Краткое введение в object pascal


Содержание

Pascal-Паскаль

Программирование. ООП в Pascal-Паскаль

  • Скачено бесплатно: 6855
  • Куплено: 414
  • Pascal-Паскаль->Программирование. ООП в Pascal-Паскаль

Программирование. ООП в Pascal-Паскаль

ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОГРАММИРОВАНИЕ

Абстрактные типы данных

Понятие абстрактных типов дан­ных является ключевым в программировании. Абстракция подразумевает разделение и независимое рассмотрение ин­терфейса и реализации .

Рассмотрим пример. Все мы смотрим телевизионные про­граммы. Назовем телевизор модулем или объектом. Этот объект имеет интерфейс с пользователем, т. е. средства управ­ления (совокупность кнопок), воспроизведения изображения и звука. Чем совершеннее интерфейс, тем удобнее телевизор в использовании. Мы переключаем программы, нажимая опре­деленные кнопки, и при этом не задумываемся о физических процессах, происходящих в телевизоре. Об этом знают спе­циалисты. Когда мы выбираем телевизор, нас интересуют его цена и эксплуатационные параметры, т. е. качество изобра­жения, звука и т. п. Однако нас не интересует то, что находит­ся внутри. Другими словами, мы возвращаемся к свойствам объекта (модуля), какими являются интерфейс и реализация. Основная цель абстракции в программировании как раз и заключается в отделении интерфейса от реализации.

Вернемся к нашему примеру. Предположим, некоторый субъект уверен, что хорошо знает устройство телевизора. Он снимает крышку и начинает «усовершенствовать» его. Хотя иногда это и приводит к определенным промежуточным (локальным) успехам, окончательный результат почти всегда отрицательный. Поэтому подобные действия надо запрещать. В программировании это поддерживается механизмами за­прета доступа или скрытия внутренних компонентов. Каждо­му объекту (модулю) предоставлено право самому распоря­жаться «своим имуществом», т. е. данными функциями и опе­рациями. Игнорирование этого принципа нарушает стабиль­ность системы и часто приводит к ее полному разрушению. Принцип абстракции обязывает использовать механизмы скрытия, которые предотвращают умышленное или случай­ное изменение внутренних компонентов.

Абстракция данных предполагает определение и рассмот­рение абстрактных типовданных(АТД) или, что то же самое, новых типов данных, введенных пользователем .

Абстрактный тип данных — это совокупность данных вместе с множеством операций, которые можно выполнять над этими данными .

Понятие объектно-ориентированного программирования

По определению авторитета в области объектно-ориентированных методов разработки программ Гради Буча «объектно-ориентированное программирование (ООП) – это методология программирования, которая основана на представлении программы в виде совокупности объектов, каждый из которых является реализацией определенного класса (типа особого вида), а классы образуют иерархию на принципах наследуемости».

Объектно-ориентированная методология так же, как и структурная методология, была создана с целью дисциплинировать процесс разработки больших программных комплексов и тем самым снизить их сложность и стоимость.

Объектно-ориентированная методология преследует те же цели, что и структурная, но решает их с другой отправной точки и в большинстве случаев позволяет управлять более сложными проектами, чем структурная методология.

Как известно, одним из принципов управления сложностью проекта является декомпозиция. Гради Буч выделяет две разновидности декомпозиции: алгоритмическую (так он называет декомпозицию, поддерживаемую структурными методами) и объектно-ориентированную, отличие которых состоит, по его мнению, в следующем: «Разделение по алгоритмам концентрирует внимание на порядке происходящих событий, а разделение по объектам придает особое значение факторам, либо вызывающим действия, либо являющимся объектами приложения этих действий».

Другими словами, алгоритмическая декомпозиция учитывает в большей степени структуру взаимосвязей между частями сложной проблемы, а объектно-ориентированная декомпозиция уделяет больше внимания характеру взаимосвязей.

На практике рекомендуется применять обе разновидности декомпозиции: при создании крупных проектов целесообразно сначала применять объектно-ориентированный подход для создания общей иерархии объектов, отражающих сущность программируемой задачи, а затем использовать алгоритмическую декомпозицию на модули для упрощения разработки и сопровождения программного комплекса.

ОО-программирование является, несомненно, одним из наиболее интересных направлений для профессиональной разработки программ.

Объекты и классы

Базовыми блоками объектно-ориентированной програм­мы являются объекты и классы. Содержательно объект мож­но представить как что-то ощущаемое или воображаемое и имеющее хорошо определенное поведение. Таким образом, объект можно либо увидеть, либо потрогать, либо, по край­ней мере, знать, что он есть, например, представлен в виде информации, хранимой в памяти компьютера. Дадим определение объекта, придерживаясь мнения Гради Буча: «Объект – осязаемая сущность, которая четко проявляет свое поведение».

Объект — это часть окружающей нас реальности, т. е. он существует во времени и в пространстве (впервые понятие объекта в про­граммировании введено в языке Simula ). Формально объект определить довольно трудно. Это можно сделать че­рез некоторые свойства, а именно: объект имеет состояние, поведение и может быть однозначно идентифицирован (дру­гими словами, имеет уникальное имя).

Класс — это множество объектов, имеющих общую структуру и общее поведение. Класс — описание (абстракция), которое показывает, как построить существующую во време­ни и пространстве переменную этого класса, называемую объектом. Смысл предложений «описание переменных клас­са» и «описание объектов класса» один и тот же.

Объект имеет состояние, поведение и паспорт (средство для его однозначной идентификации); структура и поведение объектов описаны в классах, переменными которых они яв­ляются .

Определим теперь понятия состояния, поведения и иденти­фикации объекта.

Состояние объекта объединяет все его поля данных (статический компонент, т.е. неизменный) и текущие значения каждо­го из этих полей (динамический компонент, т.е. обычно изменяющийся).

Поведение выражает динамику изменения состояний объ­екта и его реакцию на поступающие сообщения, т.е. как объект изменяет свои состояния и взаи­модействует с другими объектами.

Идентификация (рас­познавание) объекта — это свойство, которое позволяет от­личить объект от других объектов того же или других клас­сов. Осуществляется идентификация посредством уникального имени (паспорта), которым наделяется объект в программе, впрочем как и любая другая переменная.

Выше уже говорилось, что процедурный (а также и мо­дульный) подход позволяет строить программы, состоящие из набора процедур (подпрограмм), реализующих заданные алгоритмы. С другой стороны, объектно-ориентированный подход представляет программы в виде набора объектов, взаимодействующих между собой. Взаимодействие объектов осуществляется через сообщения. Предположим, что нашим объектом является окружность. Тогда сообщение, посланное этому объекту, может быть следующим: «нарисуй себя». Ко­гда мы говорим, что объекту передается сообщение, то на самом деле мы вызываем некоторую функцию этого объекта (компонент-функцию). Так, в приведенном выше примере мы вызовем функцию, которая будет рисовать окружность на экране дисплея.

Базовые принципы ООП

К базовым принципам объектно-ориентированного стиля программирования относятся:

  • пакетирование или инкапсуляция ;
  • наследование ;
  • полиморфизм ;
  • передача сообщений.

Пакетирование (инкапсуляция)

предполагает соединение в одном объекте данных и функций, которые манипулируют этими данными. Доступ к некоторым данным внутри пакета может быть либо запрещен, либо ограничен.

Объект характеризуется как совокупностью всех своих свойств (например, для животных – это наличие головы, ушей, глаз и т.д.) и их текущих значений (голова – большая, уши – длинные, глаза – желтые и т.д.), так и совокупностью допустимых для этого объекта действий (умение принимать пищу, сидеть, стоять, бежать и т.д.). Указанное объединение в едином объекте как «материальных» составных частей (голова, уши, хвост, лапы), так и действий, манипулирующих этими частями (действие «бежать» быстро перемещает лапы) называется инкапсуляцией.

В рамках ООП данные называются полями объекта, а алгоритмы – объектными методами.

Инкапсуляция позволяет в максимальной степени изолировать объект от внешнего окружения. Она существенно повышает надежность разрабатываемых программ, т.к. локализованные в объекте алгоритмы обмениваются с программой сравнительно небольшими объемами данных, причем количество и тип этих данных обычно тщательно контролируется. В результате замена или модификация алгоритмов и данных, инкапсулированных в объект, как правило, не влечет за собой плохо прослеживаемых последствий для программы в целом. Другим немаловажным следствием инкапсуляции является легкость обмена объектами, переноса их из одной программы в другую.

Наследование

И структурная, и объектно-ориентированная методологии преследуют цель построения иерархического дерева взаимосвязей между объектами (подзадачами). Но если структурная иерархия строится по простому принципу разделения целого на составные части,

то при создании объектно-ориентированной иерархии принимается другой взгляд на тот же исходный объект. В объектно-ориентированной иерархии непременно отражается наследование свойств родительских (вышележащих) типов объектов дочерним (нижележащим) типам объектов.

По Гради Бучу «наследование – это такое отношение между объектами, когда один объект повторяет структуру и поведение другого».

Принцип наследования действует в жизни повсеместно и повседневно. Млекопитающие и птицы наследуют признаки живых организмов, в отличие от растений, орел и ворон наследуют общее свойство для птиц – умение летать. С другой стороны, львы, тигры, леопарды наследуют «структуру» и поведение, характерное для представителей отряда кошачьих и т.д.

Типы верхних уровней объектно-ориентированной иерархии, как правило, не имеют конкретных экземпляров объектов. Не существует, например, конкретного живого организма, который бы сам по себе назывался «млекопитающее» или «птица». Такие типы называют абстрактными. Конкретные экземпляры объектов имеют, как правило, типы самых нижних уровней ОО-иерархии: «крокодил Гена» – конкретный экземпляр объекта типа «крокодил», «кот Матроскин» – конкретный экземпляр объекта типа «кошка».

Наследование позволяет использовать библиотеки классов и развивать их (совершенствовать и модифицировать биб­лиотечные классы) в конкретной программе. Наследование позволяет создавать новые объекты, из­меняя или дополняя свойства прежних. Объект-наследник полу­чает все поля и методы предка, но может добавить собст­венные поля, добавить собственные методы или перекрыть своими методами одноименные унаследованные методы.

Принцип наследования решает проблему модификации свойств объекта и придает ООП в целом исключительную гибкость. При работе с объектами программист обычно подбирает объект, наиболее близкий по своим свойствам для решения конкретной задачи, и создает одного или нескольких потомков от него, которые «умеют» делать то, что не реализовано в родителе.

Последовательное проведение в жизнь принципа «наследуй и изменяй» хорошо согласуется с поэтапным подходом к разработке крупных программных проектов и во многом стимулирует такой подход.

Когда вы строите новый класс, наследуя его из сущест­вующего класса, можно:

  • добавить в новый класс новые компоненты-данные;
  • добавить в новый класс новые компоненты-функции;
  • заменить в новом классе наследуемые из старого класса компоненты-функции.

Полиморфизм

позволяет использовать одни и те же функ­ции для решения разных задач. Полиморфизм выражается в том, что под одним именем скрываются различные действия, со­держание которых зависит от типа объекта.

Полиморфизм – это свойство родственных объектов (т.е. объектов, имеющих одного общего родителя) решать схожие по смыслу проблемы разными способами. Например, действие «бежать» свойственно большинству животных. Однако каждое из них (лев, слон, крокодил, черепаха) выполняет это действие различным образом.

При традиционном (не объектно-ориентированном) подходе к программированию, животных перемещать будет программист, вызывая отдельную для конкретного животного и конкретного действия подпрограмму.

В рамках ООП поведенческие свойства объекта определяются набором входящих в него методов, программист только указывает, какому объекту какое из присущих ему действий требуется выполнить, и (для рассматриваемого примера) однажды описанные объекты-животные сами будут себя передвигать характерным для них способом, используя входящие в его состав методы. Изменяя алгоритм того или иного метода в потомках объекта, программист может придавать этим потомкам отсутствующие у родителя специфические свойства. Для изменения метода необходимо перекрыть его в потомке, т.е. объявить в потомке одноименный метод и реализовать в нем нужные действия. В результате в объекте-родителе и объекте-потомке будут действовать два одноименных метода, имеющих разную алгоритмическую основу и, следовательно, придающие объектам разные свойства. Это и называется полиморфизмом объектов.

Таким образом, в нашем примере с объектами-животными действие «бежать» будет называться полиморфическим действием, а многообразие форм проявления этого действия – полиморфизмом.

Описание объектного типа

Класс или объект – это структура данных, которая содержит поля и методы. Как всякая структура данных она начинается зарезервированным словом и закрывается оператором end . Формальный синтаксис не сложен: описание объектного типа получается, если в описании записи заменить слово record на слово object или class и добавить объявление функций и процедур над полями.

В ObjectPascal существует специальное зарезервированное слово class для описания объектов, заимствованное из С++.

ObjectPascal поддерживает обе модели описания объектов.

Компонент объекта – либо поле, либо метод. Поле содержит имя и тип данных. Метод – это процедура или функция, объявленная внутри декларации объектного типа, в том числе и особые процедуры, создающие и уничтожающие объекты (конструкторы и деструкторы). Объявление метода внутри описания объектного типа состоит только из заголовка. Это разновидность предварительного описания подпрограммы. Тело метода приводится вслед за объявлением объектного типа.

Пример . Вводится объектный тип «предок», который имеет поле данных Name (имя) и может выполнять два действия:

  • провозглашать: «Я – предок!»;
  • сообщать свое имя.

Тексты подпрограмм, реализующих методы объекта, должны приводиться в разделе описания процедур и функций. Заголовки при описании реализации метода повторяют заголовки, приведенные в описании типа, но дополняются именем объекта, которое отделяется от имени процедуры точкой. В нашем примере:

Внутри описания методов на поля и методы данного типа ссылаются просто по имени. Так метод MyName использует поле Name без явного указания его принадлежности объекту так, если бы выполнялся неявный оператор with do .

Под объектами понимают и переменные объектного типа – их называют экземплярами. Как всякая переменная, экземпляр имеет имя и тип: их надо объявить.

Использование поля данных объекта v1 не отличается по своему синтаксису от использования полей записей. Вызов методов экземпляра объекта означает, что указанный метод вызывается с данными объекта v 1. В результате на экран будут выведены строчки

Аналогично записям, к полям переменных объектного типа разрешается обращаться как с помощью уточненных идентификаторов, так и с помощью оператора with .

Например, в тексте программы вместо операторов

возможно использование оператора with такого вида

Более того, применение оператора with с объектными типами, также как и для записей не только возможно, но и рекомендуется.

Иерархия типов (наследование)

Типы можно выстроить в иерархию. Объект может наследовать компонен­ты из другого объектного типа. Наследующий объект — это потомок. Объект, которому наследуют — предок. Подчеркнем, что наследование относится только к типам, но не к экземплярам объектов.


Если введен объектный тип (предок, родительский), а его надо дополнить полями или методами, то вводится новый тип, объявляется наследником (потомком, дочерним типом) первого и описываются только новые поля и методы. Потомок содержит все поля типа предка. Заметим, что поля и ме­тоды предка доступны потомку без специальных указаний. Если в описании потомка повторяются имена полей или методов предка, то новые описания переопределяют поля и методы предка.

ООП всегда начинается с базового класса. Это шаблон для базового объекта. Следующим этапом является определение нового класса, который называется производным и является расширением базового.

Производный класс может включать дополнительные методы, которые не существуют в базовом классе. Он может переопределять ( redefined ) методы (или даже удалять их целиком).

В производном классе не должны переопределяться все методы базового класса. Каждый новый объект наследует свойства базового класса, необходимо лишь определить те методы, которые являются новыми или были изменены. Все другие методы базового класса считаются частью и производного. Это удобно, т.к. когда метод изменяется в базовом классе, он автоматически изменяется во всех производных классах.

Процесс наследования может быть продолжен. Класс, который произведен от базового, может сам стать базовым для других производных классов. Таким образом, ОО программы создают иерархию классов.

Пример иерархической структуры объектов

Наиболее часто структура иерархии классов описывается в виде дерева. Вершины дерева соответствуют классам, а корню соответствует класс, который описывает что-то общее (самое общее) для всех других классов.

Наследование дочерними типами информационных полей и методов их родительских типов выполняется по следующим правилам.

Правило 1. Информационные поля и методы родительского типа наследуются всеми его дочерними типами независимо от числа промежуточных уровней иерархии.

Правило 2. Доступ к полям и методам родительских типов в рамках описания любых дочерних типов выполняется так, как будто-бы они описаны в самом дочернем типе.

Правило 3. Ни в одном дочернем типе не могут быть использованы идентификаторы полей родительских типов.

Правило 4. Дочерний тип может доопределить произвольное число собственных методов и информационных полей.

Правило 5. Любое изменение текста в родительском методе автоматически оказывает влияние на все методы порожденных дочерних типов, которые его вызывают.

Правило 6. В противоположность информационным полям идентификаторы методов в дочерних типах могут совпадать с именами методов в родительских типах. В этом случае говорят, что дочерний метод перекрывает (подавляет) одноименный родительский метод. В рамках дочернего типа, при указании имени такого метода, будет вызываться именно дочерний метод, а не родительский.

Продолжим рассмотрение нашего примера. В дополнение к введенному нами типу предка tPredoc можно ввести типы потомков:

tуре tSon= оbject(tPredoc) <Тип, наследующий tPredoc >
procedure Declaration; <перекрытие методов предка>
procedure Му Name(Predoc : tPredoc);
end ;

Имя типа предка приводится в скобках после слова оbject. Мы породили наследственную иерархию из трех типов: tSon («сын») наследник типу tPredoc , а тип tGrandSon (“внук”) ­- типу tSon. Тип tSon переопределяет методы Declaration и Му N а m е, но наследует поле Name . Тип tGrandSon переопределяет только метод Declaration и наследует от общего предка поле Name , а от своего непосредственного предка (типа tSon ) переопределенный метод Declaration .

Давайте разберемся, что именно мы хотим изменить в родительских методах. Дело в том, что «сын» должен провозглашать несколько иначе, чем его предок, а именно сообщить ‘Я – отец!’

А называя свое имя, “сын” должен сообщить следующие сведения:

В нашем примере потомок tSon из метода Му Name вызывает одноимен­ный метод непосредственного предка типа tPredoc . Такой вызов обес­печивается директивой inherited , после которой указан вызываемый метод непосредственного предка. Если возникает необходимость вызвать метод отдаленного предка в каком-нибудь дочернем типе на любом уровне иерархии, то это можно сделать с помощью уточненного идентификатора, т.е. указать явно имя типа родительского объекта и через точку – имя его метода:

Теперь давайте разберемся с «внуком». Метод, в котором «внук» называет свое имя, в точности такой же, как и у его непосредственного предка (типа tSon ), поэтому нет необходимости этот метод переопределять, этот метод лучше автоматически наследовать и пользоваться им как своим собственным. А вот в методе Declaration нужно провозгласить ‘Я – внук!’, поэтому метод придется переопределить.

Рассмотрим пример программы, в которой определим экземпляр типа tPredoc , назовем его «дед», экземпляр типа tSon – «отец», и экземпляр типа tGrandSon – «внук». Потребуем от них, чтобы они представились.

Пример программы с испльзованием ООП

Наша программа выведет на экран:

Пример вывода на экран результата

Я —предок!
Я —Петров Николай Иванович

Я —отец!
Я —Петров Сергей Николаевич
Я —сын Петров Николай Ивановича

Я —внук!
Я —Петров Олег Сергеевич
Я —сын Петров Сергей Николаевича

Обратите внимание, что в заголовке процедуры tSon . MyName в качестве параметра приведен тип данных tPredoc , а при использовании этой процедуры ей передаются переменные как типа tPredoc , так и типа tSon . Это возможно, так как пре­док совместим по типу со своими потомками. Обратное несправедливо. Если мы заменим в заголовке процедуры tSon . MyName при описании параметров тип tPredoc на tSon , компилятор укажет на несовместимость типов при использовании перемен­ной ded в строке otec . MyName ( ded ).

Полиморфизм и виртуальные методы

Полиморфизм – это свойство родственных объектов (т.е. объектов, имеющих одного родителя) решать схожие по смыслу проблемы разными способами.

Два или более класса, которые являются производными одного и того же базового класса, называются полиморфными. Это означает, что они могут иметь общие характеристики, но так же обладать собственными свойствами.

В рамках ООП поведенческие свойства объекта определяются набором входящих в него методов. Изменяя алгоритм того или иного метода в потомках объекта, программист может придавать этим потомкам отсутствующие у родителя специфические свойства. Для изменения метода необходимо перекрыть его в потомке, т.е. объявить в потомке одноименный метод и реализовать в нем нужные действия. В результате чего в объекте-родителе и объекте-потомке будут действовать два одноименных метода, имеющих разную алгоритмическую основу и, следовательно, придающие объектам разные свойства. Это и называется полиморфизмом объектов.

В рассмотренном выше примере во всех трех объектных типах tPredoc , tSon и tGrandSon действуют одноименные методы Declaration и MyName . Но в объектном типе tSon метод MyName выполняется несколько иначе, чем у его предка. А все три одноименных метода Declaration для каждого объекта выполняются по-своему.

Методы объектов бывают статическими, виртуальными и динамическими.

Статические методы

включаются в код программы при компиляции. Это означает, что до использования программы определено, какая процедура будет вызвана в данной точке. Компилятор определяет, какого типа объект используется при данном вызове, и подставляет метод этого объекта.

Объекты разных типов могут иметь одноименные статические методы. В этом случае нужный метод определяется по типу экземпляра объекта.

Это удобно, так как одинаковые по смыслу методы разных типов объектов можно и назвать одинаково, а это упрощает понимание и задачи и программы. Статическое перекрытие – первый шаг полиморфизма. Одинаковые имена – вопрос удобства программирования, а не принцип.

Виртуальные методы

в отличие от статических, подключаются к основному коду на этапе выполнения программы. Виртуальные методы дают возможность определить тип и конкретизировать экземпляр объекта в процессе исполнения, а затем вызвать методы этого объекта.

Этот принципиально новый механизм, называемый поздним связыванием, обеспечивает полиморфизм, т.е. разный способ поведения для разных, но однородных (в смысле наследования) объектов.

Описание виртуального метода отличается от описания обычного метода добавлением после заголовка метода служебного слова virtual .

Использование виртуальных методов в иерархии типов объектов имеет определенные ограничения:

  • если метод объявлен как виртуальный, то в типе потомка его нельзя перекрыть статическим методом;
  • объекты, имеющие виртуальные методы, инициализируются специальными процедурами, которые, в сущности, также являются виртуальными и носят название constructor ;
  • списки переменных, типы функций в заголовках перекрывающих друг друга виртуальных процедур и функций должны совпадать полностью;

Обычно на конструктор возлагается работа по инициализации экземпляра объекта: присвоение полям исходных значений, первоначальный вывод на экран и т.п.

Помимо действий, заложенных в него программистом, конструктор выполняет подготовку механизма позднего связывания виртуальных методов. Это означает, что еще до вызова любого виртуального метода должен быть выполнен какой-нибудь конструктор.

Конструктор – это специальный метод, который инициализирует объект, содержащий виртуальные методы. Заголовок конструктора выглядит так:

Зарезервированное слово constructor заменяет слова procedure и virtual .

Основное и особенное назначение конструктора – установление связей с таблицей виртуальных методов ( VMT ) – структурой, содержащей ссылки на виртуальные методы. Таким образом, конструктор инициализирует объект установкой связи между объектом и VMT с адресами кодов виртуальных методов. При инициализации и происходит позднее связывание.

У каждого объекта своя таблица виртуальных методов VMT . Именно это и позволяет одноименному методу вызывать различные процедуры.

Упомянув о конструкторе, следует сказать и о деструкторе. Его роль противоположна: выполнить действия, завершающие работу с объектом, закрыть все файлы, очистить динамическую память, очистить экран и т.д.

Заголовок деструктора выглядит таким образом:

Основное назначение деструкторов – уничтожение VMT данного объекта. Часто деструктор не выполняет других действий и представляет собой пустую процедуру.

Программирование

Исходники Pascal (127)

Справочник

Справочник по паскалю: директивы, функции, процедуры, операторы и модули по алфавиту

Краткое введение в object pascal

На текущий момент мы уже умеем создавать приложения Delphi. Тем самым все готово для того, чтобы приступать к изучению языка Object Pascal. Прежде всего, мы ознакомимся с синтаксисом языка — его алфавитом, структурой, ключевыми словами, а так же с правилами составления выражений и типами данных.

Алфавит и словарь языка

В программах Object Pascal могут использоваться любые символы из множества символов языка Object Pascal. К этому множеству относятся буквы латинского алфавита, арабские цифры, пробельные символы, разделители и специальные символы.

Прописные и строчные латинские буквы, а так же знак подчеркивания:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l m n o p q r s t u v w x y z _

0 1 2 3 4 5 6 7 8 9

Пробельные символы (разделители):

Пробел, табуляция, перевод строки, возврат каретки

Составные символы, образуемые сочетанием двух специальных:

ПРИМЕЧАНИЕ
Все прочие символы, включая символы кириллицы, также могут использоваться в Object Pascal, но только внутри строковых переменных и комментариев.

Последовательности, составленные из знаков алфавита, образуют слова. Слова отделяются друг от друга разделителями и несут в программе определенный смысл. В качестве разделителей могут использоваться как пробельные символы, так и некоторые специальные символы (например, ;), и комментарии. Сами слова можно разделить на такие группы, как ключевые слова; стандартные идентификаторы и пользовательские идентификаторы.

Что касается комментариев, то никакого смысла в программе они не несут, и могут использоваться для того, чтобы разработчик мог вставить пояснительный текст в код программы. Комментарии бывают двух видов — однострочные и многострочные. Для однострочных комментариев обычно используют составной символ «//», помещая его перед текстом самого комментария:

// эта строка полностью закомментирована x=5; // эта часть строки — комментарий

Для многострочных комментариев применяют символы < и >, либо (* и *):

Комментарии разных типов можно вкладывать друг в друга:

С помощью комментариев удобно исключать отдельные инструкции или целые блоки программы в процессе ее отладки.

Ключевые слова

Ключевые, слова являются неотъемлемой частью языка. Все они имеют однозначно определенный смысл, изменить который невозможно. Кроме собственно ключевых слов бывают еще и зарезервированные, т.е. те, которые могут стать ключевыми в последующих версиях языка. Полный список ключевых слов Delphi приведен в таблице 3.1.

Таблица 3.1. Зарезервированные и ключевые слова в Delphi

Слово Слово Слово Слово
absolute export nil requires
abstract exports nodefault resident
and external not resourcestring
array far object safecall
as file of set
asm finalization on shl
assembler finally or shr
at for out stdcall
automated forward overload stored
begin function override string
case goto package then
cdecl if packed threadvar
class implementation pascal to
const implements private try
constructor in procedure type
contains index program unit
default inherited property until
destructor initialization protected uses
dispid inline public var
dispinterface interface published virtual
div is raise while
do label read with
downto library readonly write
dynamic message record writeonly
else mod register xor
end name reintroduce
except near repeat

Важно запомнить, что данные слова можно использовать только по их прямому назначению. Соответственно, вы не можете создавать какие-либо собственные идентификаторы (например, названия переменных), таким образом, чтобы если они совпадали с каким-либо ключевым словом.


Переменные и константы

Если ключевые слова имеют заранее предопределенный смысл, то значения констант и переменных определяет программист. Но прежде, чем приступить к исследованию констант и переменных, рассмотрим знак, используемый для некоторых операций, поскольку без этого невозможно дальнейшее продвижение. Речь идет о знаке равенства (=), который используется в Delphi в двух значениях — как оператор присваивания и как оператор сравнения.

В случае применения в качестве оператора присваивания, знак равенства используется совместно с символом двоеточия и имеет следующий общий синтаксис:

При присваивании используется 2 операнда, при этом подразумевается, что левому операнду (переменной) будет присвоено значение правого. Такая запись называется выражением.

ПРИМЕЧАНИЕ
Более точно выражение можно определить следующим образом: выражение — это набор данных, переменных, операторов и других выражений, которые приводятся к общему значению.

Другой вариант — это использование знака равенства для сравнения 2 операндов. В таком случае он используется самостоятельно:

Такая запись означает, что сравниваются левое (операнд1) и правое (операнд2) значения выражения. Однако специально для констант предусмотрен третий вариант, при котором константе присваивается значение правого операнда (как в случае обычного присваивания), но используется знак равенства без двоеточия:

Таким образом, мы переходим к самим константам и переменным, и начнем мы с констант, как наиболее типичного примера подстановки.

Суть использования констант состоит в том, что вместо какого-либо явного значения указывается его условное обозначение — константа. Допустим, что вы пишете программу, в которой неоднократно следует вычислять НДС. Разумеется, вы можете использовать в выражениях явное значение — 0.18 (18%). Но скорее всего, в программе найдется несколько мест, где в вычислениях требуется значение НДС. Таким образом, если НДС в очередной раз изменят, то вам придется отыскивать в программе все эти строки и вносить правку. В таких случаях на помощь приходят константы — достаточно один раз ее определить, а затем во всех тех местах, где требуется ее значение, указывать имя константы.

Илон Маск рекомендует:  Настройки Яндекс-почты, SPF, DKIM, DMARC для своего домена

Определяются константы при помощи ключевого слова const (от англ. constant):

Теперь во всех выражениях, где требуется значение НДС, просто используется эта константа:

VATsumm := price * VAT;

В этом выражении задействована константа VAT и 2 переменных — VATsumm, которой присваивается значение, и price, которая используется для его вычисления. Впрочем, price в данном случае тоже может быть константой, в отличие от VATsumm. Дело в том, что константы определяются в момент написания программы, а при компиляции в код автоматически подставляются их действительные значения. Соответственно, для вычисляемых значений, равно как и для значений, которые может вводить пользователь, нужны не константы, а переменные. Так, если бы константа VAT была переменной, то можно было бы предусмотреть в программе опцию изменения значения НДС.

Переменные определяются при помощи ключевого слова var (от англ. variable):

Обратите внимание, что для переменных нужно указывать не только ее имя, но и тип данных. Собственно говоря, константы тоже получают тот или иной тип данных, только это происходит автоматически, в момент компиляции. Так что рассмотри типы данных, предусмотренных в Object Pascal.

ПРИМЕЧАНИЕ
Начиная с Delphi 4, в Object Pascal поддерживаются типизированные константы, значения которых можно изменять по ходу выполнения программы. Объявление констант такого типа производится следующим образом: «const : тип = значение». От обычных переменных они отличаются различиями в обработке компилятором, а так же тем, что для них всегда имеется какое-либо предопределенное значение.

Типы данных

Прежде, чем приступить к рассмотрению типов данных, постараемся понять, для чего это вообще надо. Прежде всего, Object Pascal, равно как и его предшественник — язык Pascal, а так же C и C++ относятся к строго типизированным языкам программирования. Типизированные языки, в отличие от нетипизированных (начиная с BASIC и заканчивая различными языками сценариев вроде JavaScript), имеют то преимущество, что уже на этапе синтаксической проверки кода компилятор не допустит заведомо неверных операций. К примеру, вы не сможете сложить строку с числом. Кроме того, типизация положительно сказывается на быстродействии программ: благодаря тому, что компилятор заранее «знает», что за данные ему следует обработать в каждом конкретном случае, он может подбирать оптимальные инструкции при генерации машинного кода.

Теперь рассмотрим собственно типы данных, имеющиеся в Object Pascal. Прежде всего отметим, что они бывают простыми (числа, символы), структурными (массивы, записи), процедурными и вариантными. Знакомство со структурными и процедурными типами мы отложим до соответствующей главы, а пока что перечислим категории простых типов данных:

  • Целочисленные (Integer);
  • Вещественные (Real);
  • Булевы (Boolean);
  • Символьные (Character);
  • Строковые (String).

Практически в каждой категории имеется несколько типов данных. В свою очередь это так же вызвано необходимостью более эффективного использования ресурсов компьютера. Например, если для какой-то переменной достаточно диапазона значений от 1 до 100, то зачем для нее выделять память, достаточную для хранения миллиардных значений? Так что начнем подробное с целочисленных типов, как наиболее простых и наглядных.

Всего в современных версиях Delphi предусмотрено 7 различных типов данных для целых чисел, все они приведены в таблице 3.2.

Таблица 3.2. Типы целочисленных данных

Тип Диапазон Байт (бит) памяти Отрицательные значения
Byte от 0 до 255 1 (8) Нет
ShortInt от -128 до 127 1 (8) Да
Word от 0 до 65535 2 (16) Нет
SmallInt от -32768 до 32767 2 (16) Да
LongWord от 0 до 4294967295 4 (32) Нет
LongInt от -2147483648 до 21474483647 4 (32) Да
Int64 от -9223372036854775808 до 9223372036854775807 8 (64) Да

ПРИМЕЧАНИЕ
Здесь следует сразу оговориться про понимание памяти в программировании. Так, память считают в байтах. Каждый байт состоит из 8 бит. Бит — это минимальная единица информации, бит может принимать только 2 значения, 0 или 1. Каждая переменная, в зависимости от типа, занимает то или иное количество байт в памяти. Отметим так же, что 2 байта образуют слово (word), а 4 байта — двойное слово.

Помимо перечисленных основных типов, в Delphi имеется еще 2 автоматических целочисленных типа — Integer и Cardinal. Первое, в типичном случае, является синонимом для LingInt, хотя может быть приведено и к типу Int64. Например, если объявит переменную типа Integer и попробовать записать в нее значение, превышающее максимально допустимый размер для типа LongInt, то она автоматически преобразуется в Int64:

var x: integer; . x: = 21474483647; // здесь x имеет тип LongInt x: = x + 1;

Что касается Cardinal, то это — устаревшее определение для LongWord, вы сможете встретить его, если будете просматривать исходные коды, написанные во времена первых версий Delphi. Самым распространенным на практике целочисленным типом данных является Integer.

Перейдем к вещественным типам. Для них так же предусмотрены фиксированные типы (правда, в отличие от целочисленных, их не 7, а 6), и один автоматический. Рассмотрим основные типы в таблице 3.3.

Таблица 3.3. Типы вещественных данных

Тип Диапазон Байт памяти Точность
Real48 от ±2.9*10^-39 до 1.7*10^38 6 11.дек
Single от ±1.5*10^-45 до 3.4*10^38 4 07.авг
Double от ±5.0*10^-324 до 1.7*10^308 8 15-16
Extended от ±3.4*10^-4951 до 1.1*10^4932 10 19-20
Comp от -2^63+1 до 2^63 -1 8 19-20
Currency от -922337203685477.5808 до 922337203685477.5807 8 19-20

Имеется так же и автоматический тип — Real, введенный для совместимости с программами, написанными в Delphi 2 или 3. Сейчас тот тип, что был в ранних версиях Delphi, называется Real48 и практически не используется. Вместо него рекомендуется использовать такие типы, как Single или Double. Если же задать тип Real в программе, то он будет автоматически приведен к типу Double.

Нечто подобное можно сказать и про тип Comp — этот 64-разрядный вещественный тип данных изжил себя с момента появления целочисленного типа Int64, и присутствует лишь в целях совместимости со старым программным кодом.

Зато тип Currency активно используется, особенно при работе с базами данных. Как следует из его названия (Currency — валюта), данный тип предпочтительно использовать для финансовых расчетов. И хотя Currency относится к вещественным типам данных, компилятор обращается с ним как с целым, что позволяет добиться меньших ошибок при округлениях.

В целом, что касается целых и вещественных типов, достаточно запомнить всего две вещи: вещественным типам данных можно присваивать любые численные значения, а целочисленным — только целые:

var x: integer; y: double; . x := 5; y := 5.25; // обратите внимание, что дробная часть отделяется точкой y := x + y; // так делать можно x := x + y; // а так — нельзя, поскольку результатом должно быть целое

Булевы, или логические типы данных представлены в Delphi типами Boolean, ByteBool, WordBool и LongBool. Все они отличаются только размером памяти, выделяемым для хранения значения, причем значений может быть только 2 — false (ложь) и true (истина):

var x, y: Boolean; . x := true; y := false;

Основным типом является 1-байтовый Boolean (он же ByteBool), 2-байтовый WordBool и 4-байтовый LongBool предусмотрены лишь для совместимости в целях взаимодействия с другими языками и платформами.

Что касается символьных типов данных, то в Delphi предусмотрено 2 их типа — ANSIChar и WideChar. Первый является однобайтовым и может хранить в себе 1 символ из множества символов ANSI, коих насчитывается 256. Второй же тип является 2-байтовым и предназначен для хранения 2-байтовых же символов Unicode. Как и в других случаях, Delphi имеет синоним для символьных типов — Char, который на сегодня является аналогом ANSIChar. Что касается присвоения значений, то обычные символы (буквы и цифры) присваивают переменным символьного типа как есть, лишь заключая их в одиночные кавычки. А специальные символы, например, возврат каретки (Enter) назначают при помощи их номера в таблице ANSI, и выделяют знаком решетки:

var x, y: Char; // x и y получают тип ANSIChar . x := a; // обычные символы y := #13; // возврат каретки в таблице ANSI имеет номер 13

Наконец, еще одним, причем, в общем-то, уже не совсем простым типом данных являются строки. Строковые типы данных отличаются от символьных тем, что могут хранить не единичный символ, а множество символов. В Delphi имеется 3 типа строк: ShortString, AnsiString и WideString. Первый тип строк — ShortString — достался в наследство от языка Pascal и 16-битной Delphi 1.0. Такие строки могут иметь не более 255 символов, и занимают от 2 до 256 байт памяти, в зависимости от размера: Что касается современных строковых типов — AnsiString и WideString, то они могут иметь практически неограниченную длину (AnsiString — до 2 млрд. символов, WideString — до 1 млрд.) и занимать, соответственно, от 4 байт до 2 Гигабайт памяти. При этом по аналогии с символьными типами, тип AnsiString предназначен для хранения обычных строк, а WideString — для строк в формате Unicode. Ну и еще один тип строк — String является синонимом для типа AnsiString:

var str1: ShortString; // короткая строка var str2: AnsiString; // длинная строка var str3: String; // тоже длинная строка . str1 := Начало.; // Строковые значения заключаются в одинарные кавычки str2 := Конец.; str3 := str1 + str2; // получим длинную строку, содержащую Начало.Конец.

В целом, несмотря на кажущееся разнообразие типов данных, на практике чаще всего ограничиваются всего лишь 5-6 основными типами. Это: Integer, Double, Boolean, Char, String, и иногда — еще и Currency.

Данные и значения

Очевидно, что сами по себе типы данных ничего не означают. Главное их предназначение — хранить те или иные значения, или данные. Так, для хранения числовых данных применяют целочисленные или вещественные типы, в зависимости от того, какого типа числа следует использовать. На практике это означает, что будут применяться типы Integer и Double.

ПРИМЕЧАНИЕ
Хотя вещественные типы и являются более универсальными, использовать их надо только при реальной необходимости, поскольку они гораздо менее удобны компьютеру для вычислений. Говоря конкретнее, математические операции над вещественными числами выполняются гораздо медленнее, чем над целыми, а ряд иных операций (например, побитовые, инкремент или декремент) вообще недопустимы.

Строковые данные требуют для своего хранения строковых же типов, т.е. String. Исключение может составить тот случай, когда следует сохранить один и только один символ — в таком случае предпочтительно (а иногда — необходимо) использовать тип Char. Ну а в том случае, если требуется привести какое-то значение к однозначному выводу, используют логический тип Boolean. Например, если сравнивать одно число с другим на предмет того, является ли оно больше, то результатом сравнения будет либо «да», либо «нет», т.е. true или false:

var x: boolean; . x := 5 > 6; // получаем false, т.к. 5 не больше 6

Важно отметить, что переменные одного типа могут хранить данные только такого же типа. Кроме того, произведение каких-либо манипуляций над данными возможно только в том случае, если они относятся к одной категории. Исключение составляют разве что такие пары, как строки-символы и вещественные-целые числа. При этом результирующая переменная должна иметь тип строки для первой пары и вещественного числа — для второй. Впрочем, подробнее все это будет рассмотрено в контексте операций языка Object Pascal.

Операции и их типы

В любом языке программирования имеются знаки операций. Кроме того, некоторые ключевые слова, например такие, как div или mod также обозначают операции. Все операции в Object Pascal можно разделить на следующие типы: логические, арифметические, логические, операции присвоения и отношения, а так же специальные операции. Для их обозначения используются математические символы или ключевые слова. Участвующие в операциях значения (переменные) называются операндами. При этом та или иная операция может работать с операндами определенного типа. А результатом может быть данные как такого же типа, та и другого (например, для того же сравнения).

Начнем ознакомление с арифметических операций, как наиболее распространенных (не только и не столько в программировании, сколько в реальной жизни). С полным их перечнем, а так же с типами исходных и результирующих данных можно ознакомиться в таблице 3.4.

Таблица 3.4. Арифметические операции

Операция Название, тип Описание Операнды Результат
+ Сложение, бинарная Возвращает сумму левого и правого операндов integer, real integer, real
Вычитание, бинарная Возвращает разницу левого и правого операндов integer, real integer, real
* Умножение, бинарная Возвращает произведение левого операнда на правый операнд integer, real integer, real
/ Деление, бинарная Возвращает результат деления левого операнда на правый операнд. Результат может быть дробным integer, real real
mod Остаток от деления, бинарная Возвращает остаток от деления левого операнда на правый операнд integer integer
div Деление нацело, бинарная Возвращает целую часть числа, получившуюся в результате деления integer integer
Унарный минус Возвращает число, противоположное операнду integer, real integer, real
+ Унарный плюс Явно указывает знак числа integer, real integer, real

Можно отметить, что практически для всех арифметических операций результатом будут данные того же типа, что и операнды. Единственное исключение — это операция деления, результатом которой всегда будет вещественное число.

Другой распространенный тип операций — логические. В Object Pascal имеются все 4 типа логических операций: не, и, или, исключающее или (таблица 3.5).

Таблица 3.5. Логические операции

Операция Название Описание
not Логическое отрицание (НЕ) Возвращает false, если выражение может быть приведено к истине, в противном случае возвращает true
and Логическое (И) Возвращает true, когда оба выражения истинны. В противном случае возвращает false
or Логическое (ИЛИ) Возвращает true, когда хотя бы одно из выражений истинно. В противном случае возвращает false
xor Логическое (исключающее ИЛИ) Возвращает true, когда только одно из выражений истинно. В противном случае возвращает false

Варианты возвращаемых значений для логических операций приводятся ниже:

not true // возвращает false not false // возвращает true true and true // возвращает true true and false // возвращает false false and false // возвращает false true or true // возвращает true true or false // возвращает true false or false // возвращает false true xor true // возвращает false true xor false // возвращает true false xor false // возвращает false

Логическому сравнению подлежат не только булевские значения, но и любые другие выражения, которые могут быть к ним приведены. Например, выражение «3=4» может быть использовано в качестве логически сравниваемой единицы, поскольку результатом его оценки будет булево значение ложь (false).

Те же самые знаки операций, что используются в логических операциях, задействованы и в другом типе операций — побитовых. Побитовые операции выполняются над числами, представленными в двоичном виде (т.е. только нули и единицы). Однако сами операнды могут быть десятичными, шестнадцатеричными, или восьмеричными целыми числами. Например, десятичное число 5 представляется как двоичное 101, десятичное 6 — как 110, а шестнадцатеричное F3 — как двоичное 11110011.

Хотя побитовые операции выполняются над двоичными данными, возвращаемые значения являются стандартными числами. Список всех побитовых операций приводится в таблице 3.6.

Таблица 3.6. Побитовые операции

Операция Название Описание
and Побитовое И Возвращает число, являющееся результатом побитового сравнения «И»
or Побитовое ИЛИ Возвращает число, являющееся результатом побитового сравнения «включающее ИЛИ»
xor Побитовое исключающее ИЛИ Возвращает число, являющееся результатом побитового сравнения «исключающее ИЛИ»
not Побитовое НЕ Возвращает число, с битами, расположенными в обратном порядке
shl Сдвиг влево Сдвигает первый операнд влево на число разрядов, заданных вторым операндом. Освобождающиеся правые биты заполняются нулями
shr Сдвиг вправо Сдвигает первый операнд вправо на число разрядов, заданных вторым операндом. Освобождающиеся левые биты отбрасываются

Чтобы явно представить себе, как работают побитовые операции, обратимся к следующему примеру. Допустим, имеется 2 переменных — x и y:

var x, y: integer; . x := 3; y := 5;

В двоичном представлении число 3 будет выглядеть как 0011, а 5 — как 0101. Теперь посмотрим, какие результаты даст каждая из побитовых операций сравнения и операции отрицания над этими числами:

x or y // Получим 7: 0011 | 0101 = 0111 x and y // Получим 1: 0011 & 0101 = 0001 x xor y // Получим 6: 0011 ^ 0101 = 0110 not x // Получим 12:

Что касается операций побитового сдвига, то они дадут следующие результаты:

y shl 2 // Получим 20: 0101 shl 2 = 10100 y shr 2 // Получим 1: 0101 shr 2 = 01 -y shr 2 // Получим -2: -0101 shr 2 = -10

Теперь нам остается исследовать еще один тип операций — операции сравнения. Эти операции всегда требуют наличия двух операндов: они сравнивают значения левого и правого операндов, и возвращают результат сравнения в виде логического значения, которое может принимать значение false или true (ложь или истина). Все имеющиеся в Object Pascal операции сравнения приведены в таблице 3.7.

Таблица 3.7. Операции сравнения

Операция Название Описание Пример, дающий true
= Равно Возвращает истину (true), когда левый и правый операнды равны. 1=1
<> Не равно Возвращает истину, когда левый и правый операнды не равны. 1<>2
> Больше Возвращает истину, когда левый операнд больше правого. 2>1
= Больше или равно Возвращает истину, когда левый операнд больше правого или равен ему. 1>=0; 1>>1
var x: Char; z: Boolean; . x := ‘b’; z := x in [a..d];

В данном случае в качестве результата (z) мы получим истину, поскольку символ b является членом указанного множества [a..d], в которое входят символы a, b, c и d. Наконец, в Object Pascal имеется еще 2 операции — as и is. Они служат для приведения типа и проверки типа, соответственно. Например, если мы хотим проверить, является ли некая переменная «x» целым, то можно написать такое выражение:

b := x is Integer; // b получит значение true, если x — целое

Ну а операция as используется для приведения данных одного типа к другому, причем, преимущественно, при работе с объектами:

При использовании операции as следует быть осторожным, поскольку приведение одного типа к другому возможно далеко не всегда.

Выражения и приоритет операций

Как нам уже известно, выражения — это, прежде всего, набор данных, переменных и операторов. Развивая это определение, можно сказать, что выражения состоят из значений и операций над ними, например:

a := b + c; d := e * f; g := a — d div 2;

Так же, как и в обычной математике, при составлении выражений в Object Pascal, следует учитывать приоритет выполнения операций. Например, операции умножения или деления должны выполняться раньше, чем сложение и вычитание. Так, в 3-й строке из приведенных выше примеров выражений, согласно математическим правилам, сначала выполняется операция деления нацело (d div 2), затем результат этой операции вычитается из a, и итоговое значение присваивается переменной g. Все те же правила действуют и в программировании, но поскольку перечень операций не ограничивается арифметическими, а в рамках одного выражения могут быть использованы различные типы операций, то было бы неплохо внести полную ясность в этот вопрос.

Прежде всего, приоритет выполнения определяется принадлежностью конкретной операции к тому или иному типу. Так, первыми выполняются унарные операции, затем — операции умножения (включая деление и побитовые), далее обрабатываются сложение и вычитание (опять, таки включая побитовые or и xor), и, наконец, в последнюю очередь — операции отношения. Для удобства представим все операции, классифицированные по уровню приоритета, в виде таблицы (табл. 3.8).

Таблица 3.8. Приоритет выполнения операций

Операторы Уровень приоритета Категория
@, not Высший Унарные
*, /, div, mod, and, shl, shr, as Высокий Умножение
+, -, or, xor Средний Сложение
=, <>, >, =, in, is Низкий Отношение


В тех случаях, когда порядок следования операций, задаваемый их приоритетом, следует изменить, применяют круглые скобки. Например, если мы имеем выражение:

И нам требуется сначала выполнить вычитание, то достаточно заключить участвующие в операции вычитания операнды в круглые скобки:

Таким образом, сначала здесь из a вычитается d, и лишь затем производится операция деления нацело.

Структура программы

Теперь, когда мы уже знаем об основных языковых конструкциях языка — «словах» (ключевые слова, переменные, операторы и т.д.) и выражениях, рассмотрим, как все это объединяется в общий код программы.

Итак, программа состоит из: заголовка, за которым следуют список подключаемых модулей, объявления меток, констант, типов данных и переменных, описания процедур и функций. Вслед за этой заголовочной частью располагаются собственно программные инструкции. На практике все это выглядит таким образом:

program ; uses ; label ; const ; type ; var ; ; begin ; end.

В структуре той или иной программы часть этих разделов может быть опущена за ненадобностью. Обязательными являются всего 3 ключевых слова — program (вместе с названием), а так же begin и end. Разумеется, между begin и end должны находиться какие-либо инструкции. Так, возвращаясь к примеру «Hello, World», в нем можно обнаружить лишь название программы и блок инструкций:

program hello; // название <$APPTYPE CONSOLE>//это указание компилятору к коду программы не относится begin // начало исполняемого кода write(Hello, World!); // инструкции readln; end. // конец программы

ПРИМЕЧАНИЕ
Список модулей в данном случае не нужен, поскольку мы не используем никаких дополнительных функций или процедур из библиотеки Object Pascal. Но, разумеется, в более сложных программах они могут понадобиться.

Так же следует отметить, что те или иные модули могут повторяться, причем неоднократно. Например, объявления констант или переменных могут чередоваться, равно как и описание типов, функций, или процедур. Другое дело, что с точки зрения собственного удобства следует следить за тем, чтобы все это было педантично разложено по своим местам, поскольку в противном случае много времени будет уходить на поиск того или иного объявления.

Рассмотренная нами структура характерна для программ на Pascal в целом, в том числе и для Windows-приложений, разрабатываемых визуальными средствами. Структура же отдельных модулей, представляющих собой описание того или иного окна, имеет ряд отличий. В общих чертах ее можно представить следующим образом: начинается такой модуль с ключевого слова unit, после которого следуют секции interface и implementation. Иногда могут быть также использованы еще 2 секции — initialization и finalization. Ну а завершается все это, разумеется, ключевым словом end с точкой:

unit ; interface implementation ; initialization ; finalization ; end.

При создании новых форм в среде Delphi весь необходимый код создается автоматически, разве что опциональные (и довольно редко используемые на практике) секции загрузки или завершения, при необходимости, придется дописывать самостоятельно.

Завершая эту тему, затронем еще один аспект структуры программ — подпрограммы. В качестве подпрограммы понимается блок инструкций, предназначенный для решения какой-либо частной задачи в рамках самой программы. Такие блоки в Object Pascal могут просто выполняться — в таком случае они называются процедурами, либо выполняться и возвращать какой-либо результат — в таком случае они называются функциями. И в том, и в другом случае, они могут принимать какие-либо значения для обработки. Эти значения называются аргументами. В целом же синтаксис обращения к процедуре или функции выглядит следующим образом:

Подробнее об этом будет рассказано в соответствующей главе, пока же отметим для себя сам факт их существования, поскольку очень скоро нам придется столкнуться с рядом процедур и функций, реализованных в самом языке Object Pascal.

Особенности языка программирования Object Pascal

Типы данных

Некоторые простые типы делятся на физические (фундаментальные) и общие. Физические закладываются в язык при его разработке и не зависят от особенностей компилятора. Общие типы соответствуют одному (или нескольким) из физических типов и их использование считается предпочтительным, так как компилятор создает более эффективный код.

Программа на Object Pascal может оперировать различными типами данных: целыми и дробными числами, отдельными символами и строками символов, логическими величинами.

Целые типы

В табл.7.1 перечислены целые типы, используемые в Delphi 7.

Таблица 7.1. Целые типы в Delphi 7

ТИП ДИАПАЗОН КОЛИЧЕСТВО БАЙТ
integer —2147483648..2147483647
cardinal 0..4294967295
shortint —128..127
smallint —32768..32767
longint —2147483648..2147483647
byte 0..255
word 0..65535
Int64 -2 +63 ..2 +63 -1
longword 0..4294967295

Наибольшая производительность центрального процессора и ОС достигается при использовании общих типов integer и cardinal. Все остальные типы представляют подмножества этих двух типов. Если в выражении используются значения различных типов, то результат будет иметь тип integer.

Вещественный тип

Язык программирования Object Pascal поддерживает 7 типов данных, позволяющих работать с вещественными числами. Эти типы различаются между собой диапазоном допустимых значений и возможным количеством цифр, т.е точностью.

В табл. 7.2 перечислены вещественные типы.

Таблица 2. Вещественные типы в Delphi 7

Тип Диапазон Кол-во цифр Кол-во байт
real 5,0*10 -324 ..1,7*10 +308 15—16
геа148 2,9*10 -39 .. 1,7*10 +38 11-12
single 1,5*10 -45 ..3,4*10 +38 7—8
double 5,0*10 -324 ..1,7*10 +308 15—16
extended 3,6*10 -4952 .. 1,1*10 +4932 19—20
comp -2 + 63 +1.. 2 + 63 -1 19—20
currency -922337203685477.5808.. 922337203685477.5808 19—20

Наибольшая производительность центрального процессора и ОC достигается при использовании общих типов real и double. Real48 предназначен для совместимости с ранними версиями Delphi и пожирает массу времени на преобразование чисел. Тип extended позволяет производить расчеты с max точностью. Более того, арифметический сопроцессор выполняет операции с действительными числами, представленными в формате extended. Если же мы пользуемся real, double, single, то результат усекается до соответствующей точности. Но данные этого типа занимают в ОП больше всего места.

Не нашли то, что искали? Воспользуйтесь поиском:

Язык паскаль онлайн

Классы на Object Pascal – Описание классов

    Browse: Home / Лекции Паскаль / Классы на Object Pascal – Описание классов

Классы на Object Pascal

Описание классов на Object Pascal

Тип данных — статический описание совокупности динамических объектов, объединенных определенными операциями. В ООП каждый тип базируется на определенном классе. Класс — это тип данных с частичной или полной реализацией операций.

view plaincopy to clipboardprint?

  1. type = class ( )
  2. private
  3. protected
  4. public
  5. published
  6. end;

Имя класса — любой идентификатор; как правило, начинается с большой буквы Т. Имя сверхкласса может не указываться, тогда считается, что класс является непосредственным потомком класса TObject.В ObjectPascal класс TObject является базовым классом для всех объектов.

В описании класса определяют поля и методы.

Поля — это определенные характеристики объектов класса (описывают как переменные).

Методы — это операции над объектами класса (описывают как процедуры и функции).

Следующие директивы управляют правами доступа к элементам класса.

Private (личный, закрытый) содержит поля и методы, которые используются только объектами этого класса.

Protected (защищенный) содержит поля и методы, доступные также для всех потомков этого класса.

Public (открытый) — поля и методы, а также свойства, доступные для внешнего использования, в том числе по объектам других классов.

Published (для публикации) содержит поля, методы, которые являются открытыми, а также свойства которые будут доступны при проектировании в инспекторе объектов Delphi (для просмотра и изменения).

Если директивы не указаны, то по умолчанию считается, что установлены директиву Published.

Пример класса: TPoint — точки на плоскости

view plaincopy to clipboardprint?

X, Y: Real; // координаты в декартовой системе

function Ro: Real; // координаты

function Fi: Real; // в полярной системе

function Distance (p: TPoint): Real;

// расстояния между двумя точками;

procedure Translate (dx, dy: Real)

procedure Rotate (p: TPoint; f: Real)

// вращения точки на определенный угол вокруг другой точки (центра вращения)

procedure Scale (k: Real)

В этом описании:

Ro, Fi, Distance, Translate, Rotate, Scale — методы класса.

Возможно описание, где X и Y будут методами, а Ro и Fi — полями:

Ro, Fi: Real; // координаты в полярной системе

function X: Real; // координаты

function Y: Real; // в декартовой системе

В Object Pascal описание класса вместе с полями и прототипами методов включается в открытую часть программного модуля, называется интерфейсом (англ. Interface).Реализация методов включается в закрытой части модуля называется реализацией (англ. Implementation).

view plaincopy to clipboardprint?

  1. implementation
  2. function TPoint.Ro: Real;
  3. begin
  4. Ro = sqrt (sqr (X) + sqr (Y))
  5. // или
  6. // Result: = sqrt (sqr (X) + sqr (Y))
  7. end;
  8. function TPoint.Fi: Real; // в полярной системе
  9. begin
  10. Fi = ArcTan (Y / X);
  11. end;
  12. function TPoint.Distance (p: TPoint): Real;
  13. begin
  14. Distance = sqrt (sqr (Xp.X) + sqr (Yp.Y))
  15. end;
  16. procedure TPoint.Translate (dx, dy: Real)
  17. begin
  18. X = X + dx;
  19. Y = Y + dy;
  20. end;
  21. procedure TPoint.Rotate (p: TPoint; f: Real)
  22. var x1, y1: real;
  23. begin
  24. x1 = (Xp.X) * cos (f) — (Yp.Y) * sin (f) + p.X;
  25. y1 = (Xp.X) * sin (f) + (Yp.Y) * cos (f) + p.Y;
  26. X = x1; Y = y1;
  27. end;
  28. procedure TPoint.Scale (k: Real)
  29. begin
  30. X = k * X;
  31. Y = k * Y;
  32. end;

function TPoint.Ro: Real;

Ro = sqrt (sqr (X) + sqr (Y))

// Result: = sqrt (sqr (X) + sqr (Y))

function TPoint.Fi: Real; // в полярной системе

Fi = ArcTan (Y / X);

function TPoint.Distance (p: TPoint): Real;


Distance = sqrt (sqr (Xp.X) + sqr (Yp.Y))

procedure TPoint.Translat e (dx, dy: Real)

procedure TPoint.Rotate (p: TPoint; f: Real)

x1 = (Xp.X) * cos (f) — (Yp.Y) * sin (f) + p.X;

y1 = (Xp.X) * sin (f) + (Yp.Y) * cos (f) + p.Y;

procedure TPoint.Scale (k: Real)

Описание объектов на Object Pascal. создание объектов

Объект — это экземпляр определенного класса.Объект описывается как переменная, тип переменной — это класс объекта.

var P1, P2: TPoint;

Название объекта является указателем на этот объект. При описании переменных-объектов в памяти выделяется место только под указатель (4-байтный адрес). Начальное значение этого адреса равен nil (неопределенный указатель).

Таким образом, объекты в Object Pascal являются динамическими переменными, то есть создаются во время работы программы.Но, при работе с объектами, в отличие от указателей, розадресация указателя (^), процедуры New и Dispose не используются.

Для создания объектов используют специальный метод — конструктор, который обозначается ключевым словом constructor.Как правило, этот метод называется Create.

view plaincopy to clipboardprint?

    type TPoint = >

type TPoint = class

var P1, P2: TPoint;

В данной реализации конструктор вызывается без параметров.

Можно реализовать конструктор в виде:

constructor TPoint.Create (a, b: Real)

Тогда вызвать конструктор можно, например

P1 = TPoint.Create (1, 2);

Внутри методов можно использовать переменную Self, которая обозначает объект, для которого вызывается данный метод.В частности, для решения коллизий (противоречий) между названиями полей и локальных переменных и параметров методов можно указать эту переменную перед названиями полей, например

Если конструктор реализовано, но в нем нет присвоении начальных значений полям объекта, то происходит инициализация по умолчанию. Числовые переменные инициализируются значениями 0, символьные — нуль-символом (# 0), логические переменные — значением false, указатели — значением nil.

Таким образом, в отличие от указателей процедура new для создания объектов не используется, если существует конструктор.Но переменная, которая обозначает объект в операциях используется подобно указателей.

Инициализация объектов, обращения к полям и методам. свойства

При написании программы доступ к полям (для чтения) не отличается от доступа к методу без аргументов (функции) — принцип однородного доступа. Например:

X1 = P1.X; // обращение к полю;

Ro1 = P1.Ro; // обращение к методу.

Объект, для которого вызывается метод, называемый также получателем этого метода (объект Р1 является получателем метода Ro)

Если нужно изменить поле объекта после создания, то можно использовать оператор присваивания, например

P1.X = 6; // непосредственная изменение значения поля

Во многих случаях прямая изменение поля может быть некорректной. Например, для объектов D 1, D 2 класса TDate (календарные даты) с полями Year, Month, Day:

D1.Month = 13; D2.Day = 32; // некорректно!

Поэтому, как правило, значения полей класса могут изменять только методы данного класса (или дочерних классов).Для корректного доступа к полям класса обращаются через свойства (англ. Property):

Метод для чтения — это функция без параметров, которая возвращает значение с типом свойства (например GetMonth, GetDay).Также эту функцию называют селектором.

Метод записи — это процедура, которая изменяет значение определенного поля при определенных условиях (SetMonth, SetDay).Также эта процедура называется модификатором.Значение является переменная с типом поля.

Поля и методы для чтения или записи объявляются перед описанием свойства, в описании только указываются их названия.

Значение по умолчанию — это определенное значение свойства, которое задается при создании объекта (для полей Month и Day может быть равным 1).

view plaincopy to clipboardprint?

    type TDate = >

type TDate = class

aDay, aMonth, aYear: integer

procedure SetDay (value: integer);

property Day: integer read aDay

procedure TDay.SetDay (value: integer);

if value in [1..31]

Свойства — это еще один способ управлять доступом к полям класса (рядом с директивами private, protected, public, published).

присвоение объектов

У оператора присвоения возможны две семантики:

В первом случае (для всех переменных, кроме объектов и указателей) содержание правой части выражения копируется в содержание левой части (создается копия в памяти).

Во втором случае (для объектов и указателей) левая часть будет указывать на содержание правой части (копия в памяти не создается).

view plaincopy to clipboardprint?

  1. var P1, P2: TPoint;
  2. P1 = TPoint.Create (3, 4); // P1.X = 3; P1.Y = 4;
  3. P2 = TPoint.Create (5, 7); // P2.X = 5, P2.Y = 7;
  4. P1 = P2; // P1.X = 5, P1.Y = 7;
  5. X: = 10; // P2.X = 10; P1.X = 10;

var P1, P2: TPoint;

P1 = TPoint.Create (3, 4); // P1.X = 3; P1.Y = 4;

P2 = TPoint.Create (5, 7); // P2.X = 5, P2.Y = 7;

P1 = P2; // P1.X = 5, P1.Y = 7;

P2.X: = 10; // P2.X = 10; P1.X = 10;

В результате присвоения объект P1 будет указывать на содержание объекта P2. Предыдущий содержание объекта P1 стал недосягаемым.

Для создания копии объекта, как правило, описывается и реализуется специальный метод Assign, который делает присвоении каждого поля отдельно по новому указателю.

P1.Assign (P2) // P1 = P2

Проверка на равенство

При сравнении двух переменных, аналогично к присвоению есть две семантики: копирование и указателей.

Для чисел и символьных переменных условием равенства является одинаковое побитовое представление в памяти (семантика копирования).

Для переменных составных типов используется равенство элементов. Возможна ситуация, когда: а = b, но bа (когда переменная b содержит больше элементов, чем переменная а).

а — точка в двумерном пространстве, b — точка в трехмерном пространстве.

Для объектов равенство достигается, когда существует равенство указателей (семантика указателей).

Альтернативная проверка на равенство (для объектов с различными указателями) может быть реализована с помощью специального метода Equals.

If P1.Equals (P2) then

уничтожение объектов

Объекты — динамические переменные, которые создаются и уничтожаются во время работы программы (run-time), поэтому уничтожение объекта предусматривает освобождение памяти.С этой целью используют специальный метод — деструктор (обозначается ключевым словом destructor).Как правило, этот метод называется Destroy.

Кроме деструктора в описании класса обычно вводится метод Free, который проверяет переменная Self важно nil.Для пустая объекта вызывается деструктор.

if Self <> nil then Destroy;

При этом автоматического определения значения объектной переменной в nil не происходит.

управление памятью

Для освобождения памяти, которая выделяется под объекты, которые больше не нужны, возможны 3 способа:

  1. Ручная освобождения (средствами языков программирования);
  2. «Автоматическое уборка мусора» (англ. Аutomatic garbage collection).Под «мусором» понимают объекты, содержание которых стал недосягаемым, например, вследствие присвоения. Для разных операционных систем разработаны специальные процедуры, которые отслеживают эти объекты с определенными временными интервалом и уничтожают.
  3. Каждому объекту при создании назначается владелец (другой объект), который руководит процессом освобождения памяти.(Например, форма является владельцем всех объектов, находящихся на ней).


Типичные ошибки при освобождении памяти

  1. Попытка использовать память, которая еще не выделена;
  2. Выделенная память никогда не освобождается;
  3. Память звильняюеться двумя независимыми процедурами;
  4. Попытка использовать уже освобожденную память.

Object Pascal (стр. 1 из 16)

1. Основы языка Object Pascal

1.1. Алфавит языка

Основными символами языка Object Pascal являются:

· 26 больших и 26 малых латинских букв A,B, …Y,Z, a,b, …, y,z

· 10 арабских цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

Буквы русского алфавита не входят в состав алфавита языка. Их использование допустимо только в строковых и символьных значениях.

Нет различий при использовании больших и малых букв в записи имен переменных, процедур, функций и меток. Их максимальная длина ограничена 126 символами.

1.2. Краткие сведения о структуре программы

Программа, написанная в среде Delphi при помощи языка Object Pascal, всегда состоит из нескольких модулей. Как минимум таких модулей должно быть два. Один модуль всегда является головной программой и имеет название program. Прочие модули играют вспомогательную и зависимую от головной программы или от других модулей роль и называются unit. Минимально структурированная программа имеет один модуль program и один модуль unit. Серьезные программы помимо модуля program могут содержать до нескольких десятков авторских модулей unit и большое количество ссылок на фирменные или разработанные как самим автором, так и другими разработчиками модули unit.

Программа всегда начинает работу с модуля program, активизируя функционирование одного или нескольких зависимых модулей unit. Те в свою очередь могут активизировать другие модули unit и т.д.

Исходный программный текст каждого модуля составляется на языке Object Pascal и помещается в отдельный файл, который всегда имеет расширение .pas. Текст модуля program имеет расширение .dpr.

Полный программный текст любого модуля также имеет свою структуру, которая может включать блоки определения констант, внутренних структур описания типов, тексты процедур, функций и др.

1.3. Лексическая структура языка

Строительным материалом для конструирования программного текста модуля являются лексемы – особые языковые конструкции, имеющие самостоятельный смысл. Лексемы строятся при помощи символов алфавита языка. В Object Pascal различают следующие основные классы лексем:

Зарезервированные (служебные) слова. Этот класс состоит из слов, построенных только с помощью букв алфавита. Служебные слова можно использовать только по прямому назначению, т. е. так, как их назначение определил разработчик языка. Ни в каком другом виде, например в качестве имен переменных, их использовать нельзя.

Ниже представлен список таких слов:

And asm class destructor do end file for if inherited interface library not or procedure raise resource shl then try until while with array begin const dispose downto except finalization function implementation initialization in interface is mod object out program record string shr threadvar type uses as case constructor div else exports finally goto in line label nil of packed property repeat set string to unit var xor

Кроме того, нельзя использовать следующие слова, не принадлежащие к этому классу: private, protected, public, published, automated, directives, on, virtual.

Идентификаторы (имена). Идентификаторы или имена предназна-чены для обозначения констант, переменных, типов, процедур, функций, меток. Они формируются из букв, цифр и символа «_» (подчеркивание). Длина имени может быть произвольной, однако компилятор учитывает име-на по его первым 63 символам. Внутри имени не должно быть пробелов.

Object Pascal в именах не различает больших и малых букв. Так следующие имена будут идентичны:

SaveToFile, SAVETOFILE, savetofile, sAVEtOfILE.

Среди программистов установилось хорошее правило, в соответствии с которым имена формируются таким образом, чтобы одновременно выпол-нять роль комментария, поясняющего назначение имени. Так, в приведенном примере имя переводится с английского как «сохранить в файле». Кроме того, с учетом невозможности вставки внутрь такого имени пробелов, первые буквы слов обычно пишут заглавными, а прочие строчными. Из приведенного примера хорошо видно, что именно такой способ записи наиболее нагляден для визуального восприятия имени. Нередко в качестве заменителя пробела используют символ «_». Однако это удлиняет и без того длинные имена. Преимущества длинных имен совсем не означают, что нельзя применять короткие имена. Понятно, что проще набрать с клавиатуры и использовать оператор

чем идентичный ему оператор

Disk_C_DirctoryCounter := Disk_C_DirctoryCounter +1.

Следует, однако, с большой осторожностью использовать короткие имена, т. к. это нередко приводит к путанице между глобальными и локальными переменными, обозначенными одинаковыми именами, и, как следствие, к ошибкам в работе программы. Наиболее удобным, безопасным и желательным можно считать локальное использование коротких имен, когда они описаны и использованы внутри какой-нибудь сравнительно небольшой по объему текста процедуры или функции и их действие ограничено пределами только этой алгоритмической единицы. При подозрении на путаницу, действие такой переменной легко проконтролировать визуально.

Изображения. К их числу относятся константы, символьные строки и некоторые другие значения.

Знаки операций формируются из одного или нескольких символов по определению действий, связанных с преобразованием данных.

Разделители используются с целью большего структурирования модуля, с тем чтобы повысить визуальное восприятие длинных текстов. К их числу можно отнести ; := ( .

Комментарии. Эти лексемы используют для пояснения отдельных фрагментов текста программы. Они представляют собой последовательность символов, заключенную в фигурные скобки < >или в разделители (* и *), а также последовательность символов, расположенных в строке справа от двух следующих друг за другом символов /.

(* Функция вычисления количества дней между двумя датами *)

Пробел. Этот символ не имеет видимого изображения и служит для отделения лексем друг от друга в тех случаях, когда это необходимо. Обычно использование одного или нескольких рядом стоящих пробелов не искажает смысл программы.

1.4. Некоторые важные понятия

Остановимся на этих понятиях для того, чтобы коротко определить их для понимания большинства примеров, которыми сопровождается материал. Эти компоненты языка имеют исключительную важность, в последующих разделах они будут описаны более подробно.

Ячейка. Этот несколько устаревший, но весьма удобный термин обозначает фрагмент памяти, который можно представить как некий контейнер для хранения данных определенной структуры. Ячейка всегда имеет свое уникальное имя, которое служит адресом, по которому расположены находящиеся в ней данные. Примером ячейки могут служить любые разрешенные имена, например a1, Imk12, Count и т. д. Термин «ячейка» не является языковым термином Object Pascal и используется здесь только для большей наглядности при описании основ языка.

Значение – это постоянная величина или структурный комплекс постоянных величин, выраженных в явном виде. Значение не имеет имени.

‘Расчет посадки с натягом’ <строка символов>.

Константа – это ячейка, в которой всегда хранится одно значение. Константы не могут быть изменены в ходе выполнения программы. В этом смысле константа отвечает общепринятому определению постоянной (неизменяемой) величины. Всякая константа должна быть описана, т. е. должно быть явно указано ее значение. Значение константы неявно определяет ее тип.

Необходимо отметить, что в языке существуют так называемые типизованные константы, которые в ходе прохождения программы могут быть изменены. Тип константы указывается в специальной языковой конструкции, начинающейся словом Type (тип).

Переменная – это ячейка, в которой в каждый момент времени хранится одно значение или не хранится ничего. Переменная в любой момент времени может быть изменена программой. Всякая переменная должна быть описана. т .е. должен быть явно указан ее тип. Тип переменной указывается в специальной языковой конструкции, начинающейся словом Var (от английского variable – постоянная).

Тип – это структура и описание множества значений, которые могут быть присвоены переменной.

Оператор присваивания – это команда, предназначенная для изменения содержимого ячейки. С его помощью происходит изменение значения переменной (или типизованной константы).

Синтаксис оператора присваивания:

Здесь x – переменная, y – выражение. Выражением могут быть, в частности, переменная, константа или значение. Последовательность символов «:=» обозначает операцию присваивания, в соответствии с которой сначала вычисляется выражение y, затем получившийся результат в виде значения записывается в переменную x (см. подробнее гл. 9).

2. Система типов

В языке Object Pascal все переменные, т. е. ячейки памяти, предназначенные для записи, чтения и хранения значений, должны быть предварительно описаны. Это означает, что всякая переменная должна быть явно отнесена к какому-либо типу.

Тип – это одновременно структура и описание множества значений, которые могут быть присвоены такой переменной.

Язык Object Pascal имеет множество разнообразных типов. Более того он позволяет самому пользователю конструировать самые разнообразные типы, которые могут быть ему необходимы. Конструирование таких типов производится из сравнительно ограниченного количества стандартных типов.

Типы имеют свою иерархию. На верхнем этаже иерархии расположены следующие типы: простые, составные, ссылочные и процедурные.

3. Стандартные простые типы

Основными типами языка являются стандартные простые типы и стандартные структурные типы.

Простые типы делятся на скалярные и ограниченные типы. Cкалярные типы делятся на стандартные и перечислимые. Стандартные скалярные типы делятся на пять видов:

Язык программирования Pascal для новичков: основные понятия

В этой статье я расскажу вам про основные принципы работы с языком Pascal. Информация, выложенная здесь, проста и понятна для начинающих программистов. После изучения этой статьи вы будете владеть первоначальными знаниями о Pascal, и ваш дальнейший процесс обучения будет проходить намного легче чем мог бы быть.

Pascal – один из самых известных языков программирования. Создан в 1968 – 1969 годах швейцарским ученым Никлаусом Виртом, был назван в честь французского математика и физика Блеза Паскаля, и используется для обучения программированию по сей день.

1. Подготовка к работе

Итак, вы решили научиться программировать и начать с языка наиболее для этого подходящего – Pascal. Для начала работы вы должны приобрести (скачать) компилятор.

А что же собственно, такое, этот «компилятор»? Это специальная программа, которая считывает код программы, а затем переводит его на язык машинных кодов. То есть, по сути, все языки программирования – это способ “общения” с компьютером, а компилятор помогает перевести нашу “речь” на понятную ему.

Для Pascal существует немало компиляторов, самые известные из них: Pascal ABC, Free Pascal, Pascal ABC.NET, Turbo Pascal. Все эти программы по-своему хороши, но лично для меня (автора), очень удобен Pascal ABC (или Pascal ABC.NET), поскольку он имеет весьма удобный интерфейс, подробную справку, и даже специально подготовленный для новичков сборник задач.

2. Начало работы

Что ж, перед нами открыто окно компилятора. Чистый, белый (или синий?) лист. Здесь и будут появляться на свет наши первые программы. Перед началом работы следует запомнить, что язык Pascal – это совокупность трёх составляющих: алфавита, синтаксиса (правил написания объектов языка) и семантики (правил использования этих объектов).
Алфавит Pascal состоит из:

  1. Прописных и строчных букв латиницы: A. Z, a…z;
  2. Цифр: 0. 9;
  3. Специальных символов: + — * / = . ; ‘ # ( ) < >[ ] и их комбинаций: «>=» «

Задача же синтаксиса и семантики состоит в том чтобы, правильно написать раздел программы и правильно составить ее структуру, в противном же случае наша программа будет работать неправильно (или же не работать вовсе!).
Вам наверное уже не терпится приступить к самой интересной части, так что сейчас мы с вами попробуем написать ваши первые программы.

Структура программы выглядит так:

Program «имя программы»; — заголовок программы;
(Примечание: в конце строки ставится точка с запятой, не во всех, но в большинстве)
Uses (название библиотеки); здесь подключаются библиотеки, которые дают дополнительные возможности при создании программ;
Label (имя метки); здесь, если необходимо, прописываются метки, позволяющие переходить в разные места программы (о них позже);
Const тут указываем переменные с постоянной величиной, например, p=3.14;
Var тут через запятую перечисляем все переменные, а затем, указываем тип данных (Пример: Var: K, L, M: integer; N, O: real; (если несколько типов));
Begin (здесь без точки с запятой)
Дальше следует основной блок программы;
end. – конец программы (обязательно после “end” точка, если только это конец программы, а не операторные скобки).

3. Создание первых программ

Теперь вы знакомы с основной структурой программы. Следует заметить, что из вышеперечисленных разделов обязательными есть только «Var», «Begin» и «end», остальные же могут применяться, если это требуется в ходе выполнения поставленной задачи.

Откройте окно вашого компилятора, и введите следующие строки:

program Programma1;
begin
end.

Нажмите кнопку «Выполнить»(«Run»). Ничего не происходит? Так и есть, ведь наша программа «пустая», мы не указали что она должна делать, потому ничего и не произошло. Обычно принцип работы программы написанной на языке Pascal состоит из трёх этапов: ввод данных – обработка данных – вывод даннных. Теперь познакомимся с оператором “write”. Он служит для как раз для вывода данных без перехода на новую строку. Попробуем его применить, тем самым сделав нашу программу чуть сложнее и интереснее:

program Programma1;
begin
write(‘ Pascal ‘);
end.

Собственно, так он и применяется. Между апострофами мы можем ввести любой текст, на любой раскладке, и после выполнения программы он появится в окне вывода (или в командной строке, смотря какой у вас компилятор). В данном случае, должно появиться слово «Pascal».

3.1. Операторы write, writeln, read, readln

Теперь поговорим о вводе данных. Мы уже познакомились с оператором write, но существуют также и другие. Writeln, к примеру, используется для вывода данных с переходом на новую строку. Зачем? Ну, например чтобы дать какой-нибудь переменной значение:

Как вы видите, я вкратце описал каждое действие в фигурных скобках. Это называется комментарий. В дальнейшем я также буду использовать их для объяснений.
В этом примере для присваивания к переменной значения, введенного с клавиатуры используется оператор read. Мы видим, что при выполнении он прочитал строку в переменную А. А другой оператор, readln работает по другому. Используя его, мы можем сразу ввести нужную строку, и она прочитается в переменную:

Теперь, когда вы немного знаете о вводе данных, поговорим о том, какие могут быть данные, и как их обрабатывать.

3.2. Типы данных в Pascal


Пока вы читали эту статью, вы, наверное, уже пару раз натыкались на непонятное вам integer. Внимательно изучив основную структуру программы, вы наверняка поняли, что это тип данных. Но что это означает? Давайте поближе с этим познакомимся.

Исходные данные, которые вводятся с клавиатуры или читаются из файла, находяться в переменных, а они, в свою очередь, хранятся в оперативной памяти. Тип данных определяет, какие именно данные можно хранить, и сколько они займут оперативной памяти. Типы данных бывают целыми и вещественными.

•Целые типы данных (для целых чисел):
— byte
Объем памяти значений этого типа составляет 1 байт. Диапазон значений для данного типа: от 0 до 255.
— word
Значения этого типа занимают уже 2 байта памяти, а диапазон значений уже побольше: от 0 до 65535.
— integer (уже нам знакомый)
Значения также занимают 2 байта памяти, диапазон такого же размера, но включает уже и отрицательные числа: -32786…32787.
— LongInt
Объем памяти, занимаемый значением типа равняется 4 байтам. Диапазон значений же полностью соответствует названию типа данных: от -2147483648 до 2147483647
— ShortInt
Значение типа потребляет 1 байт памяти, диапазон относительно небольшой: -128…127.

•Вещественные типы данных (для чисел с дробной частью):
— Real
Занимаемая значением типа память – 6 байт. Число значащих цифр – 11-12. (значащие цифры – это точные цифры, т.е. не округленные). Диапазон значений типа: от 2.9*10-39 до 1.7*1038.
— Double
Размер значения типа – 8 байт. Число значащих цифр – 15-16. Диапазон: 5.0*10324…1.7*10308.
— Extended
Занимает 10 байт. Число значущих цифр – 19-20. Диапазон: 3.4*10-4932…1.1*104932.
Помимо этих, существуют также символьный тип данных (char) и даже логический тип данных (boolean), переменные которого могут принимать значения только true или false.

Итак, мы уже немало узнали о вводе и выводе данных. Теперь же перейдем к самой сложной части – обработке данных.

3.3. Обработка данных. Математические операции. Условия. Логические операции.

Мы уже научились вводить данные в программу, теперь попробуем научиться их обрабатывать. Первое, и самое главное, что нам пригодится в этом деле – оператор присваивания. Выражается он вот так: «:=», и используется для присваивания значения переменной. Примеры: A:=1.5; B:=2+A. Теперь, когда мы знакомы с оператором присваивания, можем рассмотреть математические операции Pascal:

  1. Сложение (+);
  2. Вычитание (-);
  3. Умножение (*);
  4. Деление (/);
  5. Целочисленное деление (div) – возвращает целую часть от деления (Пример: 10 div 3 = 3);
  6. Остаток от деления (mod) – возвращает только остаток от деления (Пример: 5 mod 2 = 1);

Помимо приведенных, существуют еще такие операции и функции для работы с числами:

abs(x) – возвращает модуль от x;
sin(x) – синус угла x (в радианах);
cos(x) – косинус угла x (в радианах);
int(x) – возвращает целую часть от x;
random(число) – случайное число от 0 до заданного;
sqr(x) – квадрат x;
sqrt(x) – квадратный корень x;
inc(x) – увеличить x на 1;
dec(x) – уменьшить x на 1.

Условия

Условия в Pascal играют очень большую роль, особенно если алгоритм выполнения программы разветвленный. Формулируется условие следующим образом:

if (условие 1) then (действие 1 — основное) else (действие 2 — альтернативное)
(if – если, then – то, else – иначе)

При построении условия пользуются логическими операциями and, not, or, xor:

• and – операнд, объединяющий несколько условий в одно. Действие будет выполняться, только если все перечисленные условия будут верны.
program Usloviya;
var a:integer;
begin
readln(a);
if (2*2=4) and (3+2=5) then a:=a+1 else a:=a-1;
write(a);
end.

На этом примере мы видим, что все условия, перечисленные через and верны, потому выполнялось только первое действие, идущее через than. Если хотя бы одно условие не было верно, тогда выполнилось бы второе действие.

• not – логическое действие с условием из одной части. Если условие неверно, то будет выполняться основное действие (первое), если верно – то альтернативное (второе).

program Usloviya;
var b:integer;
begin
readln (b);
if not 5=4 then b:=b+1 else b:=b-1;
write (b);
end.

Условие 5=4 неверно, следовательно, будет выполняться первое действие.

• or (или) – логический оператор для условия из нескольких частей. Основное действие будет выполняться, если верно хотя бы одно условие.
program Usloviya;
var d:integer;
begin
readln (d);
if (5=4+1) or (5=4) then d:=d+1 else d:=d-1;
write(d);
end.

Одно из условий верно, поэтому программа перейдет к основному действию. Тоже повторится, если верными будут все условия. Если же ни одно условие не будет верно, то выполниться альтернативное действие.

• xor – с этим оператором основное действие выполняется, если верно только одно условие. Если верны несколько условий, или же ни одного, то выполнится альтернативное действие.

program Usloviya;
var n:integer;
begin
readln(n);
if (6=4) xor (3=5-2) then n:=n+1 else n:=n-1;
write (n);
end.

(Примечание: Не стоит забывать что приоритет логических операций выше чем математических, поэтому, если одни совмещаются с другими, то желательно выделять математические операции скобками, чтобы не возникало ошибок при выполнении программы.)

Теперь мы с вами знакомы и с основами обработки данных. Осталось поговорить о некоторых дополнительные процедурах, и функциях для управления программой, которые вам не раз пригодяться при дальнейшем обучении на Pascal.

3.4. Процедуры и функции для управления программой

Поговорим о упомянутой раньше метке. Эта процедура очень легка в использовании и позволяет при надобности перейти в любую часть программы, «перескочив» одну из следующих частей, или же наоборот, вернуться в предыдущую часть. Прописывается метка очень просто: сперва описываем метку в разделе меток (см. п. 3. Начало работы. Структура программы), а затем указывается место перехода, а нужный оператор помечается меткой.

На данном примере, программа увеличивает на 1 введенное число, пока оно не станет равным пяти. Тут мы и можем проследить действие метки.

•Delay(время) – остановка программы с задержкой, время в кавычках указывается в миллисекундах.
•Readkey – остановка программы до нажатия клавиши, значение функции – код нажатой клавиши.
•Exit – досрочное завершение процедуры.
Следует заметить, что для работы delay, readkey, и exit необходимо подключить модуль crt (uses crt).

Также посмотрите видео: Паскаль с нуля — первая программа.

4. Заключение

Прочитав эту статью, вы получили базовые знания по языку программирования Pascal. В доступных и понятных формулировках здесь были выложены основные понятия, принципы работы с данным языком. Теперь дело переходит к вам в руки. Если вы правильно воспользуетесь этой информацией, и продолжите обучаться языку Pascal, то вскоре сможете владеть им в совершенстве.

Поняв принцип работы с Pascal, вы сможете изучить и другие языки программирования, и в будущем писать уже более «серьезные» программы, чем те с которыми вы познакомились при изучении этой статьи. Продолжайте учиться! Удачи!

Краткое введение в object pascal

Коднянко В.А.
Программирование на языке Object Pascal в среде Delphi

Язык программирования Object Pascal разработан фирмой Inprise Inte r national для использования в среде Delphi – мощном и популярном современном средстве визуального программирования, позволяющем решать практически любые задачи обработки данных и способном удовлетворить самые сложные запросы и потребности программиста.

Его прародителем является язык Pascal , который был разработан швейцарским математиком Николаусом Виртом в 1968 г. с целью использования его в качестве инструмента для обучения компьютерному программированию как системной дисциплине. В основу языка были положены основные идеи широко известного в 60-е годы языка ALGOL-60 . Благодаря чрезвычайной гибкости и удобству языка Pascal были созданы многочисленные его диалекты, нашедшие свое воплощение в программном обеспечении ЭВМ последующих поколений, что также способствовало его популяризации. Теоретические основы языка, как выяснилось позже, оказались настолько удачны, что помимо традиционных вычислительных задач язык оказался пригоден для разработки более сложных программных структур – систем обработки баз данных, компиляторов и даже операционных систем.

С внедрением персональных IBM- совместимых компьютеров в середине 80-х годов фирмой Borland International была разработана новая версия языка, получившая название Turbo Pascal. По сути Turbo Pascal стал даже не языком, а системой, представляющей собой интегрированную (целостную) среду программирования, включающую весь необходимый инструментарий для прохождения программы через компьютер – от ее ввода до получения готового результата. Наиболее удачные версии языка – Turbo Pascal 5.5, Turbo Pascal 6.0, Borland Pascal 7.0 – относятся к 1986 – 1992 г.г. Принципиальными нововведениями Turbo Pascal стали модульная технология конструирования программ и объектно-ориентированные средства программирования. Эти новшества, в особенности технология модульного программирования, позволили с небывалой легкостью создавать не только традиционные вычислительные программы, но и очень сложные информационно-вычислительные системы.

С появлением и развитием операционных систем Microsoft Windows (3.1, 3.11, 95, 98, 2000), пришедших на смену DOS, значение Turbo Pascal как среды программирования резко снизилось. В настоящее время эта среда практически не применяется и используется для внесения коррективов в ранее созданные и до сих пор работающие программы и базы данных и/или в низкоресурсных компьютерах устаревших моделей.

Значение самого языка Turbo Pascal, напротив, не уменьшилось, т. к. на смену вышеназванным DOS-средствам одноименного названия пришло новое, еще более мощное и более удобное средство программирования – среда Delphi (Делфи или Дельфи), основой которого является по-прежнему Turbo Pascal и который выступает теперь под названием – Object Pascal.

Среда Delphi, в отличие от Turbo Pascal, является принципиально новым средством программирования. Она построена на идее визуального способа программирования. Сочетание визуализации программирования и преимуществ языка сделало Delphi весьма популярным среди программистов из-за поразительной простоты и наглядности в составлении компьютерных программ. Можно привести примеры практически значимых программ на Delphi , составление которых вообще не требует знания языка программирования, т. к. действия программиста в написании таких программ выполняет сама Delphi! Такие программы она пишет на языке Object Pascal. Эти примеры хотя и показательны, тем не менее не являются убедительным доказатель-ством исключительных возможностей Delphi как абсолютной альтернативы труду программиста. Образно говоря, Delphi является грандиозным складом строительных материалов и технологий конструирования многообразных типовых программ, что позволяет автоматизировать множество действий, которые необходимо выполнить при написании программы. Однако она не может пока с присущей ей легкостью конструировать программы для обработки ситуаций, которые наперед неизвестны и которые тем не менее необходимо реализовать в таких программах. Именно здесь необходимо знание языка Object Pascal для того, чтобы программист смог сам написать с помощью этого языка необходимые программные коды для Delphi, которые не предусмотрены стандартами ее аппарата. К их числу относятся, например: а) обработка оригинальных событий ; б) написание стилевых процедур, которые заставляют компьютер выполнять некоторые действия в «фирменном стиле» автора ; в) написание процедур, обеспечивающих групповую обработку ряда повторяющихся или подобных операций, которые могут порождаться выработанной нестандартной или новой методикой решения конкретной задачи и др.

Delphi и Object Pascal с момента своего появления в 1995 году за короткий срок прошли несколько этапов развития. Последовательно, с интервалом в один год , появились новые версии Delphi 2, Delphi 3, Delphi 4, Delphi 5 и их промежуточные версии, в которых так же оперативно появлялись новые средства удовлетворения современных запросов программистов.

Сравнение с другими современными средствами программирования, например Visual Basic или C++, показывает, что Delphi, благодаря ряду уникальных особенностей, пользуется неизменной популярностью среди программистов и может быть рекомендована к использованию в практике решения задач самого широкого спектра приложения – от простых или сложных вычислений, обработки сигналов внешних устройств, работы в Internet до ведения и обработки больших баз данных. С её помощью можно создавать удобные экранные интерфейсы, печатные документы, производить стыковку разрабатываемого программного продукта с популярными фирменными интерфейсами и многое другое. В этой связи язык Object Pascal не теряет своей актуальности и может быть рекомендован к изучению как важный и перспективный компонент современных информационных технологий.

Наряду с достоинствами необходимо указать на один, однако весьма существенный недостаток языка Object Pascal – слабые возможности языка для обеспечения математических вычислений. В частности, в языке по непонятным причинам полностью отсутствуют средства работы с комплексными числами. Между тем математический комплексный анализ является важнейшей составной частью исследований, которые нередко необходимо проводить в ряде расчетов, например в области механики твердого тела или механики жидкости и газа. Особенно часто эти расчеты необходимы при изучении динамического качества машин и механизмов, в частности при изучении их динамической устойчивости к внешним возмущениям. Заметим, что среди большого разнообразия средств программирования есть только один язык, который позволяет выполнять любые математические операции, включая обработку комплексных чисел. Это язык программирования Fortran. Однако он также имеет свои недостатки. Например, он не может быть использован при работе с базами данных, при создании удобных интерфейсов, экранных и печатных форм и многое другое. В этом смысле Fortran отстал от требований, предъявляемых к современному программному продукту, что снижает привлекательность этого несомненно нужного языка в сравнении с Object Pascal, тем более Delphi.

С появлением Delphi язык Object Pascal существенно изменился. Он обрел много новых необходимых процедур и функций. При этом ряд старых процедур и функций приобрели новые имена, а старые имена используются в новом контексте. Произошли и другие изменения.

Настоящее пособие не ставит задачей описание старых версий Turbo Pascal для DOS в силу утраты его актуальности . В нем нет также практических сведений о самой среде Delphi, инструкций по управлению этой средой, нет сведений о фирменных Delphi-классах, экранных компонентах, компо-нентах баз данных и другого, без чего трудно представить программу, написанную в этой среде.

Цель настоящего пособия состоит в другом – дать исходный и, по возможности, полный набор общих сведений о способах программирования средствами языка Object Pascal применительно к Delphi и первичных компо-нентах этого языка – значениях, типах, константах, переменных, записях, множествах, операторах, процедурах и функциях, базовых структурах, способах представления данных, конвертации данных из одного типа в другой и ряде других сведений, знание которых необходимо для составления пользовательских кодов средней сложности.

В рамках настоящего пособия, конечно, нельзя охватить всех особенностей языка Object Pascal ввиду его богатейшего многообразия. Вместе с тем, приведенного здесь материала вполне достаточно для написания практических процедур и функций по обработке событий для программ различного спектра назначения, включая многомодульные программы среднего уровня сложности.

Предлагаемое пособие может быть использовано как справочник при написании компьютерных программ в среде Delphi.

Новые концепции ООП в Object Pascal

В языке Object Pascal, используемом в Delphi, произошел ряд давно ожидаемых программистами изменений, по сравнению с последней версией Borland Pascal. Перечислим, основные из них, позволившие назвать объектную модель Object Pascal новой объектной моделью:

  • изменения в синтаксисе объявления и использования объектов
  • введение функций классов
  • введение методов классов
  • изменения в организации определений и вызовов методов
  • введение раздела объявления интерфейса разработчика объектного типа — protected
  • введение раздела объявления design-time интерфеса объектного типа — published
  • введение механизмов RTTI — информации о типах на этапе выполнения программ
  • введение поддержки процедурных полей
  • введение понятия «свойства» — property

В отличие от объявления старых объектных типов, использовавшего ключевое слово object , новые объектные типы определяются с помощью слова >. Здесь уместно привести определение отношения между понятиями объекта и класса, данное Гради Бучем:

В новой объектной модели программист работает только с динамическими экземплярами классов (то есть с теми, для которых выделяется память в heap-области), в отличие от старой модели, где можно было работать как с динамическими, так и со статическими экземплярами. По этой причине изменен синтаксис обращения к полям и методам объектов. Если раньше для работы с динамическими экземпляров объектов (инициализированными с использованием обращения к конструктору в сочетании с функцией New ) программист должен был использовать обращение «по адресу» ( ^ ), то теперь такой доступ подразумевается автоматически. В качестве примера сравните два следующих фрагмента исходного текста:

TMyObject = object (TObject)

TMyObject = class (TObject)

Как Вы могли заметить, в Object Pascal расширен синтаксис использования “точечной нотации” для доступа к методам объектов. Кроме того, изменено соглашение и об именовании конструкторов и деструкторов. В старой объектной модели вызов New отвечал за распределение памяти, а обращение к конструктору инициализировало выделенную область памяти. В новой модели эти функции выполняет конструктор Create .

Приведем объявление базового для всех объектных типов класса TObject:

destructor Destroy; virtual;

class function NewInstance: TObject; virtual;

procedure FreeInstance; virtual;

class procedure InitInstance(Instance: Pointer): TObject;

function ClassType: TClass;

class function ClassName: string;

class function ClassParent: TClass;

class function ClassInfo: Pointer;

class function InstanceSize: Word;

class function InheritsFrom(AClass: TClass): Boolean;

procedure DefaultHandler(var Message); virtual;

procedure Dispatch(var Message);

class function MethodAddress(const Name: string):

class function MethodName(Address: Pointer): string;

function FieldAddress(const Name: string): Pointer;

Компилятор Object Pascal является основой Delphi. Визуальные же средства Delphi построены на концепции Two-Way Tools , позволяющей синхронизировать процесс визуального проектирования форм приложения с генерацией исходного кода.

Такая архитектура возможна только при наличии механизма поддержки информации о типах — RTTI (RunTime Type Information) . Основой такого механизма является внутренняя структура классов и, в частности, возможность доступа к ней за счет использования методов классов, описываемых конструкцией > Дадим определение понятия метода класса:

С одной стороны, Delphi, будучи визуальной средой разработки приложений, ориентирован на тех программистов, которые из готовых компонент «собирают» конкретные приложения для конечных пользователей. С другой стороны, являясь расширяемым объектно-ориентированным инструментом, этот продукт представляет интерес и для специалистов, занимающихся наращиванием функциональных возможностей уже существующих программных библиотек. Поэтому, выглядит абсолютно логичным появление в Object Pascal новых разделов в описании классов, соответственно, published и protected . Вместе с ранее введенными разделами ( public и private ) они предоставляют полный контроль над возможностями использования и «безболезненной» (в смысле предотвращения фатальных с точки зрения идеологии ошибок) модификации компонент Visual Component Library (VCL — библиотека классов Delphi). Чтобы была более ясна логика использования новых разделов, дадим, также, краткую характеристику и уже существующих:

  • private — внутренние деталей реализации
  • protected — интерфес разработчика
  • public — run-time интерфейс
  • published — design-time интерфейс

Все эти разделы работают на уровне модулей (в смысле языка Pascal): если какая-либо часть объекта доступна (или не доступна) в одной области модуля, то такая же доступность будет определена и в другой области модуля (для классов, объявленных в секции In te rface). Если вы нуждаетесь в специальной защите объекта или его части, то для этого необходимо его поместить в отдельный модуль.

Раздел protected комбинирует функциональную нагрузку разделов private и public таким образом, что, если вы хотите скрыть внутренние механизмы вашего объекта от конечного пользователя, этот пользователь не сможет в run-time использовать ни одно из объявлений объекта из его protected области, но это не помешает разработчику новых компонент использовать эти механизмы в других модулях. То есть, protected -объявления доступны у любого из наследников вашего класса.

Раздел published оказался необходимым при введении в Delphi возможности установки свойств и поведения компонент еще на этапе конструирования форм и самого приложения. Именно published -объявления доступны через Object Inspector, будь это ссылки на свойства или обработчики событий.

Следует отметить тот факт, что, при порождении нового класса, возможен перенос объявлений из одного раздела в другой, с единственным ограничением — если вы производите скрытие объявления за счет его переноса в раздел private — в дальнейшем его «вытаскивание» у наследника в более доступный раздел в другом модуле будет уже невозможен. Такое ограничение, к счастью, не распространяется на динамические методы-обработчики сообщений Windows.

Учитывая, что наследование представляет собой один из краеугольных камней объектной идеологии, очевидной проблемой реализации объектной ориентированности языка является проблема диспетчеризации вызовов методов объектов.


Методы объектов Object Pascal могут иметь любой из трех типов: статический, виртуальный или динамический .

Так как статические и виртуальные методы не претерпели принципиальных изменений, по сравнению с Borland Pascal 7.0, остановимся на новом по реализации типе — динамическом (который, вообще говоря, присутствовал в неявном форме в библиотеке OWL).

Динамические ( dynamic ) методы, по возможностям наследования и перекрытия, аналогичны виртуальным, но в отличие от последних не имеют входов в таблицу VMT . Такой подход позволяет снизить расход памяти при большом количестве этих методов и самих классов.

В отличие от виртуальных методов и самой идеологии VMT, таблица динамических методов (DMT) содержит входы только для методов, объявленных или перекрытых для данного класса. На каждый динамический метод приходится только одна ссылка, представленная так называемым «индексом», по которому и происходит поиск метода для вызова (базовая информация по обработке динамических методов содержится в модуле x:\delphi\source\rtl\sys\dmth.asm ). C точки зрения синтаксиса, перекрытие динамических и виртуальных методов производится одинаково — с использованием ключевого слова overr >. Исключение составляют обработчики Windows-сообщений wm_Xxx .

В Delphi существуют понятия, принципиально новые для уже существующих объектно-ориентированных реализаций Pascal. К числу этих понятий относятся свойства, функция класса и объектная ссылка .

В Object Pascal добавлена возможность определения полей процедурного типа. Очевидно, что в теле функций привязываемых к этим полям, разработчику необходим доступ к другим полям объекта, методам и т.п. Возможность такого доступа базируется на передаче в эти функции неявного, но доступного в их коде, параметра, автоматически принимающего значение поля объекта Self . Такие функции называются функциями классов. Для объявления функций классов необходимо использовать специальную конструкцию function . of object .

Delphi позволяет вам создать специальный описатель объектного типа (именно типа, а не на экземпляра !), известный как object reference — объектная ссылка.

Объектные ссылки используются в следующих случаях:

  • тип создаваемого объекта не известен на этапе компиляции
  • необходим вызов метода класса, чей тип не известен на этапе компиляции
  • в качестве правого операнда в операциях проверки и приведения типов с использованием is и as (о них мы будем говорить при обсуждении механизмов RTTI в главе 1.4)

Объектная ссылка определяется с использованием конструкции >. Приведем пример объявления и использования class reference:

TMyObject = class (TObject)

TObjectRef = class of TObject;

Таким образом в Delphi определена специальная ссылка T >, совместимая по присваиванию с любым наследником TObject. Аналогично объявлены TPersistent > и TComponentClass .

Методы в новой объектной модели используют те же соглашения о вызовах, что и обычные процедуры или функции, за некоторыми исключениями. «Ключом» внутренней организации вызовов методов объектов является тот факт, что для каждого метода, в дополнение к объявленным параметрам, передается неявный параметр Self , который описан для каждого класса или экземпляра объекта. Параметр Self всегда передается последним и представляет собой указатель. Для обычных методов, Self — указатель на экземпляр объекта, для методов классов — это указатель на Таблицу Виртуальных Методов (VMT). Например, для данного объявления:

TMyObject = class (TObject)

procedure Two; virtual;

class procedure Three; virtual;

вызов MyObject.One сгенерирует следующий код:

При возврате управления, метод должен удалить из стека вначале параметр Self , а затем и остальные — явные параметры.

Методы всегда используют дальнюю ( far ) модель вызова, несмотря на то, каким образом установлена директива компиляции $F . Для вызова виртуального метода, компилятор генерирует код, загружающий из объекта указатель на VMT , и затем вызывает через точку входа в VMT ( ES:[DI] ), ассоциированный с этой точкой входа метод. Например, вызов MyObject.Two приведет к генерации следующего :

call DWORD PTR ES:[DI]

call DWORD PTR ES:[DI+4]

; +4, т.к. это смещение в VMT для второго

; по счету виртуального метода

А для My > будет сгенерированно:

call DWORD PTR ES:[DI+4]

Очевидно, что приведенные примеры генерируемого кода соответствуют 16-разрядной версии Delphi, но по своей идеологии они остаются верной и для Delphi32.

Object Pascal (стр. 1 из 16)

1. Основы языка Object Pascal

1.1. Алфавит языка

Основными символами языка Object Pascal являются:

· 26 больших и 26 малых латинских букв A,B, …Y,Z, a,b, …, y,z

· 10 арабских цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

Буквы русского алфавита не входят в состав алфавита языка. Их использование допустимо только в строковых и символьных значениях.

Нет различий при использовании больших и малых букв в записи имен переменных, процедур, функций и меток. Их максимальная длина ограничена 126 символами.

1.2. Краткие сведения о структуре программы

Программа, написанная в среде Delphi при помощи языка Object Pascal, всегда состоит из нескольких модулей. Как минимум таких модулей должно быть два. Один модуль всегда является головной программой и имеет название program. Прочие модули играют вспомогательную и зависимую от головной программы или от других модулей роль и называются unit. Минимально структурированная программа имеет один модуль program и один модуль unit. Серьезные программы помимо модуля program могут содержать до нескольких десятков авторских модулей unit и большое количество ссылок на фирменные или разработанные как самим автором, так и другими разработчиками модули unit.

Программа всегда начинает работу с модуля program, активизируя функционирование одного или нескольких зависимых модулей unit. Те в свою очередь могут активизировать другие модули unit и т.д.

Исходный программный текст каждого модуля составляется на языке Object Pascal и помещается в отдельный файл, который всегда имеет расширение .pas. Текст модуля program имеет расширение .dpr.

Полный программный текст любого модуля также имеет свою структуру, которая может включать блоки определения констант, внутренних структур описания типов, тексты процедур, функций и др.

1.3. Лексическая структура языка

Строительным материалом для конструирования программного текста модуля являются лексемы – особые языковые конструкции, имеющие самостоятельный смысл. Лексемы строятся при помощи символов алфавита языка. В Object Pascal различают следующие основные классы лексем:

Зарезервированные (служебные) слова. Этот класс состоит из слов, построенных только с помощью букв алфавита. Служебные слова можно использовать только по прямому назначению, т. е. так, как их назначение определил разработчик языка. Ни в каком другом виде, например в качестве имен переменных, их использовать нельзя.

Ниже представлен список таких слов:

And asm class destructor do end file for if inherited interface library not or procedure raise resource shl then try until while with array begin const dispose downto except finalization function implementation initialization in interface is mod object out program record string shr threadvar type uses as case constructor div else exports finally goto in line label nil of packed property repeat set string to unit var xor

Кроме того, нельзя использовать следующие слова, не принадлежащие к этому классу: private, protected, public, published, automated, directives, on, virtual.

Идентификаторы (имена). Идентификаторы или имена предназна-чены для обозначения констант, переменных, типов, процедур, функций, меток. Они формируются из букв, цифр и символа «_» (подчеркивание). Длина имени может быть произвольной, однако компилятор учитывает име-на по его первым 63 символам. Внутри имени не должно быть пробелов.

Object Pascal в именах не различает больших и малых букв. Так следующие имена будут идентичны:

SaveToFile, SAVETOFILE, savetofile, sAVEtOfILE.

Среди программистов установилось хорошее правило, в соответствии с которым имена формируются таким образом, чтобы одновременно выпол-нять роль комментария, поясняющего назначение имени. Так, в приведенном примере имя переводится с английского как «сохранить в файле». Кроме того, с учетом невозможности вставки внутрь такого имени пробелов, первые буквы слов обычно пишут заглавными, а прочие строчными. Из приведенного примера хорошо видно, что именно такой способ записи наиболее нагляден для визуального восприятия имени. Нередко в качестве заменителя пробела используют символ «_». Однако это удлиняет и без того длинные имена. Преимущества длинных имен совсем не означают, что нельзя применять короткие имена. Понятно, что проще набрать с клавиатуры и использовать оператор

чем идентичный ему оператор

Disk_C_DirctoryCounter := Disk_C_DirctoryCounter +1.

Следует, однако, с большой осторожностью использовать короткие имена, т. к. это нередко приводит к путанице между глобальными и локальными переменными, обозначенными одинаковыми именами, и, как следствие, к ошибкам в работе программы. Наиболее удобным, безопасным и желательным можно считать локальное использование коротких имен, когда они описаны и использованы внутри какой-нибудь сравнительно небольшой по объему текста процедуры или функции и их действие ограничено пределами только этой алгоритмической единицы. При подозрении на путаницу, действие такой переменной легко проконтролировать визуально.

Изображения. К их числу относятся константы, символьные строки и некоторые другие значения.

Знаки операций формируются из одного или нескольких символов по определению действий, связанных с преобразованием данных.

Разделители используются с целью большего структурирования модуля, с тем чтобы повысить визуальное восприятие длинных текстов. К их числу можно отнести ; := ( .

Комментарии. Эти лексемы используют для пояснения отдельных фрагментов текста программы. Они представляют собой последовательность символов, заключенную в фигурные скобки < >или в разделители (* и *), а также последовательность символов, расположенных в строке справа от двух следующих друг за другом символов /.

(* Функция вычисления количества дней между двумя датами *)

Пробел. Этот символ не имеет видимого изображения и служит для отделения лексем друг от друга в тех случаях, когда это необходимо. Обычно использование одного или нескольких рядом стоящих пробелов не искажает смысл программы.

1.4. Некоторые важные понятия

Остановимся на этих понятиях для того, чтобы коротко определить их для понимания большинства примеров, которыми сопровождается материал. Эти компоненты языка имеют исключительную важность, в последующих разделах они будут описаны более подробно.

Ячейка. Этот несколько устаревший, но весьма удобный термин обозначает фрагмент памяти, который можно представить как некий контейнер для хранения данных определенной структуры. Ячейка всегда имеет свое уникальное имя, которое служит адресом, по которому расположены находящиеся в ней данные. Примером ячейки могут служить любые разрешенные имена, например a1, Imk12, Count и т. д. Термин «ячейка» не является языковым термином Object Pascal и используется здесь только для большей наглядности при описании основ языка.

Значение – это постоянная величина или структурный комплекс постоянных величин, выраженных в явном виде. Значение не имеет имени.

‘Расчет посадки с натягом’ <строка символов>.

Константа – это ячейка, в которой всегда хранится одно значение. Константы не могут быть изменены в ходе выполнения программы. В этом смысле константа отвечает общепринятому определению постоянной (неизменяемой) величины. Всякая константа должна быть описана, т. е. должно быть явно указано ее значение. Значение константы неявно определяет ее тип.

Необходимо отметить, что в языке существуют так называемые типизованные константы, которые в ходе прохождения программы могут быть изменены. Тип константы указывается в специальной языковой конструкции, начинающейся словом Type (тип).

Переменная – это ячейка, в которой в каждый момент времени хранится одно значение или не хранится ничего. Переменная в любой момент времени может быть изменена программой. Всякая переменная должна быть описана. т .е. должен быть явно указан ее тип. Тип переменной указывается в специальной языковой конструкции, начинающейся словом Var (от английского variable – постоянная).

Тип – это структура и описание множества значений, которые могут быть присвоены переменной.

Оператор присваивания – это команда, предназначенная для изменения содержимого ячейки. С его помощью происходит изменение значения переменной (или типизованной константы).

Синтаксис оператора присваивания:

Здесь x – переменная, y – выражение. Выражением могут быть, в частности, переменная, константа или значение. Последовательность символов «:=» обозначает операцию присваивания, в соответствии с которой сначала вычисляется выражение y, затем получившийся результат в виде значения записывается в переменную x (см. подробнее гл. 9).

2. Система типов

В языке Object Pascal все переменные, т. е. ячейки памяти, предназначенные для записи, чтения и хранения значений, должны быть предварительно описаны. Это означает, что всякая переменная должна быть явно отнесена к какому-либо типу.

Тип – это одновременно структура и описание множества значений, которые могут быть присвоены такой переменной.

Язык Object Pascal имеет множество разнообразных типов. Более того он позволяет самому пользователю конструировать самые разнообразные типы, которые могут быть ему необходимы. Конструирование таких типов производится из сравнительно ограниченного количества стандартных типов.

Типы имеют свою иерархию. На верхнем этаже иерархии расположены следующие типы: простые, составные, ссылочные и процедурные.

3. Стандартные простые типы

Основными типами языка являются стандартные простые типы и стандартные структурные типы.

Простые типы делятся на скалярные и ограниченные типы. Cкалярные типы делятся на стандартные и перечислимые. Стандартные скалярные типы делятся на пять видов:

Введение в Object Pascal

В этой и последующих главах второй части книги мы будем изучать основной инструмент Delphi — язык Object Pascal. Назначение этой главы — предоставить вам возможность неформального знакомства с основными свойствами языка без точного описания и углубленного изучения его конструкций.

5.1. УЧЕБНАЯ ПРОГРАММА

При описании свойств языка мне понадобится иллюстрировать их небольшими примерами. В таких примерах чаще всего реализуются простые действия по вводу некоторых данных, их преобразованию и выводу результатов на экран. Для реализации этих действий создадим форму, которая будет содержать все необходимые для учебных примеров интерфейсные элементы. Чтобы эта форма была доступна в любой учебной программе, мы поместим ее в так называемый репозиторий Delphi — архив, в котором сохраняются заготовки для новых программ. Замечу, что в версии 1 нет репозитория. Тем не менее полезно и в этом случае создать учебную форму: чтобы избавить себя от повторения одних и тех же действий при реализации разных примеров. Сохраните ее в файле с именем Example, например, а при создании новой программы свяжите ее с проектом (опция File | Add) и сразу же сохраните под другим именем (File | Save As).

Вид формы для учебной программы показан на рис. 5.1. На форме размещена панель (трапе!), две кнопки (TBitBtn), строка ввода (TEdit), метка (TLabel) и многострочный редактор (TMеmо). Панель понадобилась для того, чтобы размещенные на ней кнопки, строка ввода и метка всегда располагались в нижней части окна, даже если окно распахнуто на весь экран. Левая кнопка ок служит для сообщения программе о том, что в строке ввода подготовлен текст. Обработчик события onciick этой кнопки будет тем самым местом программы, куда мы будем помещать учебные фрагменты. Правая кнопка close служит для завершения работы программы. Ее функции аналогичны функциям системной кнопки закрытия окна, и поэтому ее можно было бы и не размещать на форме. Однако я предпочитаю использовать крупную, бросающуюся в глаза кнопку, чтобы даже неопытный пользователь сразу увидел интерфейсный элемент, с помощью которого он сможет прекратить работу с программой. Метка располагается над строкой ввода и пока не видна на экране. Она предназначена для размещения коротких сообщений, которые будет формировать программа. Для вывода многострочных сообщений служит редактор TMеmо, занимающий все остальное место окна.

Рис. 5.1. Форма для учебной программы

5.1.1. Конструирование формы

Вы можете самостоятельно сконструировать форму для учебной программы, руководствуясь приведенным выше описанием размещенных на ней компонентов и рисунком 5.1. Для облегчения этого процесса ниже для каждого компонента указаны свойства, значения которых отличаются от умалчиваемых. Компоненты перечислены в порядке их размещения, т. е. вначале подготавливаются свойства формы, потом на форму помещается панель, на нее помещаются кнопки и строка ввода, а метка и многострочный редактор — на свободное место формы над панелью.

Размеры компонентов установлены с учетом разрешения экрана 800х600. Для другого разрешения эти размеры, возможно, потребуется скорректировать.

Илон Маск рекомендует:  strnatcasecmp - Сравнение строк без учета регистра с использованием алгоритма естественного
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL