцию DOS 40H. Когда вы выходите в COMMAND.COM, предопределенные описатели устанавливаются на обычные устройства (например, описатель 01 устанавливается на «CON»).
47H Дать умалчиваемое оглавление DOS AH = 47H DS:SI = адрес локального буфера для результирующего пути (64 байта) DL = номер диска (0=текущий, 1=A, и т.д.) AX = код ошибка если CF установлен В пользовательский буфер по адресу DS:SI помещается в форме ASCIIZ путь текущего умалчиваемого оглавления для диска, указанного в DL. Путь возвращается в формате: «путь\оглавление»,0. Не подставляется впереди буква диска, а сзади не подставляется символ «\». Например, если текущим является корневое оглавление, эта функция вернет вам пустую строку (DS:[SI] = 0).
4eh Найти 1-й совпадающий файл AH = 4fh DS:DX = адрес строки ASCIIZ с именем файла (допускаются ? И *) CX = атрибут файла для сравнения AX = код ошибки если CF установлен DTA = заполнена данными (если не было ошибки) DS:DX указывает на строку ASCIIZ в форме: «d:\путь\имяфайла»,0. Если диск и/или путь опущены, они подразумеваются по умолчанию. Обобщенные символы и ? Допускаются в имени файла и расширении. DOS находит имя первого файла в оглавлении, которое совпадает с заданным именем и атрибутом, и помещает найденное имя и другую информацию в DTA, как показано ниже: Замечания: Атрибут файла обычно используется во «включающем» поиске. Если вас интересуют как файлы, так и оглавления, установите бит атрибута 4 (т.е. Attr | 10H). См. Атрибут файла для полной информации. Типичная последовательность, используемая для поиска всех подходящих файлов: Используйте вызов 1ah, чтобы установить DTA на локальный буфер (или используйте умалчиваемую DTA в PSP по смещению 80H) Уст. CX=атрибут, DS:DX => ASCIIZ диск, путь, обобщенное имя Вызовите функцию 4eh (Найти 1-й) Если флаг CF указывает ошибку, вы закончили (нет совпадений) Уст. DS:DX => DTA (или на данные, которые вы скопировали из DTA после вызова функции 4eh) Повторять Обработать имя файла и данные по адресу DS:DX Вызвать функцию 4fh (Найти следующий) Пока CF=1 не покажет, что совпадений больше нет
4fh Найти следующий совпадающий файл AH = 4fh DS:DX = адрес данных, возвращенных предыдущей 4eh Найти 1-й файл AX = код ошибки если CF установлен DTA = заполнена данными DS:DX указывает на 2bh-байтовый буфер с информацией, возвращенной функцией 4eh Найти 1-й (либо DTA, либо буфер, скопированный из DTA). Используйте эту функцию после вызова 4eh. Следующее имя файла, совпадающее по обобщенному имени и атрибуту файла, копируется в буфер по адресу DS:DX вместе с другой информацией (см. Функцию 4eh о структуре файловой информации в буфере, заполняемом DOS).
56H Переименовать/переместить файл AH = 56H DS:DX = адрес старого ASCIIZ имени (путь/имя существующего файла) ES:DI = адрес нового ASCIIZ имени (новые путь/имя) AX = код ошибки если CF установлен DS:DX и ES:DI указывают на строки ASCIIZ: «d:\путь\имяфайла»,0. Старое имя DS:DX должно отвечать существующему файлу и не может содержать обобщенных символов. Диск и путь необязательны (если опущены, они принимаются по умолчанию). Новое имя ES:DI должно описывать НЕ существующий файл. Если указан диск, он должен быть тем же, что и в старом имени. Если диск или путь опущены, принимаются текущие умолчания. Если старое и новое имя содержат разные пути (явно или принятые по умолчанию), то элемент оглавления для файла ПЕРЕМЕЩАЕТСЯ в оглавление, указанное в новом имени. Замечание: Если ID диска в старом имени отличается от текущего диска DOS, не забывайте указывать такой же ID диска в новом имени.
57H Установить/опросить дату/время файла AH = 57H AL = 0 чтобы получить дату/время файла = 1 чтобы установить дату/время файла BX = описатель файла (handle) CX = (если AL=1) новая отметка времени в формате время/дата файла DX = (если AL=1) новая отметка даты в формате время/дата файла AX = код ошибки если CF установлен CX = отметка времени файла в формате время/дата файла DX = отметка даты файла в формате время/дата файла BX должен содержать описатель открытого файла (см. 3ch или 3dh ). Укажите подфункцию, 0 или 1, в регистре AL. DX и CX задаются в формате памяти; например, младшие 8 бит даты находятся в DH.
5ah Создать уникальный временный файл AH = 5ah DOS 3.0+ DS:DX = адрес строки ASCIIZ с диском и путем (заканчивается \) CX = атрибут файла AX = код ошибки если CF установлен и описатель файла (если нет ошибки) DS:DX = (не изменяется) становится полным ASCIIZ-именем нового файла Открывает (создает) файл с уникальным именем в оглавлении, указанном строкой ASCIIZ, на которую указывает DS:DX. COMMAND.COM использует эту функцию, когда создает временные «канальные» файлы, используемые при переназначении ввода-вывода. Описание пути должно быть готово к присоединению в его конец имени файла. Вы должны обеспечить минимум 12 байт в конце строки. Сама строка должна быть заполнена в одной из форм: «d:\путь\»,0 (указаны диск и путь) ИЛИ «d:»,0 (умалчиваемое оглавление диска) ИЛИ «d:\»,0 (корневое оглавление диска) ИЛИ «»,0 (умалчиваемые диск и оглавление) После возврата строка DS:DX будет дополнена именем файла. Замечания: DOS создает имя файла из шестнадцатеричных цифр, получаемых из текущих даты и времени. Если имя файла уже существует, DOS продолжает создавать новые имена, пока не получит уникальное имя. Создаваемые таким способом файлы — по существу НЕ ВРЕМЕННЫЕ, и их следует удалять посредством функции DOS 41H , когда они не нужны. Версии: Доступна, начиная с DOS 3.0
5bh Создать новый файл AH = 5bh DOS 3.0+ DS:DX = адрес строки ASCIIZ с именем файла CX = атрибут файла AX = код ошибки если CF установлен и описатель файла если ошибок нет DS:DX указывает на строку ASCIIZ в форме: «d:\путь\имяфайла»,0. Если диск и/или путь опущены, они принимаются по умолчанию. Этот вызов идентичен функции DOS 3ch CREATE, с тем исключением, что он вернет ошибку, если файл с заданным именем уже существует. Файл открывается для чтения/записи в совместимом режиме доступа
5ch Блокировать/разблокировать доступ к файлу AH = 5ch DOS 3.0+ AL = подфункция: 0 = заблокировать область файла = 1 = разблокировать ранее захваченную область BX = описатель файла (handle) CX:DX = смещение ((CX 65536) + DX) от начала файла SI:DI = длина блокируемой области ((SI 65536) + DI) байт AX = код ошибки если CF установлен Блокирует или освобождает доступ к участку файла, идентифицируемого описателем в BX. Область файла, начинающаяся по логическому смещению CX:DX и имеющая длину SI:DI, блокируется (захватывается) или разблокируется (освобождается). Смещение и длина обязательны. Разделение файлов ДОЛЖНО быть активизировано (командой SHARE), иначе функция вернет код ошибки «неверный номер функции.» Блокировка действует на операции чтения, записи и открытия со стороны порожденного или конкурирующего процесса. При попытке такого доступа (и режиме доступа , определенном при OPEN как «режим разделения», который запрещает такой доступ), DOS отвергает операцию через вызов INT 24H (обработчик критических ошибок) после трех попыток. DOS при этом выдает сообщение «Abort, Retry, Ignore». Рекомендуемое действие — НЕ пытаться читать файл и ожидать кода ошибки. Вместо этого попытайтесь заблокировать область и действуйте в соответствии с кодом возврата. Это позволяет избежать довольно неустойчивого состояния DOS, связанного с выполнением INT 24H. Блокировка за концом файла не является ошибкой. Вы можете захватить весь файл, задав CX=0, DX=0, SI=0ffffh, DI=0ffffh и AL=0. При освобождении, смещение и длина участка должны точно совпадать со смещением и длиной захваченного участка. Замечания: Дублирование описателя через 45H или 46H дублирует и блокировки. Даже если во время OPEN выбран режим доступа Inherit, механизм блокировки не даст никаких привилегий доступа порожденным процессам, созданным функцией 4bh EXEC (они трактуются как отдельные). Важно, чтобы все блокировки файла были сняты до завершения программы. Если вы используете блокировку, особо отслеживайте вызовы INT 23H (выход Ctrl-Break) и INT 24H (выход по критической ошибке), чтобы снять блокировки до действительного завершения программы. Рекомендуется освобождать блокировки как можно скорее. Всегда блокируйте, обрабатывайте файл и освобождайте блокировку одной операцией. Версии: Доступна, начиная с DOS 3.0
Операции с системой прерываний
25H Установить вектор прерывания AH = 25H AL = номер прерывания DS:DX = вектор прерывания: адрес программы обработки прерывания Устанавливает значение элемента таблицы векторов прерываний для прерывания с номером AL равным DS:DX. Это равносильно записи 4-байтового адреса в 0000:(AL*4), но, в отличие от прямой записи, DOS здесь знает, что вы делаете, и гарантирует, что в момент записи прерывания будут заблокированы. Предупреждение: Не забудьте восстановить DS (если необходимо) после этого вызова.
26H Построить PSP AH = 26H DX = адрес сегмента (параграфа) для нового PSP CS = сегмент PSP, используемого как шаблон для нового PSP Устанавливает PSP для порождаемого процесса по адресу DX:0000. Текущий PSP (100H байт, начиная с CS:0), копируется в DX:0 Поле memtop соответственно корректируется Векторы Terminate, Ctrl-Break и Critical Error копируются в PSP из векторов прерываний INT 22H, INT 23H и INT 24H после этого вы можете загрузить программу с диска и передать ей управление посредством FAR JMP. Замечание: Если вы перехватываете INT 21H, позаботьтесь о помещении в стек корректного CS:IP. Еще лучше использовать функцию 4ch (EXEC).
2ah Дать системную дату AH = 2ah AL = день недели (0=Вск, 1=Пнд. 6=Суб) DOS 3.0+ CX = год (1980 до 2099) DH = месяц (1 до 12) DL = день (1 до 31) Возвращает текущую дату, как она известна системе. Версии: DOS 2.x не гарантирует возврата в AL значения дня; все версии 1.0+ возвращают правильный день недели. Версии до 2.1 имеют проблемы с переходом даты.
2bh Установить системную дату AH = 2bh CX = год (1980 до 2099) DH = месяц (1 до 12) DL = день (1 до 31) AL = 0 если дата корректна Устанавливает системную дату DOS.
2ch Дать время DOS AH = 2ch CH = часы (0 до 23) CL = минуты (0 до 59) DH = секунды (0 до 59) DL = сотые доли секунды (0 до 99) Возвращает текущее время, как оно известно системе. Замечание: Поскольку системные часы имеют частоту 18.2 тиков в секунду (интервал 55мс), DL имеет точность 0.04 сек.
2dh Установить время DOS AH = 2dh CH = часы (0 до 23) CL = минуты (0 до 59) DH = секунды (0 до 59) DL = сотые доли секунды (0 до 99) AL = 0 если время корректно Устанавливает системное время DOS.
2eh Установить/сбросить переключатель верификации AH = 2eh AL = 0 отключить верификацию = 1 включить верификацию Устанавливает, должна ли DOS верифицировать (считывать обратно) каждый сектор, записываемый на диск. Это замедляет операции записи на диск, но гарантирует максимальную надежность записи. Функция 56H Get Verify возвращает текущий статус верификации DOS.
2fh Дать адрес текущей DTA AH = 2fh ES:BX = адрес начала текущей DTA Возвращает адрес начала области ввода-вывода (DTA). Поскольку DTA глобальна для всех процессов, в рекурсивной процедуре (например, при проходе по дереву оглавления) может потребоваться сохранить адрес DTA, а впоследствии восстановить его посредством функции 1ah «Уст. DTA». Замечание: Эта функция изменяет сегментный регистр ES.
30H Дать номер версии DOS AH = 30H AL = старший номер версии AH = младший номер версии BX,CX = 0000H DOS 3.0+ Возвращает в AX значение текущего номера версии DOS. Например, для DOS 3.2, в AL возвращается 3, в AH — 2. Замечание: Если в AL возвращается 0, можно предполагать, что работает DOS более ранней версии, чем DOS 2.0. Версии: DOS 2.x не гарантирует очистки регистров CX и BX.
31H Завершиться и остаться резидентным – KEEP AH = 31H AL = код выхода DX = объем памяти, оставляемой резидентной, в параграфах Выходит в родительский процесс, сохраняя код выхода в AL. Код выхода можно получить через функцию 4dh Wait. DOS устанавливает начальное распределение памяти, как специфицировано в DX, и возвращает управление родительскому процессу, оставляя указанную память резидентной (число байт = DX 16). Эта функция перекрывает функцию INT 27H, которая не возвращает код выхода и неспособна установить резидентную программу, большую 64K.
33H Установить/опросить статус Ctrl-Break AH = 33H AL = 0 чтобы опросить текущий статус контроля Ctrl-Break AL = 1 чтобы установить статус контроля Ctrl-Break DL = требуемый статус (0=OFF, 1=ON) (только при AL=1) DL = текущий статус (0=OFF, 1=ON) Если AL=0, в DL возвращается текущий статус контроля Ctrl-Break. Если AL=1, в DL возвращается новый текущий статус. Когда статус ON, DOS проверяет на Ctrl-Break с консоли для большинства функций (исключая 06H и 07H). При обнаружении, выполняется INT 23H (если оно не перехватывается, то это снимает процесс). Когда статус OFF, DOS проверяет на Ctrl-Break лишь при операциях стандартного в/в, стандартной печати и стандартных операциях AUX.
35H Дать вектор прерывания AH = 35H AL = номер прерывания (00H до 0ffh) ES:BX = адрес обработчика прерывания Возвращает значение вектора прерывания для INT (AL); то есть, загружает в BX 0000:[AL*4], а в ES — 0000:[(AL*4)+2]. Предупреждение: Эта функция изменяет сегментный регистр ES.
44H Управление устройством в/в – IOCTL AH = 43H AL = код подфункции: AL = 0ch — (зарезервировано) Прочие = (в зависимости от подфункции) AX = код ошибки если CF установлен или иное значение (в зависимости от подфункции) IOCTL предоставляет метод взаимодействия с устройствами и получения информации о файлах. Входные параметры и выходные значения варьируются в зависимости от кода подфункции в регистре AL. Версии: Подфункции 0-7 . DOS 2.1+ Подфункции 8,0bh . DOS 3.0+ Подфункции 9,0ah . DOS 3.1+ Подфункции 0dh,0eh,0fh . DOS 3.2+ ———————————— Подфункция 00H: Запросить флаги информации об устройстве Вход: BX= описатель файла (устройство или дисковый файл) Выход: DX= IOCTL Инф об устр ———————————— Подфункция 01H: установить флаги информации об устройстве Вход: BX = описатель файла (устройство или дисковый файл) DX = IOCTL Инф об устр (DH должен быть нулевым) Выход: DX= IOCTL Инф об устр ———————————— Подфункция 02-03: читать (AL=02H) или писать (AL=03H) строку IOCTL на СИМВОЛЬНОЕ устр Вход: DS:DX = адрес буфера (чтение) или данных (запись) CX= число передаваемых байт BX= описатель файла (только устройство — не файл!) Выход: AX= код ошибки если CF установлен ———————————— Подфункция 04-05: читать (AL=04H) или писать (AL=05H) строку IOCTL на БЛОЧНОЕ устр Вход: DS:DX = адрес буфера (чтение) или данных (запись) CX = число передаваемых байт BL = : Вход: CL = код действия 40H = установить параметры устройства 60H = дать параметры устройства 41H = писать дорожку логического устройства 61H = читать дорожку логического устройства 42H = форматировать дорожку с верификацией 62H = Верифицировать дорожку логического устройства DS:DX=> адрес пакета данных IOCTL Выход: AX= код ошибки если CF установлен DS:DX=> пакет данных может содержать информацию возврата. ———————————— Подфункция 0eh: Выяснить, назначил ли драйвер устройства несколько логических устройств одному физическому устройству. [DOS 3.2+] Вход: BL= . Эта функция позволяет вам сообщать DOS, что диск с указанным >
48H Распределить память (дать размер памяти) AH = 48H BX = запрошенное количество памяти в 16-байтовых параграфах AX = код ошибки если CF установлен BX = размер доступной памяти в параграфах (если памяти не хватает) AX = сегментный адрес распределенного блока (если нет ошибок) Распределяет блок памяти длиной BX параграфов, возвращая сегментный адрес этого блока в AX (блок начинается с AX:0000). Если распределение неудачно, устанавливается CF, в AX возвращается код ошибки, а BX содержит максимальный размер доступной для распределения памяти (в параграфах). Чтобы определить наибольший доступный кусок, общепринято устанавливать BX=0ffffh перед вызовом. Распределение завершится с ошибкой, возвратив размер максимального блока памяти в BX. Замечание: Когда процесс получает управление через функцию 4bh EXEC, вся доступная память уже распределена ему.
49H Освободить распределенный блок памяти AH = 49H ES = сегментный адрес (параграф) освобождаемого блока памяти AX = код ошибки если CF установлен Освобождает блок памяти, начинающийся с адреса ES:0000. Этот блок становится доступным для других запросов системы. Вообще говоря, вы должны освобождать лишь те блоки памяти, которые вы получили через функцию 48H распределить память. Родитель отвечает за освобождение памяти порожденных процессов. Тем не менее, ничто не препятствует вам освобождать память чужих процессов.
4ah Сжать или расширить блок памяти AH = 4ah ES = сегмент распределенного блока памяти BX = желаемый размер блока в 16-байтовых параграфах AX = код ошибки если CF установлен BX = наибольший доступный блок (если расширение неудачно) Изменяет размер существующего блока памяти. Когда программа получает управление, функция 4bh EXEC уже распределила блок памяти, начиная с PSP, который содержит всю доступную память. Чтобы освободить память для запуска порождаемых процессов, блок памяти, начинающийся с PSP, необходимо сначала сжать. Замечание: Функция 31H (KEEP) и INT 27H (TSR) сжимают блок по адресу PSP.
4bh Выполнить или загрузить программу – EXEC AH = 4bh DS:DX = адрес строки ASCIIZ с именем файла, содержащего программу ES:BX = адрес EPB (EXEC Parameter Block — блока параметров EXEC) AL = 0 = загрузить и выполнить AL = 3 = загрузить программный оверлей AX = код ошибки если CF установлен Предоставляет средства одной программе (родителю) вызвать другую программу (ребенка), которая по завершению возвратит управление родителю. DS:DX указывает на строку ASCIIZ в форме: «d:\путь\имяфайла»,0. Если диск или путь опущены, они подразумеваются по умолчанию. ES:BX указывает на блок памяти, подготовленный как EPB, формат которого зависит от запрошенной подфункции в AL. AL=0 EXEC: так как родительская программа первоначально получает всю доступную память в свое распоряжение, вы должны освободить часть памяти через функцию 4ah до вызова EXEC (AL=0). Обычная последовательность: 1. Вызовите функцию 4ah с ES=сегменту PSP и BX=минимальному объему памяти, требуемой вашей программе (в параграфах). 2. Подготовьте строку ASCIIZ с именем вызываемого программного файла и установите DS:DX на первый символ этой строки. 3. Подготовьте блок параметров EXEC со всеми необходимыми полями. 4. Сохраните текущие значения SS, SP, DS, ES и DTA в переменных, адресуемых через регистр CS (CS — это единственная точка для ссылок после того, как EXEC вернет управление от ребенка). 5. Выдайте вызов EXEC с AL=0. 6. Восстановите локальные значения SS и SP. 7. Проверьте флаг CF, чтобы узнать, не было ли ошибки при EXEC. 8. Восстановите DS, ES и локальную DTA, если необходимо. 9. Проверьте код выхода через функцию 4dh WAIT (если надо). Все открытые файлы дублируются, так что ребенок может обрабатывать данные как через описатели файлов, так и через стандартный в/в. Режимы доступа описателей дублируются, но любые активные блокировки файлов не будут относиться к ребенку. См. Функцию 5ch. После возврата из ребенка, векторы INT 22H Terminate, INT 23H Ctrl-Break и INT 24H Critical Error восстанавливаются в их предыдущие значения. AL=3 LOAD: Эта подфункция используется для загрузки «оверлея». DS:DX указывает на ASCIIZ имя файла, а ES:BX указывает на «LOAD»-версию блока параметров EXEC. Главное значение этой подфункции в том, что она считывает заголовок EXE и выполняет необходимые перемещения сегментов, как это требуется для программ .EXE. Замечания: Эта функция использует программу-загрузчик из COMMAND.COM, который транзитен в DOS 2.x (и, возможно, уже перекрыт программой). В этом случае возникнет ошибка, если DOS не найдет файл COMMAND.COM. Вы должны обеспечить корректную строку COMSPEC= в окружении перед вызовом этой функции. Вместо разбора собственных FCB (как требуется для EPB), вы можете найти удобным загрузить и выполнить вторичную копию файла COMMAND.COM, используя опцию /C. Например, чтобы выполнить программу FORMAT.COM, установите DS:DX на адрес строки ASCIIZ: «\command.com»,0 и установите EPB+2 на сегмент и смещение следующей строки команд: 0eh,»/c format a:/s/4″,0dh такой вторичный интерпретатор команд использует очень мало памяти (около 4K). Вы можете поискать в окружении DOS строку COMSPEC=, чтобы установить точное местоположение файла COMMAND.COM.
4ch Завершить программу – EXIT AH = 4ch AL = код выхода Возвращает управление от порожденного процесса его родителю, устанавливая код выхода, который можно опросить функцией 4dh WAIT. Управление передается по адресу завершения в PSP завершающейся программы. Векторы Ctrl-Break и Critical Error восстанавливаются к старым адресам, сохраненным в родительском PSP. Замечание: Значение ERRORLEVEL (используемое в пакетных файлах DOS) можно использовать для проверки кода выхода самой последней программы.
4dh Дать код выхода программы – WAIT AH = 4dh AL = код выхода последнего завершившегося процесса AH = 0 — нормальное завершение AH = 1 — завершение через Ctrl-Break AH = 2 — завершение по критической ошибке устройства AH = 3 — завершение через функцию 31H KEEP Возвращает код выхода последнего из завершившихся процессов. Эта функция возвращает правильную информацию только однажды для каждого завершившегося процесса.
54H Дать переключатель верификации DOS AH = 54H AL = 0 если верификация выключена (OFF) AL = 1 если верификация включена (ON) Возвращает текущий статус верификации записи DOS. Если в AL возвращается 1, то DOS считывает обратно каждый сектор, записываемый на диск, чтобы проверить правильность записи. Функция DOS 2eh позволяет установить/изменить режим верификации.
59H Дать расширенную информацию об ошибке AH = 59H DOS 3.0+ BX = 0000H (номер версии: 0000H для DOS 3.0, 3.1 и 3.2) AX = расширенный код ошибки (0, если не было ошибки) BH = класс ошибки BL = предлагаемое действие CH = сфера (где произошла ошибка) Используйте эту функцию, чтобы уточнить, что предпринять после сбоя функции DOS по ошибке (только DOS 3.0+ ). Вызывайте ее: В обработчике критических ошибок INT 24H После любой функции INT 21H , возвратившей Carry-флаг После вызова FCB-функции, возвратившей AL=0ffh Версии: Эта функция отсутствует в версиях до DOS 3.00. В DOS 2.x, когда флаг CF указывает на ошибку, используйте логику вашей программы, чтобы отреагировать на ошибку. В DOS 3.0+, когда функция возвращает CF=1, рекомендуем вам игнорировать код ошибки, возвращенный в AX, вызвать эту функцию и выполнить действие, предложенное в BL.
5eh Разные сетевые функции AH = 5eh DOS 3.1+ AL = подф.: 0=дать имя машины (узла) в сети AL = 2=установить стартовую строку сетевого принтера AL = 3=извлечь стартовую строку сетевого принтера Прочие = (зависят от подфункции) AX = код ошибки если CF установлен Прочие = (зависят от подфункции) Эти функции доступны при установленной IBM PC Network Program. Версии: Доступны, начиная с DOS 3.1 ———————————— Подф. 00H: Извлекает имя машины (узла), как оно известно в сети. Вход: DS:DX=> буфер пользователя для ASCIIZ сетевого имени Выход: DS:DX=> буфер, содержащий сетевое имя CH= 0=имя не определено; иначе=имя определено CL= номер имени NETBIOS (если CH ненулевой) AX= код ошибки если CF установлен Замечание: Сетевое имя — 15-симв. (дополненная пробелами) строка ASCIIZ ———————————— Подф. 02H: Задает настроечную строку, посылаемую на принтер каждый раз, когда эта машина выдает результаты на сетевой принтер. Вход: DS:SI=> буфер, содержащий настроечную строку (до 64 байт) CX= длина настроечной строки BX= индекс в списке назначений, отвечающий принтеру Выход: AX= код ошибки если CF установлен ———————————— Подф. 03H: Извлекает настроечную строку принтера, заданную ранее посредством DOS Fn 5eh подф. 02H. Вход: DS:DI=> 64-байтовый буфер пользователя для результата bx= индекс принтера в списке назначений Выход: ES:DI=> буфер, заполненный настроечной строкой CX= длина настроечной строки AX= код ошибки если CF установлен Замечание: Поскольку индекс в списке назначений может измениться в любой момент, используйте функцию 5fh подф. 02H, чтобы получить индекс непосредственно перед вызовом этой функции.
5fh Переназначение устройств в сети AH = 5fh DOS 3.1+ AL = подф.: 2=получить элемент списка переназначений устройств = 3=переназначить сетевое устройство = 4=отменить переназначение сетевого устройства Прочие = (зависят от подфункции) AX = код ошибки если CF установлен Эти функции доступны при установленной IBM PC Network Program. Версии: Доступны, начиная с DOS 3.1 ———————————— Подф. 02H: Извлекает элемент из списка переназначений сетевых устройств. Вход: DS:DI=> 128-байтовое ASCIIZ локальное имя устр. («LPT1»,0) ES:DI=> 128-байтовый буфер с ASCIIZ сетевым именем BX= индекс в списке назначений Выход: DS:DI=> ASCIIZ локальное имя устройства (напр., «LPT1»,0) ES:DI=> ASCIIZ сетевое имя BL= тип устр: 3=принтер; 04=файл ‘устройство’ BH= статус устр: бит 0=1 -неверное устр.; 0=верное CX= сохраненный параметр (при NETBIOS, всегда 0) AX= код ошибки если CF установлен DX,BP = (изменены) Замечание: обычно эту функцию вызывают с BX=0, затем повторяют вызовы, увеличивая значение BX, пока DOS не вернет ошибку 12H (больше нет файлов). ———————————— Подф. 03H: этот вызов определяет имена оглавлений для сети и перенаправляет доступ на сетевые принтеры. Замеч: доступ к принтеру переназначается на уровне ROM-BIOS INT 17H. Вход: DS:SI = ASCIIZ имя исходного устройства ES:DI = ASCIIZ назначение (сетевой путь с паролем) BL= тип устр: 03=принтер; 04=файл ‘устройство’ CX= параметр для вызывающего (задавайте 0 для NETBIOS) Выход: AX= код ошибки если CF установлен Замеч: если BL=03, то источник задает ASCIIZ-имя принтера (например, «LPT1»,0). Назначение кодируется в форме: [\\computername\],0,[password],0. Если пароль начинается с 00, считается, что пароля нет. Если BL=04, то источник задает ASCIIZ-имя диска (например, «F:»,0), а назначение — ASCIIZ-имя пути. После вызова этой функции, локальные обращения к этому диску переназначаются на выбранные имя компьютера и путь. ———————————— Подф. 04H: Отменить сетевое переназначение для указанного устройства. Вход: DS:SI=> ASCIIZ-имя устройства или ,0), то переназначение этого диска прекращается, и ID диска восстанавливает свое предыдущее значение.

Чтение DBR больших тома

Раздел объемы которых превышают по размерам 32 имеют иной формат, чем DBR DBR к менее чем или равном по 32 тома.

Именно поэтому для обеспечения поддержки больших по объему дисках (Для Подробное описание по нему, см. главу «Логический подход к дисков и ОС», обсудил ранее в этой книге).

Формат DOS Boot Record в FAT32 тома были приведены в следующей таблице :

FAT32 DOS Boot Record Format Fat32 ДОС формат загрузочной записи

Jump Code + NOP Перейти код NOP +

3 Bytes 3 Bytes

OEM Name and Version Наименование и ОЕМ версии

8 Bytes 8 Bytes

Bytes Per Sector Байтов на сектор

2 Bytes 2 Bytes

Sectors Per Cluster Секторов на кластер

Reserved Sectors Зарезервировано секторов

2 Bytes 2 Bytes

Number of Copies of FAT Количество экземпляров FAT

Maximum Root Directory Entries (but Not Available for FAT32) Максимальная Корень записей в каталоге (но недоступно для FAT32)

2 Bytes 2 Bytes

Number of Sectors in Partition Smaller than 32MB (Therefore Not Available for FAT32) Количество секторов в разделе не более 32 (Поэтому недоступно для FAT32)

2 Bytes 2 Bytes

Media Descriptor (F8H for Hard Disks) СМИ Эо (F8H для жестких дисков)

Sectors Per FAT (In Older FAT Systems and Not Available for FAT32) Секторов на FAT (FAT в старых системах и недоступно для FAT32)

2 Bytes 2 Bytes

Sectors Per Track Секторов на дорожке

2 Bytes 2 Bytes

Number of Heads Количество глав

2 Bytes 2 Bytes

Number of Hidden Sectors in Partition Количество скрытых секторов в разделе

4 Bytes 4 Bytes

Number of Sectors in Partition Количество секторов в разделе

4 Bytes 4 Bytes

Number of Sectors Per FAT Количество секторов в FAT

4 Bytes 4 Bytes

Flags (Bits 0-4 Indicate Active FAT Copy) (Bit 7 Indicates whether FAT Mirroring is Enabled or Disabled ) (If FAT Mirroring is Disabled, the FAT Information is only written to the copy indicated by bits 0-4) Флаги (Bits 0-4 Укажите Активные FAT Copy) (Бит 7 Указывает ли FAT Зеркалирование Включено или Отключено ) (Если FAT Зеркалирование инвалидов, FAT информации только с письменного экземпляр свидетельствует биты 0-4)

2 Bytes 2 Bytes

Version of FAT32 Drive (High Byte = Major Version, Low Byte = Minor Version) Версия FAT32 дисков (Высокий байт = Основные версии, Low байт = минорную версию)

2 Bytes 2 Bytes

Cluster Number of the Start of the Root Directory Блок Количество Начало вверх

4 Bytes 4 Bytes

Sector Number of the File System Information Sector (Referenced from the Start of the Partition) Сектор Количество Файловая система информационного сектора (с привязкой начало раздела)

2 Bytes 2 Bytes

Sector Number of the Backup Boot Sector (Referenced from the Start of the Partition) Сектор Количество Резервное копирование загрузочного сектора (с привязкой начало раздела)

2 Bytes 2 Bytes

12 Bytes 12 Bytes

Logical Drive Number of Partition Логический номер устройства раздела

Unused (Could be High Byte of Previous Entry) Не используется (может быть высокого байта из Предыдущая Вход)

Extended Signature (29H) Расширенный Подпись (29H)

Serial Number or 32 – Bit Binary ID of Partition Серийный номер или 32-разрядная Бинарная ID раздела
(Binary ID of 32 Bits provided by the OS itself) (Двоичный номер 32 Bits, представленной самой OS)

4 Bytes 4 Bytes

Volume Name of Partition Том Наименование раздела

11 Bytes 11 Bytes

FAT Name (FAT32 in this case) Имя FAT (FAT32 в данном случае)

8 Bytes 8 Bytes

Executable Code Исполняемые кодекс

420 Bytes 420 Bytes

Executable Marker or Magic Number (AAH 55H) Исполняемые Маркер или Магия номер (БСГ 55H)

2 Bytes 2 Bytes

PRO DATA DOCTOR
Sample Chapters from book DATA RECOVERY WITH AND WITHOUT PROGRAMMING by Author Tarun Tyagi

Publishers of the Book
Number of Pages
ISBN
Price of the Book

BPB Publications, New Delhi, India
540
81-7656-922-4
$69.00 (Including Shipping Charges, Cost of Book and Other expenses, Free Source Code CD included with the Book)

Изучаем структуры MBR и GPT

Для работы с жестким диском его для начала необходимо как-то разметить, чтобы операционная система могла понять в какие области диска можно записывать информацию. Поскольку жесткие диски имеют большой объем, их пространство обычно разбивают на несколько частей — разделов диска. Каждому такому разделу может быть присвоена своя буква логического диска (для систем семейства Windows) и работать с ним можно, как будто это независимый диск в системе.

Способов разбиения дисков на разделы на сегодняшний день существует два. Первый способ — использовать MBR. Этот способ применялся еще чуть ли не с появления жестких дисков и работает с любыми операционными системами. Второй способ — использовать новую систему разметки — GPT. Этот способ поддерживается только современными операционными системами, поскольку он еще относительно молод.

Структура MBR

До недавнего времени структура MBR использовалась на всех персональных компьютерах для того, чтобы можно было разделить один большой физический жесткий диск (HDD) на несколько логических частей — разделы диска (partition). В настоящее время MBR активно вытесняется новой структурой разделения дисков на разделы — GPT (GUID Partition Table). Однако MBR используется еще довольно широко, так что посмотрим что она из себя представляет.

MBR всегда находится в первом секторе жесткого диска. При загрузке компьютера, BIOS считывает этот сектор с диска в память по адресу 0000:7C00h и передает ему управление.

Итак, первая секция структуры MBR — это секция с исполняемым кодом, который и будет руководить дальнейшей загрузкой. Размер этой секции может быть максимум 440 байт. Далее идут 4 байта, отведенные на идентификацию диска. В операционных системах, где идентификация не используется, это место может занимать исполняемый код. То же самое касается и последующих 2 байт.

Начиная со смещения 01BEh находится сама таблица разделов жесткого диска. Таблица состоит из 4 записей (по одной на каждый возможный раздел диска) размером 16 байт.

Структура записи для одного раздела:

Первым байтом в этой структуре является признак активности раздела. Этот признак определяет с какого раздела следует продолжить загрузку. Может быть только один активный раздел, иначе загрузка продолжена не будет.

Следующие три байта — это так называемые CHS-координаты первого сектора раздела.

По смещению 04h находится код типа раздела. Именно по этому типу можно определить что находится в данном разделе, какая файловая система на нем и т.п. Список зарезервированных типов разделов можно посмотреть, например, в википедии по ссылке Типы разделов.

После типа раздела идут 3 байта, определяющие CHS-координаты последнего сектора раздела.

CHS-координаты сектора расшифровываются как Cylinder Head Sector и соответственно обозначают номер цилиндра (дорожки), номер головки (поверхности) и номер сектора. Цилиндры и головки нумеруются с нуля, сектор нумеруется с единицы. Таким образом CHS=0/0/1 означает первый сектор на нулевом цилиндре на нулевой головке. Именно здесь находится сектор MBR.

Все разделы диска, за исключением первого, обычно начинаются с нулевой головки и первого сектора какого-либо цилиндра. То есть их адрес будет N/0/1. Первый раздел диска начинается с головки 1, то есть по адресу 0/1/1. Это все из-за того, что на нулевой головке место уже занято сектором MBR. Таким образом, между сектором MBR и началом первого раздела всегда есть дополнителььные неиспользуемые 62 сектора. Некоторые загрузчики ОС используют их для своих нужд.

Интересен формат хранения номера цилиндра и сектора в структуре записи раздела. Номер цилиндра и номер сектора делят между собой два байта, но не поровну, а как 10:6. То есть на номер сектора приходится младшие 6 бит младшего байта, что позволяет задавать номера секторов от 1 до 63. А на номер цилиндра отведено 10 бит — 8 бит старшего байта и оставшиеся 2 бита от младшего байта: «CCCCCCCC CCSSSSSS», причем в младшем байте находятся старшие биты номера цилиндра.

Проблема с CHS-координатами состоит в том, что с помощью такой записи можно адресовать максимум 8 Гб диска. В эпоху DOS это было приемлемо, однако довольно скоро этого перестало хватать. Для решения этой проблемы была разработана система адресации LBA (Logical Block Addressing), которая использовала плоскую 32-битную нумерацию секторов диска. Это позволило адресовать диски размером до 2Тб. Позже разрядность LBA увеличили до 48 бит, однако MBR эти изменения не затронули. В нем по-прежнему осталась 32-битная адресация секторов.

Итак, в настоящее время повсеместно используется LBA-адресация для секторов на диске и в структуре записи раздела адрес его первого сектора прописывается по смещению 08h, а размер раздела — по смещению 0Ch.

Для дисков размером до 8Гб (когда адресация по CHS еще возможна) поля структуры с CHS-координатами и LBA-адресации должны соответствовать друг другу по значению (корректно конвертироваться из одного формата в другой). У дисков размером более 8Гб значения всех трех байт CHS-координат должны быть равны FFh (для головки допускается также значение FEh).

В конце структуры MBR всегда находится сигнатура AA55h. Она в какой-то степени позволяет проверить, что сектор MBR не поврежден и содержит необходимые данные.

Расширенные разделы

Разделы, отмеченные в таблице типом 05h и 0Fh, это так называемые расширенные разделы. С их помощью можно создавать больше разделов на диске, чем это позволяет MBR. На самом деле расширенных разделов несколько больше, например есть разделы с типами C5h, 15h, 1Fh, 91h, 9Bh, 85h. В основном все эти типы разделов использовались в свое время различными операционными системами (такими как например OS/2, DR-DOS, FreeDOS) с одной и той же целью — увеличить количество разделов на диске. Однако со временем различные форматы отпали и остались только разделы с типами 05h и 0Fh. Единственное исключение — это тип 85h. Он до сих пор может использоваться в Linux для формирования второй цепочки логических дисков, скрытых от других операционных систем. Разделы с типом 05h используются для дисков менее 8Гб (где еще возможна адресация через CHS), а тип 0Fh используется для дисков больше 8Гб (и используется LBA-адресация).

В первом секторе расширенного раздела находится структура EBR (Extended Boot Record). Она во многом схожа со структурой MBR, но имеет следующие отличия:

  • В EBR нет исполняемого кода. Некоторые загрузчики могут его туда записывать, но обычно это место заполнено нулями
  • Сигнатуры диска и два неиспользуемых байта должны быть заполнены нулями
  • В таблице разделов могут быть заполнены только две первых записи. Остальные две записи должны быть заполнены нулями

В конце структуры EBR, также как и в MBR, должно находиться «магическое» значение AA55h.

В отличие от MBR, где позволяется создавать не более четырёх разделов, структура EBR позволяет организовать список логических разделов, ограниченный лишь размером раздела-контейнера (того самого, который с типом 05h или 0Fh). Для организации такого списка используется следующий формат записей: первая запись в таблице разделов EBR указывает на логический раздел, связанный с данным EBR, а вторая запись указывает на следующий в списке раздел EBR. Если данный логический раздел является последним в списке, то вторая запись в таблице разделов EBR должна быть заполнена нулями.

Формат записей разделов в EBR аналогичен формату записи в структуре MBR, однако логически немного отличается.

Признак активности раздела для разделов структуры EBR всегда будет 0, так как загрузка осуществлялась только с основных разделов диска. Координаты CHS, с которых начинается раздел используются, если не задействована LBA-адресация, также как и в структуре MBR.

А вот поля, где в режиме LBA-адресации должны находиться номер начального сектора и количество секторов раздела, в структуре EBR используются несколько иначе.

Для первой записи таблицы разделов EBR в поле начального сектора раздела (смещение 08h) записывается расстояние в секторах между текущим сектором EBR и началом логического раздела, на который ссылается запись. В поле количества секторов раздела (смещение 0Ch) в этом случае пишется размер этого логического раздела в секторах.

Для второй записи таблицы разделов EBR в поле начального сектора раздела записывается расстояние между сектором самой первой EBR и сектором следующей EBR в списке. В поле количества секторов раздела в этом случае пишется размер области диска от сектора этой следующей структуры EBR и до конца логического раздела, относящегося к этой структуре.

Таким образом, первая запись таблицы разделов описывает как найти, и какой размер занимает текущий логический раздел, а вторая запись описывает как найти, и какой размер занимает следующий EBR в списке, вместе со своим разделом.

Структура GPT

В современных компьютерах на смену BIOS пришла новая спецификация UEFI, а вместе с ней и новое устройство разделов на жестком диске — GUID Partition Table (GPT). В этой структуре были учтены все недостатки и ограничения, накладываемые MBR, и разработана она была с большим запасом на будущее.

В структуре GPT используется теперь только LBA-адресация, никаких CHS больше нет и никаких проблем с их конвертацией тоже. Причем под LBA-адреса отведено по 64 бита, что позволяет работать с ними без всяких ухищрений, как с 64-битными целыми числами, а также (если до этого дойдет) даст в будущем возможность без проблем расширить 48-битную LBA-адресацию до 64-битной.

Кроме того, в отличие от MBR, структура GPT хранит на диске две своих копии, одну в начале диска, а другую в конце. Таким образом, в случае повреждения основной структуры, будет возможность восстановить ее из сохраненной копии.

Рассмотрим теперь устройство структуры GPT подробнее. Вся структура GPT на жестком диске состоит из 6 частей:

LBA-адрес Размер (секторов) Назначение
LBA 0 1 Защитный MBR-сектор
LBA 1 1 Первичный GPT-заголовок
LBA 2 32 Таблица разделов диска
LBA 34 NN Содержимое разделов диска
LBA -34 32 Копия таблицы разделов диска
LBA -2 1 Копия GPT-заголовка

Защитный MBR-сектор

Первый сектор на диске (с адресом LBA 0) — это все тот же MBR-сектор. Он оставлен для совместимости со старым программным обеспечением и предназначен для защиты GPT-структуры от случайных повреждений при работе программ, которым про GPT ничего не известно. Для таких программ структура разделов будет выглядеть как один раздел, занимающий все место на жестком диске.

Структура этого сектора ничем не отличается от обычного сектора MBR. В его таблице разделов дожна быть создана единственная запись с типом раздела 0xEE. Раздел должен начинаться с адреса LBA 1 и иметь размер 0xFFFFFFFF. В полях для CHS-адресации раздел соответственно должен начинаться с адреса 0/0/2 (сектор 1 занят под саму MBR) и иметь конечный CHS-адрес FF/FF/FF. Признак активного раздела должен иметь значение 0 (неактивный).

При работе компьютера с UEFI, данный MBR-сектор просто игнорируется и никакой код в нем также не выполняется.

Первичный GPT-заголовок

Этот заголовочный сектор содержит в себе данные о всех LBA-адресах, использующихся для разметки диска на разделы.

Структура GPT-заголовка:

Смещение (байт) Размер поля (байт) Пример заполнения Название и описание поля
0x00 8 байт 45 46 49 20 50 41 52 54 Сигнатура заголовка. Используется для идентификации всех EFI-совместимых GPT-заголовков. Должно содержать значение 45 46 49 20 50 41 52 54, что в виде текста расшифровывается как «EFI PART».
0x08 4 байта 00 00 01 00 Версия формата заголовка (не спецификации UEFI). Сейчас используется версия заголовка 1.0
0x0C 4 байта 5C 00 00 00 Размер заголовка GPT в байтах. Имеет значение 0x5C (92 байта)
0x10 4 байта 27 6D 9F C9 Контрольная сумма GPT-заголовка (по адресам от 0x00 до 0x5C). Алгоритм контрольной суммы — CRC32. При подсчёте контрольной суммы начальное значение этого поля принимается равным нулю.
0x14 4 байта 00 00 00 00 Зарезервировано. Должно иметь значение 0
0x18 8 байт 01 00 00 00 00 00 00 00 Адрес сектора, содержащего первичный GPT-заголовок. Всегда имеет значение LBA 1.
0x20 8 байт 37 C8 11 01 00 00 00 00 Адрес сектора, содержащего копию GPT-заголовка. Всегда имеет значение адреса последнего сектора на диске.
0x28 8 байт 22 00 00 00 00 00 00 00 Адрес сектора с которого начинаются разделы на диске. Иными словами — адрес первого раздела диска
0x30 8 байт 17 C8 11 01 00 00 00 00 Адрес последнего сектора диска, отведенного под разделы
0x38 16 байт 00 A2 DA 98 9F 79 C0 01 A1 F4 04 62 2F D5 EC 6D GUID диска. Содержит уникальный идентификатор, выданный диску и GPT-заголовку при разметке
0x48 8 байт 02 00 00 00 00 00 00 00 Адрес начала таблицы разделов
0x50 4 байта 80 00 00 00 Максимальное число разделов, которое может содержать таблица
0x54 4 байта 80 00 00 00 Размер записи для раздела
0x58 4 байта 27 C3 F3 85 Контрольная сумма таблицы разделов. Алгоритм контрольной суммы — CRC32
0x5C 420 байт Зарезервировано. Должно быть заполнено нулями

Система UEFI проверяет корректность GPT-заголовка, используя контрольный суммы, вычисляемые по алгоритму CRC32. Если первичный заголовок поврежден, то проверяется контрольная сумма копии заголовка. Если контрольная сумма копии заголовка правильная, то эта копия используется для восстановления информации в первичном заголовке. Восстановление также происходит и в обратную сторону — если первичный заголовок корректный, а копия неверна, то копия восстанавливается по данным из первичного заголовка. Если же обе копии заголовка повреждены, то диск становится недоступным для работы.

У таблицы разделов дополнительно существует своя контрольная сумма, которая записывается в заголовке по смещению 0x58. При изменении данных в таблице разделов, эта сумма рассчитывается заново и обновляется в первичном заголовке и в его копии, а затем рассчитывается и обновляется контрольная сумма самих GPT-заголовков.

Таблица разделов диска

Следующей частью структуры GPT является собственно таблица разделов. В настоящее время операционные системы Windows и Linux используют одинаковый формат таблицы разделов — максимум 128 разделов, на каждую запись раздела выделяется по 128 байт, соответственно вся таблица разделов займет 128*128=16384 байт, или 32 сектора диска.

Системное программное обеспечение: Учебное пособие

Для того, чтобы оценить ресурс, необходимо авторизоваться.

Настоящее учебное пособие предназначено для подготовки студентов различных вычислительных специальностей, изучающих работу в среде MS-DOS. Для специальности 2201 эта работа может использоваться в курсах «Системное программное обеспечение», «Проектирование микропроцессорных систем», «Организация ввода-вывода». В пособии описано семейство микропроцессоров х86 с точки зрения программиста, рассмотрены регистры процессора, способы адресации и формирования исполнительного адреса. Даны основы программирования на ассемблере, приведены примеры программ, использующих ресурсы MS-DOS. Рассмотрены способы написания резидентных программ и драйверов. Рассмотрены соответствующие примеры.

Файловая система MS-DOS(FAT)

Файловая система FAT (File Allocation Table) использовалась во всех версиях ОС Ms-DOS, а также в OS/2 (в версиях 1.0 и 1.1) и первых релизах Windows 95. Указанная файловая система вполне удовлетворяла требованиям своего времени в основном благодаря тому, что сама по себе очень компактна и проста. Благодаря этому она с легкостью использовалась на гибких носителях. Для хранения файла в FAT может использоваться один или несколько кластеров. Каждому кластеру диска в таблице FAT соответствует отдельная запись, которая либо указывает на следующий кластер файла, либо содержит метку конца файла. В составе каждого каталога хранятся имена входящих в него файлов. Вместе с именем файла хранится указатель на первый кластер этого файла. Помимо этого в каталоге хранится дата создания файла, его размер и атрибуты. Атрибуты могут указывать на то, что файл является скрытым, зарезервированным для использования операционной системой, требует архивирования (резервного копирования) или предназначен только для чтения. Казалось бы, при такой организации хранения данных, система должна быть достаточно быстрой и надежной.

Давайте же рассмотрим ее недостатки. Самый первый и главный недостаток, с которым мы сталкиваемся при использовании FAT – это слишком сильная ограниченность максимального размера тома FAT. Цифра 16 в названии FAT 16 означает, что таблица размещения файлов FAT идентифицирует записи, соответствующие дисковым кластерам, при помощи 16-разрядных чисел. Таким образом, в таблице можно разместить не более 65 536 записей (2 в 16-ой степени). А если учитывать то, что максимальный размер кластера — 32 Кбайта, то выходит, что максимальный раздел дискового тома — 2 Гбайта. Естественно, что эта система не удовлетворяет современным винчестерам, имеющим объемы в десятки гигабайт.

Второй недостаток заключается в том, что для хранения всех файловых атрибутов система FAT использует всего 1 байт! Много ли можно поместить в один байт? Следовательно, просто не представляется возможности хранить данные о правах доступа к файлу, о его владельце и т.д.

Недостаток номер 3 – при использовании большего размера тома мы вынуждены использовать больший размер кластера. Однако, в FAT один файл занимает как минимум один кластер. Например, при размере кластера в 32 Кбайт мы имеем файл, размером 2 Кбайт – в результате файл занимает весь кластер и мы теряем 30 Кбайт. Таким образом, получается, что физически файл занимает не 2, а все 32 Кбайт!

Четвертый недостаток – сведения о физическом расположении файлов хранятся в одном месте – таблице размещения файлов FAT. Это приводит к следующему:

• увеличивается вероятность повреждения и потери всей информации

• снижается скорость поиска, т.к. для поиска определенного файла нужно обработать всю таблицу.

Подводя итог вышесказанному, можно сделать вывод, что использовать FAT 16 в настоящее время неэффективно. Но стоит заметить, что FAT создавалась довольно давно и удовлетворяла требованиям того времени.

Файловая система FAT 32

Эта файловая система пришла на смену FAT 16, начиная с Windows 95 OEM release 2. Основное ее отличие от FAT 16 заключается в том, что таблица размещения файлов FAT идентифицирует записи, соответствующие дисковым кластерам, при помощи 32-разрядных чисел. В соответствии с этим максимальное количество записей становится равным 4 294 967 296 (2 в 32-ой степени). Следовательно, существенно увеличивается максимальный размер тома (до 2 Тбайт). Но в остальном система осталась практически такой же. Однако необходимость работать с огромными по размеру томами и документами прямо указывает на недостатки FAT 32. Итак, рассмотрим их по порядку.

• Не требуется большое количество оперативной памяти для эффективной работы с ней

• Быстрая работа с малыми и средними каталогами

• Диск совершает в среднем меньшее количество движений головками (в сравнении, например с NTFS)

• Достаточно эффективно работает на медленных дисках. Не требовательна к системам Bus Mastering

• Быстрый доступ к данным на маленьких по объему винчестерах

• Малый размер файла каталога позволяет практически всегда оставлять его не фрагментированным

• Катастрофическая потеря быстродействия с увеличением фрагментации, особенно для больших дисков

• Сложности с произвольным доступом к большим (

10% от объема винчестера и более) файлам

• Очень медленная работа с каталогами, содержащими большое количество файлов

• Одного байта явно недостаточно для хранения атрибутов файла, из-за этого нет возможности хранить данные о правах доступа к файлу, его владельце и т.д.

Вывод напрашивается сам собой. FAT 32 как система уже отжила свое. Она показывает себя только на машинах с небольшими дисками и объемом ОЗУ менее 64 Мбайт. При лучшей машине гораздо удобней будет использовать NTFS как с точки зрения быстродействия, так и с точки зрения надежности. FAT 32 просто-напросто продлила жизнь фаловой системе FAT 16, не более того.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Dos fn 1bh: дать информацию fat (текущий диск)

Теперь, после того, как мы познакомились с логической структурой диска в MS-DOS, можно приступить к изучению одной из самых развитых подсистем операционной системы — файловой системы.

Сервис файловой системы доступен программе через прерывание MS-DOS INT 21h . Многочисленные функции этого прерывания, относящиеся к файловой системе, можно разбить на группы:

  • получение справочной информации;
  • работа с каталогами;
  • работа с файлами.

Функции первой группы позволяют программе получить разностороннюю информацию, касающуюся текущего состояния дисковой подсистемы — текущие используемые диск и каталог, размер свободного места на диске, параметры логического диска и т.д.

Функции второй группы выполняют все необходимые операции с каталогами — создание, переименование, уничтожение каталогов, изменение текущего каталога и т.д.

Третья группа функций позволяет программе выполнять практически любые операции над файлами — создание, удаление, чтение/запись, переименование, копирование, пересылка и т.п.

Заметим, что существует два класса функций для работы с файлами. Первый класс использует управляющие блоки файлов FCB . Эти функции исплоьзовались в MS-DOS версий 1.х и имеют в настоящее время чисто исторический интерес. Вам они скорее всего никогда не будут нужны, за исключением одного случая — если вам надо составить программу, способную работать под управлением MS-DOS версии 1.0 или 1.1. В этой книге мы не будем упоминать функции, предназначенные для работы с файлами через FCB . При необходимости вы сможете найти информацию об этих функциях в руководстве по операционной системе MS-DOS.

Второй класс использует файловые индексы (handle). Этот класс функций впервые появился в MS-DOS версии 2.0. Эти функции аналогичны используемым в операционной системе UNIX.

Смысл файлового индекса очень прост. Для того чтобы начать работу с файлом, программа должна вызывать определенную функцию DOS, «открывающую» этот файл. Процесс открытия файла заключается в присвоении этому файлу определенного числа (индекса) и выполнении некоторых других инициализирующих действий. Для выполнения каких-либо операций с файлом программа, вызывая соответствующую функцию MS-DOS, должна указать индекс этого файла.

Первые пять файловых индексов зарезервированы операционной системой:

Стандартное устройство ввода (клавиатура)
1 Стандартное устройство вывода (экран)
2 Стандартное устройство для вывода сообщений об ошибках (экран)
3 Стандартное устройство последовательного ввода/вывода, обычно это асинхронный адаптер COM1 .
4 Стандартное печатающее устройство (обычно первый принтерный порт LPT1 )

Зарезервированные файловые индексы всегда доступны программе. Для устройств, соответствующих этим индексам, не требуется выполнять операцию открытия.

Одно из преимуществ второго класса файловых функций — возможность одновременной работы с файлами, находящимися в разных каталогах.

Состав функций MS-DOS, предназначенных для работы с файловой системой, достаточно разнообразен и функционально полон. Только в очень редких случаях, связанных в основном с организацией защиты информации от несанкционированного доступа, вам может потребоваться доступ к диску на более низком уровне. Если ваша программа использует для работы с файлами только документированные функции операционной системы, ее работа не будет зависеть от аппаратных средств компьютера, от используемой для создания разделов диска утилиты.

Описание функций MS-DOS, предназначенных для работы с файловой системой, мы начнем с функций получения справочной информации.

Прежде чем мы начнем обзор функций получения справочной информации о состоянии и параметрах дисковой подсистемы, введем понятие текущего диска и текущего каталога.

Если вы запускаете программу, которая находится в каком-либо каталоге на одном из дисков, то эти диск и каталог становятся текущими для MS-DOS. Это можно понимать в том смысле, что программе не требуется каждый раз при работе с файлами указывать требуемый диск или каталог.

В любой момент времени программа может узнать текущие диск или каталог, а также заменить их. Для этого она должна использовать специальные функции прерывания INT 21h.

Для установки текущего диска можно использовать функцию 0Eh , которая имеет следующий формат вызова:

На входе: AH = 0Eh
DL = Номер дисковода (0 — А:, 1 — В:, и т.д.)
На выходе: AL = Общее количество дисководов в системе. Эта величина соответствует параметру LASTDRIVE файла CONFIG.SYS.

Для того чтобы узнать номер текущего дисковода, программа может воспользоваться функцией 19h :

На входе: AH = 19h
На выходе: AL = Номер текущего дисковода (0 — А:, 1 — В:, и т.д.).

Функция 3Bh предназначена для установки текущего каталога:

На входе: AH = 3Bh
DL = Номер дисковода (0 — текущий, 1 — А:, 2 — В:, и т.д.)
DS:DX = Адрес буфера, содержащего путь каталога, который должен стать текущим.
На выходе: AX = Код ошибки, если CY установлен в 1 .

Буфер пути может иметь максимальный размер 64 байта. Он должен содержать путь в формате ASCIIZ, т.е. строку, закрытую двоичным нулем, например: «path\dirname»,0 . Строка не должна содержать литеры, обозначающие диск. Если текущим должен стать корневой каталог, строка должна состоять только из одного двоичного нуля.

Для того чтобы узнать текущий каталог, вы можете воспользоваться функцией 47h :

На входе: AH = 47h
DL = Номер дисковода ( 0 — текущий, 1 — А:, 2 — В: , и т.д.)
DS:SI = Адрес буфера для записи пути текущего каталога.
На выходе: AX = Код ошибки, если флаг переноса CF установлен в 1 .

Буфер должен иметь размер не менее 64 байтов, текущий каталог возвращается в формате ASCIIZ без литеры, обозначающей диск. Если текущим является корневой каталог, регистровая пара DS:SI будет указывать на нулевую строку (состоящую из одного двоичного нуля).

Функции MS-DOS могут помочь вам в получении информации, необходимой для организации доступа к диску на уровне секторов и кластеров. При этом вы будете избавлены от необходимости читать в память и анализированть содержимое загрузочного сектора логического диска.

Информация о таблице размещения файлов FAT для текущего диска может быть получена с помощью функции 1Bh прерывания INT 21h , имеющего следующий формат:

На входе: AH = 1Bh
На выходе: DS:BX = Адрес первого байта FAT . Это байт ID идентификации среды носителя данных, соответствует байту media в блоке параметров BIOS.
DX = Общее количество кластеров на диске.
AL = Количество секторов в одном кластере.
CX = Количество байтов в одном секторе.

Дополнительно эта функция возвращает информацию об общем количестве кластеров на диске, размере кластера в секторах и размере сектора в байтах. Для версий MS-DOS, более ранних, чем 2.0, регистровая пара DS:BX указывала на FAT , считанный в память. Более поздние версии операционной системы могут содержать по этому адресу только часть таблицы размещения файлов.

Для получения аналогичной информации не о текущем, а о любом диске, используйте функцию 1Ch . Эта функция полностью аналогична предыдущей, за исключением того, что в регистре DL должен быть указан код дисковода: 0 — текущий, 1 — А:, 2 — В: и т.д. Эта функция доступна в MS-DOS версии 2.0 и в более поздних версиях.

Если вас интересует размер свободного места на диске, вы можете его узнать с помощью функции 36h , имеющей следующий формат:

На входе: AH = 36h
DL = Номер дисковода ( 0 — текущий, 1 — А:, 2 — В: , и т.д.)
На выходе: AX = Количество секторов в кластере; 0FFFFh , если был задан неправильный номер дисковода;
BX = Количество свободных кластеров на диске.
CX = Количество байтов в одном секторе.
DX = Общее количество кластеров на диске.

Эта функция возвращает в регистре AX число 0FFFFh , если вы неправильно указали номер дисковода.

При обсуждении векторной таблицы связи мы рассказывали о блоках управления устройствами DDCB . Поле dev_cb векторной таблицы связи содержит FAR -адрес цепочки этих блоков.

Приведем еще раз формат блока DDCB . Напомним, что он изменяется в зависимости от версии DOS. Для версий 2.х и 3.х блок DDCB имеет следующий формат:

(0) 1 drv_num номер устройства ( 0 соответствует устройству А: , 1 — В: и т.д.)
(+1) 1 drv_numd дополнительный номер устройства внутри драйвера
(+2) 2 sec_size размер сектора в байтах
(+4) 1 clu_size число, на единицу меньшее количества секторов в кластере
(+5) 1 clu_base если содержимое этого поля не равно нулю, то для получения общего числа секторов в кластере надо возвести 2 в степень clu_base и получившееся число прибавить к clu_size
(+6) 2 boot_siz количество зарезервированных секторов (boot-сектора, начало корневого каталога)
(+8) 1 fat_num количество копий FAT
(+9) 2 max_dir максимальное число дескрипторов файлов в корневом каталоге (т.е. максимальное число файлов, которое может содержать корневой каталог на этом устройстве)
(+11) 2 data_sec номер первого сектора данных на диске (номер сектора, соответствующего кластеру номер 2)
(+13) 2 hi_clust максимальное количество кластеров (равно увеличенному на 1 количеству кластеров данных)
(+15) 1 fat_size количество секторов, занимаемых одной копией FAT
(+16) 2 root_sec номер первого сектора корневого каталога
(+18) 4 drv_addr FAR -адрес заголовка драйвера, обслуживающего данное устройство
(+22) 1 media байт описания среды носителя данных
(+23) 1 acc_flag флаг доступа, 0 означает, что к устройству был доступ
(+24) 4 next адрес следующего блока DDCB , для последнего блока в поле смещения находится число FFFF
————— только для DOS 2.x —————
(+28) 2 dir_clu номер начального кластера текущего каталога (0 для корневого каталога)
(+30) 64 dir_path строка в формате ASCIIZ, содержащая путь к текущему каталогу
————— DOS 3.х —————————-
(+28) 2 reserv1 зарезервировано, обычно равно 0
(+30) 2 built число FFFF в этом поле означает, что блок DDCB был построен

Формат блока DDCB для DOS версии 4.х:

(0) 1 drv_num номер устройства ( 0 соответствует устройству А:, 1 — В: и т.д.)
(+1) 1 drv_numd дополнительный номер устройства внутри драйвера
(+2) 2 sec_size размер сектора в байтах
(+4) 1 clu_size число, на единицу меньшее количества секторов в кластере
(+5) 1 clu_base если содержимое этого поля не равно нулю, то для получения общего числа секторов в кластере надо возвести 2 в степень clu_base и получившееся число прибавить к clu_size
(+6) 2 boot_siz количество зарезервированных секторов (boot-сектора, начало корневого каталога)
(+8) 1 fat_num количество копий FAT
(+9) 2 max_dir максимальное число дескрипторов файлов в корневом каталоге (т.е. максимальное число файлов, которое может содержать корневой каталог на этом устройстве)
(+11) 2 data_sec номер первого сектора данных на диске (номер сектора, соответствующего кластеру номер 2)
(+13) 2 hi_clust максимальное количество кластеров (равно увеличенному на 1 количеству кластеров данных)
(+15) 1 fat_size количество секторов, занимаемых одной копией FAT
(+16) 1 reserv1 зарезервироано
(+17) 2 root_sec номер первого сектора корневого каталога
(+19) 4 drv_addr FAR -адрес заголовка драйвера, обслуживающего данное устройство
(+23) 1 media байт описания среды носителя данных
(+24) 1 acc_flag флаг доступа, 0 означает, что к устройству был доступ
(+25) 4 next адрес следующего блока DDCB , для последнего блока в поле смещения находится число FFFF
(+29) 2 reserv2 зарезервироано
(+31) 2 built число FFFF в этом поле означает, что блок DDCB был построен

Файл sysp.h содержит определение типа DDCB для MS-DOS версии 4.х:

При описании векторной таблицы связи мы приводили примеры использования блоков DDCB . Для получения адреса блока DDCB конкретного дисковода можно воспользоваться недокументированной функцией 32h . Она имеет следующий формат вызова:

На входе: AH = 32h
DL = Номер дисковода ( 0 — текущий, 1 — А:, 2 — В: , и т.д.)
На выходе: AL = 0, если был задан правильный номер дисковода;
0FFh , если был задан неправильный номер дисковода;
DS:BX = Адрес блока DDCB

Для получения адреса блока DDCB текущего диска можно воспользоваться недокументированной функцией 1Fh , которая имеет формат, аналогичный функции 32h , за исключением того, что не надо задавать номер дисковода в регистре DL .

Какая еще полезная информация может быть получена при использовании функций MS-DOS?

С помощью функции 33h программа может проверить или установить флаг Ctrl-Break и узнать номер диска, с которого выполнялась загрузка операционной системы:

На входе: AH = 33h
AL = Код подфункции:
0 — Проверить текущее состояние флага Ctrl-Break;
1 — Установить флаг Ctrl-Break;
5 — Определить номер диска, который был использован для загрузки операционной системы.
DL = Значение устанавливаемого флага Ctrl-Break для подфункции 1 (0 — OFF, 1 — ON).
На выходе: DL = Текущее состояние флага Ctrl-Break для подфункции 0;
Номер диска, использованного для загрузки операционной системы для подфункции 5 ( 1 — А:, 2 — В: , и т.д.).

Сведения о диске, который был использован для загрузки операционной системы, могут понадобиться вам для поиска файла, содержащего командный интерпретатор или программу DOSSHELL .

Состояние флага Ctrl-Break влияет на возможность прервать выполнение программы нажатием комбинации клавиш Ctrl-Break или Ctrl-C. Если флаг находится в состоянии OFF, DOS проверяет эту комбинацию клавиш только при вызове функций стандартного ввода/вывода на консоль, принтер и последовательный порт. Если флаг установлен в состояние ON, комбинация клавиш проверяется и при вызове других функций MS-DOS. Если операционная система зафиксировала нажатие указанной комбинации клавиш, она выполняет прерывание INT 23h , которое завершает работу текущей программы.

Функция 2Fh возвращает в регистровой паре ES:BX адрес текущей области DTA (Disk Transfer Area), которая используется при поиске файлов в каталогах.

Функция 54h позволяет программе узнать текущее состояние флага проверки записывающейся на диск информации. В регистре AL эта функция возвращает текущее состояние флага. Если содержимое регистра равно 1, операционная система после записи сектора считывает его для проверки. Разумеется, такая проверка снижает скорость работы программы. Если после вызова функции регистр AL содержит 0, проверка записи не выполняется.

Для установки флага проверки записи можно использовать функцию 2Eh . Перед вызовом функции в регистр AL необходимо занести новое значение флага проверки: 0 — проверка не нужна; 1 — должна выполняться проверка записанной информации.

Стандартные библиотеки трансляторов Microsoft QC 2.5 и C 6.0 содержат несколько функций, облегчающих получение справочной информации о состоянии дисковой подсистемы.

Функция _dos_getdiskfree() использует функцию 36h для получения информации о диске. Файл dos.h содержит описание этой функции:

Параметр drive задает номер используемого дисковода: 0 — текущий, 1 — А: , и т.д.

Информация возвращается в структуре diskfree_t , которая определена в файле dos.h:

В этой структуре:

unsigned total_clusters общее количество кластеров на диске;
unsigned avail_clusters количество свободных кластеров;
unsigned sectors_per_cluster количество секторов, занимаемых кластером;
unsigned bytes_per_sector размер сектора в байтах.

Для получения номера текущего диска и для установки номера текущего диска можно использовать, соответственно, функции _dos_getdrive() и _dos_setdrive().

Функция _dos_getdrive() имеет формат:

Эта функция пользуется функцией 19h для получения номера текущего диска, который записывается по адресу, задаваемому параметром. Значение 1 соответствует диску А:, 2 — В:, и т.д.

Функция _dos_setdrive() предназначена для установки текущего диска и может быть использована для определения общего числа дисков в системе:

Параметр drive опеределяет текущий диск ( 1 — А: , и_т.д.), по адресу, задаваемому вторым параметром, функция записывает общее количество логических дисков, установленных в системе. Функция _dos_setdrive() использует функцию 0Eh прерывания INT 21h.

Для иллюстрации способов использования функций _dos_getdrive(), _dos_setdrive(), _dos_getdiskfree() мы составили следующую программу:

После форматирования логический диск содержит корневой каталог. Если диск форматируется как системный, в этом каталоге могут находится дескрипторы файлов операционной системы IO.SYS, MSDOS.SYS, COMMAND.COM.

Операционная система предоставляет программам пользователя удобный сервис для создания, уничтожения и переименования каталогов. Используя сведения, приведенные в этой книге, вы сможете изменять структуру каталогов сами, не прибегая к услугам MS-DOS. Однако это следует делать только тогда, когда операции с каталогами по каким-то причинам нежелательно выполнять с использованием функций операционной системы.

Для создания каталога используйте функцию 39h прерывания INT 21h:

На входе: AH = 39h
DS:DX = Адрес строки в формате ASCIIZ, содержащей имя создаваемого каталога.
На выходе: AL = Код ошибки, если был установлен в 1 флаг переноса CF .

Строка, имени создаваемого каталога может содержать полный путь, состоящий из имени диска и имени каталога, в котором должен быть создан каталог, или она может состоять только из одного имени каталога. В последнем случае каталог создается в текущем каталоге на текущем диске.

Размер строки с именем каталога не должен превышать по длине 64 байта.

Удалить существующий каталог можно с помощью функции 3Ah . Формат вызова этой функции аналогичен предыдущему:

На входе: AH = 3Ah
DS:DX =Адрес строки в формате ASCIIZ, содержащей имя удаляемого каталога.
На выходе: AL = Код ошибки, если был установлен в 1 флаг переноса CF .

Необходимо заметить, что удалить можно только пустой каталог. И это понятно, так как если вы в обход операционной системы удалите непустой каталог, то описанные в этом каталоге файлы и каталоги будут потеряны для вас, а занимаемое ими место невозможно будет распределить другим файлам.

Для изменения имени каталогов и файлов предназначена функция 56h :

На входе: AH = 56h
DS:DX = Адрес строки в формате ASCIIZ, содержащей старое имя каталога или файла.
ES:DI = Адрес строки в формате ASCIIZ, содержащей новое имя каталога или файла.
На выходе: AL = Код ошибки, если был установлен в 1 флаг переноса CF .

Переименуемый файл или каталог должен существовать. Если в имени не указан диск или каталог, то подразумевается, что файл или каталог находится в текущем каталоге на текущем диске. Напротив, каталога или файла с новым именем не должно быть, иначе функция возвратит признак ошибки.

Эта функция может перемещать файл из одного каталога в другой, если вы укажите разные пути. Каталоги перемещать нельзя, их можно только переименовывать.

Мы уже рассказывали о функции 3Bh , с помощью которой можно изменить текущий каталог, если это необходимо.

Стандартные библиотеки трансляторов Microsoft QC 2.5 и C 6.0 содержат несколько функций, предназначенных для работы с каталогами.

Функция getcwd() предназначена для определения текущего каталога. Прототип этой функции описан в файле direct.h:

Первый параметр этой функции — адрес буфера, в который необходимо занести строку, содержащую имя текущего каталога. Размер этого буфера определяется вторым параметром.

Если в качестве первого параметра указать NULL , функция динамически закажет буфер длиной n байтов из области кучи. Эту память впоследствии необходимо будет освободить при помощи функции free() . Функция getcwd() возвращает указатель на буфер, содержащий текущий каталог.

Приведем пример простой программы, которая выводит на экран информацию о текущем каталоге:

Для создания и удаления каталогов, изменения текущего каталога имеются функции mkdir(), rmdir(), chdir().

Все эти функции имеют один параметр — путь каталога, который имеет тип (char_*). В случае успешного выполнения операции функции возвращают 0 , при ошибке — 1 .

Приведем небольшой пример, использующий перечисленные выше функциии:

Для переименования каталогов (и файлов) предназначена функция rename():

Способ ее использования очевиден: необходимо задать старое и новое имена каталогов. Можно задавать как полный путь, так и просто имя каталога/файла. В последнем случае операция переименования выполняется над каталогами или файлами, находящимися в текущем каталоге.

Функция может возвращать один из кодов ошибки:

ENOENT Нет такого файла или каталога
EACCES Нет прав доступа
EXDEV Другой диск

Код ошибки EXDEV возвращается в том случае, когда программа указывает разные диски для старого и нового имен файлов или каталогов.

Важное замечание: если вы задаете полный путь, в строке пути повторяйте символ ‘\’ два раза. Это нужно для того, чтобы избежать конфликта с форматом представления констант в языке С. Например:

Часто перед программистом стоит задача определения текущего содержимого каталога. При описании логической структуры диска мы приводили текст программы, выводящей на экран содержимого корневого каталога и других каталогов. Эта программа использовала загрузочный сектор логического диска и таблицу размещения файлов. Вы можете использовать такой способ, однако, если вам не требуется информация о номерах начальных кластеров файлов и дескрипторы удаленных файлов, лучше применить специальные функции MS-DOS, предназначенные для поиска файлов в каталогах.

Пара функций 4Eh и 4Fh предназначены для сканирования каталогов.

Эти функции используются вместе следующим образом:

  • Вызывается функция 4Eh для поиска в каталоге файла, соответствующего образцу. В образце можно использовать символы ? и *, которые означают, соответственно, один любой символ и любое количество любых символов. Информация о найденном файле располагается в специальной области, назначенной каждой работающей программе — области DTA .
  • Вызывается в цикле функция 4Fh для поиска остальных файлов, удовлетворяющих образцу, заданному при вызове функции 4Eh . Условие завершения цикла — отсутствие в каталоге указанных файлов.

Приведем формат вызова функций 4Eh и 4Fh .

На входе: AH = 4Eh
CX = Атрибуты файла, которые будут использованы при поиске. Будут найдены файлы, имеющие заданный в этом регистре атрибут.
DS:DX = Адрес строки в формате ASCIIZ, содержащей путь каталогаили файла.
На выходе: AL = Код ошибки, если был установлен в 1 флаг переноса CF .

На входе: AH = 4Fh
На выходе: AL = Код ошибки, если был установлен в 1 флаг переноса CF .

Обе функции устанавливают флаг переноса в том случае, когда каталог не содержит файлов, удовлетворяющих заданному критерию поиска.

Для работы с областью DTA MS-DOS имеет две функции. Это функция 2Fh , позволяющая получить адрес области DTA (она возвращает этот адрес в регистрах ES:BX ), и функция 1Ah , предназначенная для установки своей области DTA (адрес новой области DTA должен быть указан в регистрах DS:DX ).

Напомним, что по умолчанию область DTA занимает 128 байтов в префиксе сегмента программы PSP со смещением 80h .

В случае успешного поиска функции 4Eh и 4Fh помещают в DTA информацию о найденных файлах в следующем формате:

(0) 20 Зарезервировано.
(+21) 1 Атрибуты найденного файла
(+22) 2 Поле времени последнего обновления фалйла
(+24) 2 Поле даты последнего обновления фалйла
(+26) 4 Длина файла
(+30) 13 Имя файла и расширение в формате ASCIIZ

Номер начального класетра, распределенного файлу или каталогу, невозможно получить с помощью функций 4Eh и 4Fh .

Стандартные библиотеки трансляторов Microsoft QC 2.5 и C 6.0 содержат две функции, предназначенные для сканирования каталогов — _dos_findfirst() и _dos_findnext() .

Приведем прототипы этих функций, описанные в файле dos.h :

В этих функциях параметр pattern определяет образец для поиска файлов, параметр attr — атрибуты файла — используется в качестве дополнительного критерия поиска. Параметр found представляет собой указатель на структуру, в которую будет записываться информация о найденных файлах. Эта структура определена в файле dos.h :

Приведем текст программы просмотра содержимого каталога. Программа принимает из командной строки параметр — образец для показа файлов. Если вы укажете параметр *.* , будет выведена информация обо всех файлах. Можно задавать полный путь: c:\*.* .

При запуске программы с параметром *.com на экран будет выведена информация:

В этом разделе мы рассмотрим функции MS-DOS, предназначенные для создания, переименования, удаления и перемещения файлов. Операции чтения из файла и записи в файл будут описаны в следующем разделе.

Для создания файла предназначена функция 3Ch прерывания INT 21h . С помощью этой функции может быть создан файл как в текущем, так и в любом другом каталоге. Если файл с указанным именем уже существует, он обрезается до нулевой длины. Будьте осторожны при использовании этой функции — она может уничтожить нужный вам файл.

Дополнительно функция 3Ch выполняет операцию открытия только что созданного файла, возвращая программе файловый индекс. При создании файла программа может указать требуемые атрибуты, которые будут использованы другими функциями для определения возможности предоставления доступа к файлу.

Приведем формат вызова функции создания файла:

На входе: AH = 3Ch
CX = Атрибуты создаваемого файла:
00h — обычный файл;
01h — только читаемый файл;
02h — скрытый файл;
04h — системный файл.
DS:DX = Адрес строки, содержащей путь создаваемого файла
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF ;
Файловый индекс, если флаг переноса сброшен в 0.

При выполнении этой функции возможны следующие ошибки:

  • отсутствует какой-либо элемент в пути для создаваемого файла, например, диск или каталог;
  • была сделана попытка создать файл в корневом каталоге, но корневой каталог переполнен;
  • в указаннном каталоге уже есть файл с таким именем, и этот файл имеет атрибут «Только читаемый»;
  • пользователь, который работает в сети, не имеет прав доступа для выполнения указанной операции.

Операционная система игнорирует попытки создания с помощью этой функции каталогов или метки диска.

Для того, чтобы случайно не уничтожить содержимое файла с таким же именем, как и создаваемый, программа может использовать функцию 5Bh . Эта функция проверяет заданный путь на предмет наличия указанного файла. Если такой файл уже существует, функция возвращает программе признак ошибки.

Формат вызова функции:

На входе: AH = 5Bh
CX = Атрибуты создаваемого файла:
00h — обычный файл;
01h — только читаемый файл;
02h — скрытый файл;
04h — системный файл.
DS:DX = Адрес строки, содержащей путь создаваемого файла
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF ;
Файловый индекс, если флаг переноса сброшен в 0 .

Если вам требуется временный файл, вы можете создать его с помощью функции 5Ah :

На входе: AH = 5Ah
CX = Атрибуты создаваемого файла:
00h — обычный файл;
01h — только читаемый файл;
02h — скрытый файл;
04h — системный файл.
DS:DX = Адрес буфера, в который функция запишет путь созданного временного файла. Размер этого буфера должен быть по крайней мере 13 байтов.
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF ;
Файловый индекс, если флаг переноса сброшен в 0 .

Операционная система не будет автоматически удалять созданный временный файл после завершения работы программы или перезагрузки. Программа должна сама удалить этот файл.

Перед тем, как начать работу с файлом, его нужно открыть. Функции, создающие новые файлы, открывают новые файлы автоматически. Для того, чтобы открыть существующий файл, вы можете воспользоваться функцией 3Dh :

На входе: AH = 3Dh
AL = Требуемый режим доступа:

Бит 7: флаг наследования

0 — файловый индекс наследуется порожденным процессом
1 — файловый индекс не наследуется порожденным процессом

Биты 4. 6: режим разделения

000 — режим совместимости
001 — запрещение всех видов доступа
010 — запрещение записи
011 — запрещение чтения
100 — разрешение всех видов доступа

Бит 3:0 — зарезервировано

Биты 0. 2: вид доступа

000 — чтение
001 — запись
010 — чтение/запись

DS:DX = Адрес строки, содержащей путь открываемого файла
На выходе: AX = Код ошибки, если флаг переноса CF был установлен в 1 ;
Файловый индекс, если флаг переноса сброшен в 0 .

С помощью функции 3Dh можно открыть любой файл (но не каталог). Если требуется вид доступа «запись», открываемый файл не должен иметь атрибут «Только читаемый».

Для использования битов 4. 7 (управляющих доступом к файлу другими программами в сети) должна быть запущена программа SHARE.EXE.

Если используется бит наследования, то порожденному процессу наследуются запрошенный при открытии файла вид доступа.

Операционная система MS-DOS версии 4.0 имеет в своем составе функцию 6Ch , обладающую расширенными возможностями по созданию и открытию файлов:

На входе: AH = 6Ch
AL = 00h
BX = байт флагов расширенного режима открытия файла
CX = атрибуты создаваемого файла, используется только при создании файлов
DX = выполняемая функция, если файл существует или не существует:

Биты 0-3 регистра DX задают действие, если файл существует:

0000h — если файл существует, вернуть признак ошибки
0001h — если файл существует, открыть его
0002h — если файл существует, заместить и открыть его

Биты 4-7 регистра DX задают действие, если файл не существует:

0000h — если файл не существует, вернуть признак ошибки
0001h — если файл не существует, создать и открыть его

DS:SI = Адрес строки, содержащей путь открываемого файла
На выходе: AX = Код ошибки, если флаг переноса CF был установлен в 1 ;
Файловый индекс, если флаг переноса сброшен в 0 .
CX = Код выполненных действий:
0 — файл был открыт
1 — файл был создан и открыт
2 — файл был замещен и открыт

Регистр BX на входе задает флаги расширенного режима открытия файла в следующем формате:

Биты Назначение
0. 2 Режим доступа при чтении/записи
3 Зарезервировано, должно быть равно 0
4. 6 Режим разделения
7 Флаг наследования
8. 12 Зарезервировано, должно быть равно 0
13 0 — Режим обычного использования обработчика критических ошибок INT 24h
1 — Блокировка обработчика критических ошибок INT 24h. Для того, чтобы узнать причину ошибки, программа должна использовать функцию 59h прерывания INT 21h MS-DOS.
14 Управление буферизацией:
0 — Использование стандартной для MS-DOS буферизации.
1 — Отмена буферизации. Использование этого режима замедлит работу с диском, однако вероятность потери информации при аварии в питающей сети уменьшится.

Описанная выше функция является как бы комбинацией функций 3Dh и 3Ch (открытие и создание файла). Она удобна, но при ее использовании программа должна убедиться в том, что версия используемой операционной системы не ниже, чем 4.0.

Удалить файл можно при помощи функции 41h прерывания INT 21h:

На входе: AH = 41h
DS:DX = Адрес строки в формате ASCIIZ, содержащей имя удаляемого файла.
На выходе: AL = Код ошибки, если был установлен в 1 флаг переноса CF .

С помощью этой функции нельзя удалить файл, имеющий атрибут «Только читаемый».

Под удалением файла понимается вычеркивание файла из каталога и освобождение всех принадлежавших ранее этому файлу кластеров. Эти кластеры отмечаются в таблице размещения файлов как свободные. Уничтожения информации на диске при стирании файлов не происходит, поэтому в некоторых случаях можно полностью восстановить случайно удаленные файлы.

Стандартные библиотеки трансляторов Microsoft QC 2.5 и C 6.0 содержат функции для работы с файлами. Эти функции можно разделить на две группы — функции ввода/вывода низкого уровня и функции ввода/вывода потоком. Вторая группа функций использует буферизацию и будет рассмотрена в разделе, посвященном буферизованному вводу/выводу.

Функции ввода/вывода низкого уровня отображаются на описанные выше функции прерывания INT 21h (и функции этого же прерывания, предназначенные для чтения/записи, позиционирования и т.д.).

Для создания файла можно использовать функцию creat() :

Эта функция и ее параметры описаны в файлах io.h, sys\types.h, sys\stat.h, errno.h.

Первый параметр определяет путь создаваемого файла и его имя. Если файл с указанным именем существует, и не имеет атрибута «Только читаемый», функция сбрасывает длину файла до нуля. Предыдущее содержимое файла при этом уничтожается.

Второй параметр позволяет задать атрибуты создаваемого файла. Он может иметь следующие значения:

S_IWRITE для создаваемого файла разрешена операция записи;
S_IREAD для создаваемого файла разрешена операция чтения;
S_IREAD | S_IWRITE для создаваемого файла разрешены операции чтения и записи.

В операционных системах MS-DOS и OS/2 невозможно создать файл, в который можно было бы писать, но из которого было бы нельзя читать информацию. Поэтому задание второго параметра как S_IWRITE приведет к созданию такого файла, для которого разрешены как операция записи, так и операция чтения.

После создания файла функция creat() открывает новый файл и возвращает файловый индекс ( handle ) или код ошибки.

Мощная функция open() предназначена как для открытия существующих файлов, так и для создания новых:

Первый и третий параметры в этой функции аналогичны параметрам функции creat(), причем третий параметр нужен только при создании нового файла. Квадратные скобки указывают на то, что этот параметр является необязательным.

Параметр oflag может являться результатом битовой операции ИЛИ над следующими константами, определенными в файле fcntl.h:

O_APPEN при записи в файл информация будет добавляться в конец файла;
O_BINARY файл открывается для работы в двоичном режиме (игнорируются управляющие символы, такие как конец строки);
O_CREAT создается новый файл и открывается для записи; эта константа игнорируется, если указанный в первом параметре файл уже существует;
O_EXCL используется вместе с O_CREAT ; если указанный в первом параметре файл существует, функция возвратит признак ошибки;
O_RDONLY файл открывается только для чтения, попытка записи в файл приведет к тому, что функция записи вернет признак ошибки;
O_RDWR файл открывается как для чтения, так и для записи;
O_TEXT файл открывается в текстовом режиме;
O_TRUNC существующий файл открывается и обрезается до нулевой длины (если для этого файла разрешена операция записи);
O_WRONLY файл открывается только для записи (в операционных системах MS-DOS и OS/2 для файла, открытого с признаком O_WRONLY разрешено выполнение операции чтения).

Для того, чтобы закрыть файл, открытый функциями creat() или open() , нужно использовать функцию close():

В качестве параметра функции передается файловый индекс, полученный при открытии или создании файла. Функция возвращает 0 при успешном закрытии файла, или -1 при ошибке.

Код ошибки для этой и других функций cтандартных библиотек трансляторов Microsoft QC 2.5 и C 6.0 записывается в глобальную переменную errno.

После того, как вы открыли файл, можно выполнять над ним операции чтения/записи. Для записи данных в файл предназначена функция 40h прерывания INT 21h . В качестве параметров для этой функции необходимо задать файловый индекс, полученный при открытии существующего файла или создании нового, адрес буфера, содержащего записываемые данные и количество записываемых байтов:

На входе: AH = 40h
BX = файловый индекс открытого файла
CX = количество записываемых байтов
DS:DX = Адрес буфера, содержащего записываемые данные
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF ;
Количество действительно записанных байтов, если флаг переноса CF сброшен в 0 .

При записи данные попадают в то место внутри файла, которое определяется содержимым так называемого файлового указателя позиции. При создании нового файла этот указатель сбрасывается в 0, что соответствует началу файла. При открытии файла с помощью функции 3Dh указатель также устанавливается на начало файла. Операция записи в файл с помощью функции 40h продвигает указатель вперед к концу файла на количество записываемых байтов.

По мере увеличения размера файла ему будут распределяться все новые и новые кластеры из числа отмеченных как свободные.

Если вам необходимо перезаписать содержимое файла, а не дописывать данные в конец, необходимо воспользоваться функцией позиционирования. Эта функция позволяет управлять содержимым файлового указателя позиции, она будет описана в следующем разделе.

Следует учитывать, что количество действительно записанных байтов может не совпадать с заданным в регистре CX при вызове функции 40h . Такая ситуация возможна, например, при записи в файл, открытый в текстовом режиме, байта Ctrl-Z (1Ah) . Этот байт означает конец текстового файла. Другая возможная причина — отсутствие свободного места на диске.

Если функция вызывается с содержимым регистра CX , равным 0 , файл будет обрезан или расширен до текущего положения файлового указателя.

Разумеется, что если программа, выполняющая запись в файл, работает в сети, она должна иметь соответствующие права доступа к каталогу и файлу.

Функция 40h может выполнять запись не только в файл, но и в устройство посимвольной обработки, предварительно открытое функцией 3Dh . Об этом мы говорили в разделах книги, посвященных драйверам.

Для чтения данных из файла (или устройства посимвольной обработки) предназначена функция 3Fh прерывания INT 21h :

На входе: AH = 3Fh
BX = файловый индекс открытого файла
CX = количество читаемых байтов
DS:DX = Адрес буфера для данных
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF ;
Количество действительно прочитанных байтов, если флаг переноса CF сброшен в 0 .

Эта функция используется аналогично функции записи. Для нее верны все замечания, касающиеся файлового указателя позиции, количества действительно прочитанных байтов и прав доступа.

Если ваша программа составлена на языке программирования С, для записи и чтения данных она может воспользоваться функциями write() и read() :

Эти функции работают аналогично функциям 40h и 3Fh прерывания INT 21h . Параметр handle определяет файл, для которого необходимо выполнить операцию записи или чтения. Параметр buffer — указатель на буфер, который содержит данные для записи или в который необходимо поместить прочитанные данные. Количество записываемых/читаемых байтов определяется третьим параметром — count .

После выполнения операции функция возвращает количество действительно записанных или прочитанных данных или -1 при ошибке. Будьте внимательны, если вы записываете или читаете больше 32К байтов — вы можете получить признак ошибки, хотя передача данных выполнилась правильно. Большие массивы данных можно записывать по частям.

В качестве примера мы приведем программу копирования файлов, которая пользуется описанными выше функциями ввода/вывода:

В приведенной программе для определения конца исходного файла использована функция eof():

Для файла с файловым индексом handle эта функция возвращает одно из трех значений:

1 достигнут конец файла;
конец файла не достигнут;
-1 ошибка, например, неправильно указан handle .

Программа, которая читает файл с помощью функции 3Fh прерывания INT 21h , может определить момент достижения конца файла, анализируя код ошибки в регистре AX .

Управляя содержимым файлового указателя позиции, программа может произвольно считывать или перезаписывать различные участки файла, то есть организовать прямой доступ к содержимому файла. Прямой доступ к файлу может вам понадобится, например, для создания систем управления базами данных.

Установить файловый указатель в нужную вам позицию можно с помощью функции 42h прерывания INT 21h MS-DOS:

На входе: AH = 42h
AL = метод кодирования:
00h абсолютное смещение от начала файла
01h смещение от текущей позиции
02h смещение от конца файла
BX = файловый индекс открытого файла
CX = старший байт смещения
DX = младший байт смещения
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF ;
Младший байт текущей позиции, если флаг переноса CF сброшен в 0.
DX = Старший байт текущей позиции

Функция позволяет указывать новое значение указателя либо как абсолютное смещение от начала файла, либо как смещение от текущей позиции, либо как смещение от конца файла. В последних двух случаях используется смещение со знаком. Для указания смещения или абсолютной позиции программа должна задать в регистрах CX, DX 32-битовое значение.

Если использовать метод кодирования 02h и задать нулевое смещение, функция установит указатель на конец файла. Это обстоятельство может быть использовано для определения размера файла в байтах.

Что произойдет, если при использовании методов кодирования 01h или 02h попытаться установить указатель позиции до начала файла?

Функция 42h при этом не возвратит признак ошибки, однако если будет сделана попытка прочитать или записать данные, то соответствующая функция чтения/записи завершится с ошибкой.

Стандартные библиотеки трансляторов Microsoft QC 2.5 и C 6.0 содержат функции, предназначенные для управления содержимым файлового указателя позиции и получения текущего значения этого указателя. Это функции lseek(), tell(), filelength() .

Функция lseek() работает аналогично только что описанной функции 42h . Приведем ее прототип:

Первый параметр определяет файл, для которого выполняется операция позиционирования. Параметр offset определяет смещение. Последний параметр задает метод кодирования смещения. Он может принимать следующие значения, описанные в фале stdio.h :

SEEK_SET Абсолютное смещение от начала файла
SEEK_CUR Смещение относительно текущей позиции
SEEK_END Смещение относительно конца файла

Функция возвращает величину текущего смещения в байтах относительно начала файла или -1L , в случае ошибки. Как и для остальных функций библиотеки С, код ошибки находится в глобальной переменной errno .

Вы, конечно, можете использовать функцию lseek() для определения размера файла или текущей файловой позиции. Однако для того, чтобы узнать размер файла, лучше воспользоваться специальной функцией filelength() :

Функция возвращает размер файла в байтах. Файл задается параметром handle . В случае ошибки функция возвращает значение -1L.

Для того, чтобы определить текущую файловую позицию, можно использовать функцию tell() :

Эта функция возвращает текущую позицию для файла, определенного параметром handle , или -1L , в случае ошибки.

Для демонстрации использования функций позиционирования приведем простую программу, которая для заданного файла и позиции внутри файла отображает содержимое одного байта. Дополнительно программа определяет размер файла и текущую позицию после чтения байта.

Напомним: атрибуты файла, время и дата его последней модификации, а также размер файла хранятся в дескрипторе файла. Дескриптор файла находится в каталоге.

Операционная система предоставляет вам все необходимые средства для изменения всех полей дескриптора файла, кроме номера начального кластера. Для изменения этого номера вам придется работать с каталогом через таблицу размещения файлов FAT . Вам придется сначала считать каталог по кластерам с помощью прерывания INT 25h, модифицировать нужные поля и записать каталог обратно на диск при помощи прерывания INT 26h.

Для работы с полем атрибутов файла предназначена функция 43h прерывания INT 21h:

На входе: AH = 43h
AL = выполняемая операция:
00h чтение атрибутов файла
01h установка новых атрибутов файла
CX = новые атрибуты файла, если AL = 01h:
Биты:
5 — бит архивации
4 — каталог
3 — метка диска
2 — системный файл
1 — скрытый файл
0 — только читаемый файл
DS:DX = путь файла в формате ASCIIZ
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF
CX = Если не было ошибки, этот регистр содержит атрибуты файла

При изменении атрибутов файла допустимо указывать комбинации битов в регистре CX .

Если ваша программа работает в сети, она должна иметь соответствующие права доступа к каталогу, содержащему файл, для которого программа собирается изменять байт атрибутов.

Для работы с полями времени и даты последней модификации файла предназначена функция 57h прерывания INT 21h:

На входе: AH = 57h
AL = выполняемая операция:
00h чтение даты и времени
01h установка даты и времени
BX = файловый индекс открытого файла
CX = время
DX = дата
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF
CX = Если не было ошибки, этот регистр содержит время последнего изменения файла
DX = Если не было ошибки, этот регистр содержит дату последнего изменения файла

Для того, чтобы изменить время или дату последней модификации файла с помощью этой функции, файл предварительно должен быть открыт. Формат времени и даты для этой функции такой же, как и используемый в дескрипторе каталога. Приведем эти форматы еще раз для удобства.

Формат поля времени:

Стандартные библиотеки трансляторов Microsoft QC 2.5 и C 6.0 содержат функции для чтения и изменения атрибутов файлов и времени/даты их последней модификации.

Для определения атрибутов файла можно использовать функцию _dos_getfileattr() :

Эта функция получает атрибуты файла, заданного первым аргументом, и записывает байт атрибутов в младший байт по адресу, указанному вторым параметром.

В случае успешного завершения функция возвращает 0 , в противном случае она возвращает код ошибки, полученный от операционной системы и устанавливает глобальную переменную errno в значение ENOENT , что означает отсутствие указанного в параметре path файла.

Для изменения атрибутов файла можно использовать функцию _dos_setfileattr():

Параметр attrib может принимать следующие значения:

_A_ARCH установка бита архивации
_A_HIDDEN файл скрытый
_A_NORMAL обычный файл
_A_RDONLY только читаемый файл
_A_SUBDIR каталог
_A_SYSTEM системный файл
_A_VOLID метка диска

Для определения времени последней модификации файла можно использовать функцию _dos_getftime():

Перед использованием этой функции программа должна открыть файл. Дата и время записываются по адресу, указываемому, соответственно, вторым и третьим параметрами.

Если вам надо изменить время или дату последней модификации файла, используйте функцию _dos_setftime():

Параметры этой функции аналогичны используемым в функции _dos_getftime() , за исключением того, что в качестве второго и третьего параметра применяются не указатели, а непосредственные значения даты и времени.

Приведем программу, изменяющую при запуске значение бита файла атрибутов «Только читаемый» для файла, имя которого передается программе в качестве параметра:

Программа сначала считывает байт атрибутов, затем инвертирует соответствующий бит и устанавливает новое значение байта атрибутов.

Ввод/вывод для дисков в операционной системе MS-DOS буферизован. Это означает, что данные не сразу записываются на диск, а накапливаются в специальном массиве (буфере). По мере заполнения буфер сбрасывается на диск. При чтении информация заполняет весь входной буфер, независимо от количества байтов, которые программа читает из файла. В дальнейшем, если программе потребуются данные, которые уже были считаны с диска и записаны во входной буфер, она получит данные непосредственно из этого буфера. Обращения к диску при этом не будет.

Буферизация сокращает затраты времени на ввод/вывод, особенно в тех случаях, когда программе периодически требуется одни и те же участки файлов. При копировании файлов буферизация сокращает время на перемещение головок от исходного файла к результирующему и обратно, причем эффект получается тем больше, чем больше размер используемого буфера.

Операционная система MS-DOS имеет несколько буферов. Их количество зависит от оператора BUFFERS , находящегося в файле CONFIG.SYS . Этот оператор позволяет определить от 2 до 99 буферов. Если файл CONFIG.SYS не содержит оператора BUFFERS , по умолчанию используются два буфера.

При увеличении количества буферов увеличивается вероятность того, что нужная часть файла уже считана и находится в оперативной памяти. Однако необходимо учитывать, что для хранения буферов расходуется основная оперативная память. Кроме того, с ростом количества буферов увеличивается время, необходимое операционной системе на анализ состояния буферов, что может привести к снижению производительности. Значительное снижение скорости работы наступает при количестве буферов порядка 50.

Обычно для машин класса AT с диском размером 20-40 мегабайтов рекомендуется использовать 32 буфера, однако для каждого конкретного случая может потребоваться подбор этого параметра для оптимизации производительности системы.

Если ваша программа интенсивно использует обращение к каталогам файловой системы, вы можете использовать утилиту MS-DOS FASTOPEN , которая запоминает в оперативной памяти расположение на диске файлов и каталогов, уменьшая интенсивность обращения к диску. Например, при использовании следующей команды в оперативной памяти будет храниться информация о расположении максимально о 100 файлах и каталогах:

В операционной системе MS-DOS версии 4.0 вы можете указать для утилиты FASTOPEN опцию /X . Эта опция вызывает размещение информации о файлах и каталогах в дополнительной ( expanded ) памяти. Для этой версии операционной системы вызов утилиты FASTOPEN лучше всего выполнять через оператор INSTALL файла CONFIG.SYS:

В приведенной выше строке используются следующие обозначения:

d: обозначение диска;
n количество файлов или каталогов, для которых необходимо запомнить расположение, может иметь значение от 1 до 999, по умолчанию используется 34;
m количество буферов для фрагментированных файлов, может иметь значение от 1 до 999, по умолчанию используется 34;
/X задает расположение буферов в дополнительной памяти.

Еще один способ организовать буферизацию ввода/вывода для жестких дисков — использовать драйвер SMARTDRV.SYS. Этот драйвер позволяет создать для диска кэш-память в расширенной или дополнительной памяти. Например, следующая строка в файле CONFIG.SYS определяет дисковый кэш размером 530 килобайтов, размещенный в расширенной памяти:

Кэш-память особенно эффективна при работе с базами данных, когда вам периодически требуется одна и та же информация. Если создать кэш-память достаточно большого размера, можно значительно сократить количество обращений к диску.

Если вы используете кэш-память для диска, не следует задавать оператор BUFFERS в файле CONFIG.SYS или пользоваться утилитой FASTOPEN , так как это приведет к многократной буферизации и вызовет излишние пересылки данных в оперативной памяти.

Буферизация данных имеет и свои недостатки. Если в результате аварии в питающей сети или по какой-то другой причине компьютер выключился, то информация, хранящаяся в буферах и не записанная на диск, будет потеряна.

При закрытии файла все буфера, связанные с ним, сбрасываются на диск. Если вам надо сбросить буфера, не закрывая файл, это можно сделать с помощью функции 68h прерывания INT 21h :

На входе: AH = 68h
BX = файловый индекс открытого файла
На выходе: AX = Код ошибки, если был установлен в 1 флаг переноса CF ;
0 , если операция выполнена успешно.

Дополнительно обновляется дескриптор файла в каталоге, а именно поля времени, даты и размера файла.

Обратите также внимание на функцию расширенного открытия файлов 6Ch , входящую в состав MS-DOS версии 4.0. Эта функция позволяет при открытии файла отменить буферизацию.

Стандартные библиотеки трансляторов Microsoft QC 2.5 и C 6.0 содержат многочисленные функции, использующие собственный механизм буферизации при работе с файлами. Их часто называют функциями потокового ввода/вывода. Такую буферизацию не следует путать с буферизацией, выполняемой операционной системой. Имена всех этих функций начинаются на f — fopen(), fclose(), fprintf() и т.д.

Функции потокового ввода/вывода хорошо описаны во многих учебных пособиях по языку программирования Си, поэтому мы приведем лишь краткий обзор этих функций, делая акцент на особенностях их применения.

При использовании функций потокового ввода/вывода файлы открываются функцией fopen() , закрываются функцией fclose() . Эти функции не только открывают и закрывают файлы (получают и освобождают их файловый индекс), но и, соответственно, создают и уничтожают структуру типа FILE , описанную в файле stdio.h и связанную с данным файлом:

Для организации потокового ввода/вывода вначале необходимо при помощи функции fopen() открыть файл. Функция fopen() имеет следующий прототип:

Первый параметр указывает на строку, содержащую путь открываемого файла, второй — на строку режима открытия файла. Возможны следующие режимы:

«r» файл открывается для чтения;
«w» файл открывается для записи;
«a» файл открывается для записи, данные будут добавляться в конец файла.

К буквам r, w, a справа могут добавляться буквы t и b .

Буква t означает, что файл будет открыт в текстовом режиме, b — в двоичном. Для двоичного режима не производится обработка таких символов, как конец строки, конец файла и т.д.

Строка режима открытия файла может дополнительно содержать символ ‘+’ . Этот символ означает, что для файла разрешены операции чтения и записи одновременно.

Для закрытия файлов, открытых для ввода/вывода потоком, должна использоваться функция fclose() :

При закрытии файла освобождаются и сбрасываются на диск все буфера, распределенные этому файлу.

Если вы открыли файл с помощью низкоуровневой функции open() , вы можете создать поток для этого файла, используя функцию fdopen():

В качестве первого параметра используется файловый индекс, полученный от функции open(), второй параметр аналогичен парметру mode для функции fopen() .

Для того чтобы закрыть поток, созданный функцией fdopen(), необходимо использовать функцию fclose() , а не close() .

Для открытого потока вы можете узнать файловый индекс с помощью функции fileno():

Функция возвращает файловый индекс, связанный с данным потоком.

Существуют потоки, соответствующие стандартным устройствам ввода, вывода, вывода сообщений об ошибках, стандартное устройство последовательного ввода/вывода и стандартное устройство печати. Для использования этих потоков не требуются процедуры открытия и закрытия. Для работы с потоками, соответствующими стандартным устройствам ввода/вывода, в функциях необходимо указывать:

stdin стандартное устройство ввода;
stdout стандартное устройство вывода;
stderr стандартное устройство для вывода сообщений об ошибках;
stdaux стандартное последовательное устройство ввода/вывода;
stdprn стандартное печатающее устройство.

Для работы со стандартными устройствами ввода/вывода в библиотеках трансляторов для языка программирования Си имеется соответствующий набор функций, которые должны быть вам хорошо известны — printf(), scanf(), putchar() и т.д.. Мы не будем их описывать для экономии места.

Приведем обзор функций, предназначенных для потокового ввода/вывода .

Для записи данных в поток предназначена функция fwrite() :

Эта функция записывает в файл stream блоки информации, каждый из которых имеет длину size байтов. Количество блоков — count . Данные для записи расположены по адресу buffer .

Если файл открыт в текстовом режиме, каждый символ возврата каретки CR заменяется на два символа — возврата каретки CR и перевода строки LF .

Функция возвращает количество действительно записанных блоков информации, без учета замены символа CR в текстовом режиме.

Чтение данных потоком можно выполнить с помощью функции fread() :

Эта функция используется аналогично предыдущей. Для распознавания конца файла и обнаружения ошибок после вызова этой функции необходимо использовать функции feof() и ferror().

Если при использовании функции fread() вы задали значения параметров size или count , равные нулю, функция fread() не изменяет содержимое буфера buffer .

Для позиционирования внутри файла, открытого потоком с помощью функции fopen() , предназначена функция fseek() :

В этой функции параметр offset задает новое содержимое указателя текущей позиции в файле stream , а параметр origin — определяет способ задания новой позиции. Этот оператор может иметь значения, аналогичные используемым в функции lseek() :

SEEK_SET Абсолютное смещение от начала файла
SEEK_CUR Смещение относительно текущей позиции
SEEK_END Смещение относительно конца файла

При открытии файла указатель текущей позиции устанавливается на начало файла. Операции ввода/вывода вызывают увеличение значения этого указателя на количество прочитанных/записанных байтов.

Функция fseek() позволяет вам установить указатель за конец файла, однако при попытке установаит указатель до начала файла функция возвратит признак ошибки — ненулевое значение.

При использовании функции fseek() для позиционирования внутри файлов, открытых в текстовом режиме, необходимо учитывать особенность обработки текстовых файлов — автоматическую замену символа возврата каретки CR на пару символов: возврат каретки CR и перевод строки LF . Для текстовых файлов функция fseek() будет правильно работать только в следующих двух случаях:

  • поиск со смещением offset , равным нулю, при любом значении параметра origin ;
  • поиск выполняется относительно начала файла, причем в качестве смещения offset используется значение, полученное специальной функцией ftell() .

Функция ftell() возвращает текущее значение указателя позиции для файла, или -1 при ошибке:

Пара функций ftell() — fseek() позволит вам правильно организовать позиционирование для файлов, открытых в текстовом режиме.

Есть еще одна возможность организовать позиционирование внутри файлов, открытых потоком — использовать пару функций fgetpos() — fsetpos() :

Эти две функции используют для запоминания и установки позиции переменную с типом fpos_t, определенным в файле stdio.h. Функция fgetpos() записывает в эту переменную текущую позицию в потоке stream . Содержимое переменной затем может быть использовано для установки позиции в потоке с помощью функции fsetpos().

Обе эти функции возвращают нулевое значение в случае успешного завершения работы, или ненулевое — при ошибке.

Среди функций потокового ввода/вывода можно выделить группу функций форматного ввода/вывода. Это такие функции, как fputc(), fgetc(), fputs(), fgets(), fprintf(), fscanf() .

Функции форматного ввода/вывода сильно облегчают запись/чтение таких элементов данных, как отдельные байты, текстовые строки, числа в различных форматах.

Для записи в поток отдельных байтов используется функция fputc():

Байт c записывается в файл stream начиная с текущей позиции. После записи текущая позиция увеличивается на единицу. Функция возвращает записываемый байт или значение EOF , которое служит признаком ошибки.

Для побайтового чтения содержимого файла, открытого потоком, удобно использовать функцию fgetc():

Эта функция возвращает считанный из файла и преобразованный к типу int байт из потока stream . После чтения байта текущая позиция в файле увеличивается на единицу.

При достижении конца файла или в случае ошибок функция fgetc() возвращает значение EOF . Однако для проверки на ошибку или конец файла лучше пользоваться специальными функциями ferror() и feof() . Если вы открыли файл в двоичном режиме, единственный способ определить момент достижения конца файла — использовать функцию feof() , так как значение константы EOF может находиться в любом месте двоичного файла.

Для работы со строками предназначены функции fputs() и fgets() .

Функция fputs() предназначена для вывода строки в файл, открытый потоком:

Первый параметр определяет выводимую строку, второй — файл, в который эта строка выводится. Двоичный ноль, закрывающий строку, в выходной файл не копируется. После вывода строки содержимое текущего указателя позиции увеличивается на количество записанных байтов.

Для ввода строк из текстового файла удобна функция fgets():

Функция читает байты из потока stream и записывает их в буфер string до тех пор, пока не произойдет одно из двух событий — будет прочитан символ новой строки ‘\n’ или количество прочитанных символов не будет равно n-1 .

После того, как байты будут прочитаны в буфер, в конец образованной из этих байтов строки функция записывает двоичный ноль. Если был прочитан символ новой строки ‘\n’ , он тоже записывается в буфер.

Для анализа достижения конца файла или ошибок необходимо использовать функции feof() и ferror() .

Для форматного вывода в файл содержимого переменных удобно использовать функцию fprintf() :

Эта функция аналогична хорошо известной вам функции форматного вывода на экран printf(), с которой обычно начинают изучение языка программирования Си. Вспомните такую программу:

Функция fprintf() имеет дополнительно один параметр — stream , который определяет выходной файл.

После завершения работы функция возвращает количество записанных байтов или отрицательную величину, если при записи произошла ошибка.

Для форматного ввода информации из файла можно использовать функцию fscanf() , аналогичную известной вам функции scanf():

Эта функция читает данные, начиная с текущей позиции в потоке stream , в переменные, определенные аргументами arg . Каждый аргумент должен являться указателем на переменную, соответствующую типу, определенному в строке формата format .

Функция fscanf() возвращает количество успешно считанных и преобразованных в указанный формат полей. Те поля, которые были считаны, но не преобразовывались, в возвращаемом функцией значении не учитываются.

При достижении конца файла функция возвращает значение EOF . Если функция возвратила нулевое значение, это означает, что преобразование полей не производилось.

Рассмотрим теперь функции, управляющие буферизацией для потокового ввода/вывода.

Функция setbuf() позволяет вам заменить системный буфер на свой собственный:

Параметр buffer должен указывать на подготовленный пользователем массив, имеющий размер BUFSIZ байтов. Константа BUFSIZ описана в файле stdio.h.

Функция setvbuf() позволяет программе не только указать свой буфер, но и задать его размер:

Параметр stream должен указывать на открытый поток, причем для этого потока до вызова функции setvbuf() нельзя выполнять операции чтения/записи.

Параметр buffer должен указыват на подготовленный программой буфер размером size байтов. Этот буфер будет использоваться для работы с потоком stream .

Параметр mode может иметь значения _IOFBF, _IOLBF, _IONBF . Если mode равно _IOFBF или _IOLBF , параметр size указывает размер буфера. Если параметр mode равен _IONBF , буферизация не используется, парметры buffer и size игнорируются.

Параметры _IOFBF и _IOLBF эквивалентны.

Если в качестве адреса буфера buffer задать значение NULL , функция автоматически закажет буфер размером size .

Функция setvbuf() возвращает ноль при успешном завершении и ненулевую величину, если указан неправильный парметр mode или неправильный размер буфера size .

Для чего может понадобиться изменение размера буфера?

Главным образом — для сокращения времени, необходимого для позиционирования магнитных головок при выполнении операций одновременно над несколькими файлами, например, при копировании файлов, слиянии нескольких файлов в один и т.д.

При закрытии потока функцией fclose() содержимое буфера записывается на диск. Если программе необходимо выполнить запись содержимого буфера на диск без закрытия файла, она может воспользоваться функцией fflush():

Эта функция возвращает ноль при успешной записи буфера на диск, а так же в тех случаях, когда поток либо совсем не имеет буферов, либо открыт только для чтения. При ошибке возвращается значение EOF .

Если поток открыт только для чтения, функция fflush() очищает содержимое буфера, связанного с этим потоком.

В качестве примера приведем текст программы, копирующей содержимое текстового файла. Программа копирует этот файл три раза. В первый раз одна использует буфер стандартного размера, затем увеличивает размер буфера в десять раз, и, наконец, копирует файл без использования механизма буферизации. Каждый раз программа измеряет продолжительность копирования файла с помощью функции clock() , входящей в состав стандартных библиотек трансляторов Microsoft QC 2.5 и C 6.0.

В задачу данной книги не входит описание всех функций стандартных библиотек трансляторов Microsoft QC 2.5 и C 6.0, предназначенных для работы с дисками и файловой системой. Но мы приведем еще несколько интересных и полезных на наш взгляд функций.

Как мы уже отметили, программа может использовать два режима ввода/вывода для файлов — текстовый и двоичный. Для переключения этого режима для открытого файла можно использовать функцию setmode():

Первый параметр — файловый индекс. Второй параметр может принимать два значения:

O_TEXT установить текстовый режим;
O_BINARY установить двоичный режим.

Функция setmode() должна вызываться перед началом ввода/вывода в открытый файл.

Мы рассказывали о позиционировании внутри файла. Если вам нужно просто установить указатель позиции на начало файла, открытого для потокового ввода/вывода, вы можете воспользоваться функцией rewind():

Если вам нужно переназначить ввод/вывод для стандартных устройств (потоков stdin, stdout, stderr ), вы можете использовать функцию freopen() :

Функция freopen() закрывает файл, с которым был связан поток stream , и переназначает этот поток файлу, определенному параметром filename . Параметр mode задается так же, как и для функции fopen() .

Можно переназначить файловый индекс для файла, открытого функцией open() . Для этого можно воспользоваться одной из двух функций — dup() или dup2() :

Первая функция связывает с открытым файлом еще один файловый индекс. Этот индекс она возвращает при успешном завершении. В случае ошибки она возвращает значение -1 .

Новый файловый индекс может быть использован для любых операций над файлом.

Функция dup2() переназначает файловый индекс handle2 , связывая его с тем же файлом, которому соответствует файловый индекс handle1 . Если во время вызова функции dup2() с файловым индексом handle2 связан какой-либо открытый файл, этот файл закрывается. В случае успешного завершения функция dup2() возвращает нулевое значение. Если произошла ошибка, возвращается значение -1 .

В первой книге при описании векторной таблицы связи мы говорили о том, что для всех открытых файлов MS-DOS хранит различную информацию в специальной таблице. Ее адрес находится в поле file_tab векторной таблицы связи.

В этой таблице для каждого открытого файла хранится информация о количестве файловых индексов ( file handle ), связанных с данным файлом, режиме открытия файла (чтение, запись и т.д.), слово информации об устройстве, указатель на заголовок драйвера, обслуживающего данное устройство, элемент дескриптора файла (дата, время, имя файла, номер начального кластера, распределенного файлу), номер последнего прочитанного кластера и т.д.

Теперь, когда вы изучили способы работы с файлами, имеет смысл еще раз вернуться к разделу, посвященному таблице открытых файлов.

Вы можете самостоятельно экспериментировать с этой таблицей. Можно, например, попробовать создать несколько файловых индексов для какого-либо файла и посмотреть после этого содержимое поля, в котором находится количество файловых индексов, связанных с данным файлом.

Можно попробовать организовать чтение файла порциями размером в один кластер, при этом каждый раз выводить содержимое поля, в котором находится номер последнего прочитанного кластера. Это один из самых простых способов получить список кластеров, распределенных данному файлу.

Загрузочный сектор, FSINFO, таблица FAT и записи каталогов FAT

Читайте о системных структурах файловой системы FAT: загрузочный сектор, FSINFO, таблица FAT и записи каталогов. Описание, размерность полей и интерпретация Процесс поиска удаленных файлов состоит из обнаружения и интерпретации содержимого диска. Этой статьей мы откроем цикл, в котором расскажем, как найти и правильно «прочитать» системную информацию. Существует четыре версии FAT — FAT8, FAT12, FAT16 и FAT32. Мы проведем анализ FAT32 диска, расположенного на SD-карте памяти фотоаппарата.

Логический диск под управление FAT32 можно разделить на 3 логических части, которые идут последовательно друг за другом:

  • Зарезервированная область;
  • Область FAT;
  • Область данных (содержит корневой каталог и содержимое файлов);

Рис.1 Физическая структура FAT.

Система FAT очень проста и условно в ней можно выделить 4 структуры:

Загрузочный сектор

Загрузочный сектор занимает 1 сектор (чаще всего 512 байт) и располагается в первом секторе. Давайте рассмотрим подробнее его содержимое.

Смещение Размер Описание Обязательное
3 Ссылка на загрузочный код Нет
3 8 Метка ОС I Нет
11 2 Сколько байт в секторе Да
13 1 Сколько секторов в кластере II Да
14 2 Размер резервной области в секторах Да
16 1 Сколько копий FAT-таблицы Да
17 2 Сколько объектов в корневом каталоге III Да
19 2 Сколько секторов на диске IV Да
21 1 Метка носителя V Нет
22 2 Размер таблицы FAT в секторах III Да
24 2 Сколько секторов в дорожке Нет
26 2 Сколько головок Нет
28 4 Сколько секторов перед началом раздела Нет
32 4 Сколько секторов в кластере II Да
36 4 Размер таблицы FAT в секторах Да
40 2 Режим обновления VI Да
42 2 Номер версии Да
44 4 Кластер с корневым каталогом Да
48 2 Сектор с FSINFO Нет
50 2 Сектор с резервной копией
загрузочного сектора
Нет
52 12 Резерв Нет
64 1 Номер диска Нет
65 1 Не используется Нет
66 1 Последовательность байт 0x29 VII Нет
67 4 Серийный номер тома Нет
71 11 Метка тома I Нет
82 8 Метка Нет
90 420 Резерв Нет
510 2 Последовательность байт 0xAA55 Нет

Таб.1 Структура загрузочного сектора FAT.

  • I В кодировке ASCII;
  • II Задается степенью 2;
  • III Использовалось для ранних версий FAT. Для FAT32 = 0;
  • IV Если количество секторов на диске больше 65535, используется поле по адресу 32;
  • V Для жестких дисков – 0xf8, для съемных – 0xf0;
  • VI Если бит 7 равен 1, активна только одна копия FAT, индекс которой определяется разрядами 0-3. В противном случае все структуры FAT являются зеркальными копиями друг друга;
  • VII Последовательность байт 0x29;

Информация из загрузочного сектора играет основополагающую роль в восстановлении удаленных файлов, поэтому его обнаружение чрезвычайно важно.

Структура FSINFO

Ссылка на начало структуры хранится в загрузочном секторе, размер составляет 1 сектор (обычно 512 байт). FAT использует FSINFO для алгоритма выделения свободных секторов диска.

Смещение Размер Описание Обязательное
4 Последовательность байт
0x41615252
Нет
4 480 Резерв Нет
484 4 Последовательность байт
0x6147272
Нет
488 4 Сколько свободных кластеров Нет
492 4 Следующий свободный кластер Нет
496 12 Резерв Нет
508 4 Последовательность байт
0xAA550000
Нет

Таб.2 Структура данных FSINFO.

Поскольку FSINFO может не обновляться и все ее поля не обязательны, опираться на нее для извлечения данных мы не можем.

Таблица FAT

Файловая система может иметь несколько копий этой таблицы, точное количество таблиц и их размер указаны в загрузочном секторе. Обычно используется 2 копии, полностью дублирующие друг друга. Они располагаются последовательно, одна за другой, и имеют столько записей, сколько кластеров на диске.

В FAT32 структура состоит из записей размером 4 байта. Каждая запись соответствует кластеру на логическом диске и может принимать следующие значения:

  • 0x000 0000 – если кластер свободен;
  • 0x0fff fff7 – если кластер поврежден и не должен выделяться;
  • 0x0fff fff8 – если кластер завершает файл или каталог;
  • 0x000 0001 … 0x0fff fff6 – указатель на следующий кластер, занимаемый файлом или каталогом.

Чтение и анализ основной таблицы FAT и её копий позволяют выяснить, в каких кластерах хранится содержимое нужного файла.

Записи каталогов

Записи каталогов содержат имя, атрибуты файлов и каталогов, а также время создания, последнего доступа и редактирования объектов. Эта информация хранится в кластерах, выделенных родительскому каталогу, ссылку на который можно получить из загрузочного сектора.

Базовая структура (Simple File Name) поддерживает только короткие имена файлов (8 символов – имя и 3 символа – расширение). Для поддержки длинных имён файлов в добавление к базовой записи создаются дополнительные структуры (Long File Name). Записи LFN имеют размер 32 байта и предшествуют базовой записи.

Смещение Размер Описание Обязательное
1 Порядковый номер
или последовательность байт 0xe5 I, II
Да
1 10 Первые 5 символов имени файла I Да
11 1 Последовательность байт 0x0f Да
12 1 Резерв Нет
13 1 Контрольная сумма Да
14 12 Следующие 6 символов имени файла I Да
26 2 Резерв Нет
28 4 Следующие 2 символа имени файла I Да

Таб.3 Структура записи каталога Long File Name.

  • I Имя файла хранится в Unicode;
  • II FAT заменяет первый символ имени файла на 0xe5, если он удален.

Для хранения длинного имени файла может использоваться несколько структур LFN. Чтобы получить полное имя, нужно сложить все эти структуры. После дополнительных следует базовая запись каталога размером 32 байта.

Смещение Размер Описание Обязательное
1 Первый символ имени файла I, II Да
1 10 Следующие 10 символов имени файла I Да
11 1 Атрибуты III Да
12 1 Резерв Нет
13 1 Десятые доли секунды времени создания Нет
14 2 Часы, минуты, секунды времени создания Нет
16 2 Дата создания Нет
18 2 Дата последнего обращения Нет
20 2 Старшие 2 байта ссылки на первый кластер Да
22 2 Часы, минуты, секунды времени модификации Нет
24 2 Дата модификации Нет
26 2 Младшие 2 байта ссылки на первый кластер Да
28 4 Размер файла Да

Таб.4 Структура базовой записи каталога FAT.

  • I Имя файла в кодировке ASCII;
  • II FAT заменяет первый символ имени файла на 0xe5, если он удален;
  • III Возможные атрибуты перечислены в таблице.
Значение Описание
0x01 Доступ только для чтения
0x02 Скрытый файл
0x04 Системный файл
0x08 Метка тома
0x0f Длинное имя файла
0x10 Каталог
0x20 Архивный файл

Из базовой записи можно восстановить атрибуты файла, время создания и редактирования, а также ссылку на первый кластер содержимого.

HEX редактор

Продукты компании Hetman Software имеют встроенный HEX редактор, который позволяет быстро найти и просмотреть содержимое загрузочного сектора и его копии, записи FAT-таблицы, корневого каталога и области данных. Подробнее о том, как использовать эти таблицы и алгоритмы восстановления диска FAT, читайте у нас в блоге.

Илон Маск рекомендует:  Javascript selections (работа с выделениями)
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL