Функции delphi
Здравствуй, дорогой читатель. Сегодня я планирую рассказать о таком значимом элементе программирования как функции. А если быть точным, будем разбирать функции Delphi.
Начнем с общего определения:
Функция – фрагмент программного кода, который имеет свое имя. По этому имени данный фрагмент можно вызвать из любого места программы. Результатом выполнения функции Delphi является значение.
Объясню доступным языком, зачем нужны функции. Представьте себе ситуацию, что Вам в программе нужно несколько раз вычислять площадь квадрата. Вместо того, чтобы каждый раз писать один и тот же код, Вы можете объявить функцию и просто вызывать её в нужном месте. Если ещё не совсем понятно зачем все это нужно, советую прочесть статью до конца и на примерах станет все ясно.
Давайте разберем как определить функцию.
Итак, в начале идет ключевое слово function, затем имя функции. Далее в круглых скобках список параметров. Также необходимо указать тип возвращаемого результата. При необходимости можно определить локальные переменные. Между операторных скобок (begin..end;) необходимо записать требуемые инструкции.
В каждой функции Delphi автоматически создает переменную с именем result, переменная имеет тот же тип, что и возвращаемое значение функции. С помощью этой переменной мы и будем возвращать значения. (Есть еще одна возможность вернуть значение, её я продемонстрирую на примере).
В функцию можно передавать параметры разных типов: значения, константы, переменные, выходные параметры. Но это тема отдельной статьи, которую я напишу чуть позже.
Разберем применение функций Делфи на простом примере.
Создайте новое приложение и на форме разместите три кнопки (Button).
Далее откройте код и будем писать функцию, цель которой будет возвращать квадрат числа. Описание у нас будет вне класса после строк:
Сама же функция будет иметь следующий вид:
Название – square, параметр всего один – x типа Double, результат тоже будет Double.
Делфи позволяет возвращать значения через переменную, название которой совпадает с названием функции Delphi. В нашем случае это выглядит так: square:=x*x;(закомментированный код).
Теперь посмотрим как можно использовать написанный код. Напишем обработчик события Onclickдля каждой из кнопок.
- Для первой кнопки — ShowMessage(FloatToStr(square(1)));
- Для второй — ShowMessage(FloatToStr(square(2)));
- Для третей — ShowMessage(FloatToStr(square(3)));
У меня получился следующий Unit
Как можно заметить мы однажды определили функцию, а использовали её трижды. Если функция была бы побольше, мы бы сэкономили уйму времени и сил, сократили количество вводимого текста. Модифицировать программу также легче, если Вы используете функции – поправив тело функции вы изменяете логику на всех участках, где она используется.
Подведем итог. Функции делают разработку на Делфи проще и быстрее, код читабельнее, правку проще. Используйте фунуции Delphi.
Lo — Функция Delphi
Подпрограммы — процедуры и функции в языке Delphi служат для выполнения специализированных операций. Delphi имеет множество стандартных подпрограмм, но всё равно приходится создавать собственные для выполнения часто повторяющихся операций с данными, которые могут меняться.
Вообще, существует методика программирования «сверху вниз». Методика программирования «сверху вниз» разбивает задачу на несколько более простых, которые оформляются в виде подпрограмм. Те, в свою очередь, при необходимости также делятся до тех пор, пока стоящие перед программистом проблемы не достигнут приемлемого уровня сложности (то есть простоты!). Таким образом, эта методика программирования облегчает написание программ за счёт создания так называемого скелета, состоящего из описателей подпрограмм, которые в дальнейшем наполняются конкретными алгоритмами. Пустое описание подпрограммы иначе называется «заглушкой».
И процедуры, и функции позволяют добиться одинаковых результатов. Но разница всё же есть.
Процедура Delphi просто выполняет требуемые операции, но никаких результатов своих действий не возвращает. Результат — в тех изменениях, которые произошли в программе в процессе выполнения этой процедуры. В частности, процедура может поменять значения переменных, записать новые значения в ячейки компонентов, сделать запись в файл и т.д.
Функция Delphi также позволяет выполнить всё перечисленное, но дополнительно возвращает результат в присвоенном ей самой значении. То есть вызов функции может присутствовать в выражении справа от оператора присваивания. Таким образом, функция — более универсальный объект!
Описание подпрограммы состоит из ключевого слова procedure или function, за которым следует имя подпрограммы со списком параметров, заключённых в скобки. В случае функции далее ставится двоеточие и указывается тип возвращаемого значения. Обычная точка с запятой далее — обязательна! Сам код подпрограммы заключается в «логические скобки» begin/end. Для функции необходимо в коде присвоить переменной с именем функции или специальной зарезервированной переменной Result (предпочтительно) возвращаемое функцией значение. Примеры:
procedure Имя_процедуры(параметры); begin Код процедуры; end; |
Описанная таким образом подпрограмма должна быть размещена в основной программе до первого её вызова. Иначе при компиляции получите извещение о том, что «неизвестный идентификатор. » Следить за этим не всегда удобно. Есть выход — разместить только заголовок подпрограммы там, где размещают .
Параметры — это список идентификаторов, разделённых запятой, за которым через двоеточие указывается тип. Если списков идентификаторов разных типов несколько, то они разделяются точкой с запятой. Всё, как и в случае обычного описания данных. Это так называемые формальные параметры. При вызове подпрограммы они заменяются на фактические — следующие через запятую данные того же типа, что и формальные.
Параметры в описании подпрограммы могут и отсутствовать, тогда она оперирует данными прямо из основной программы.
Теперь нужно ввести понятие локальных данных. Это данные — переменные, константы, подпрограммы, которые используются и существуют только в момент вызова данной подпрограммы. Они так же должны быть описаны в этой подпрограмме. Место их описания — между заголовком и началом логического блока — ключевым словом begin. Имена локальных данных могут совпадать с именами глобальных. В этом случае используется локальная переменная, причём её изменение не скажется на глобальной с тем же именем.
Совершенно аналогично локальным типам, переменным, константам могут быть введены и локальные процедуры и функции, которые могут быть описаны и использованы только внутри данной подпрограммы.
Теперь пример. Напишем программу суммирования двух чисел. Она будет состоять из Формы, на которой будет кнопка (компонент Button), по нажатию на которую будет выполняться наша подпрограмма, и двух строк ввода (компоненты Edit), куда будем вводить операнды. Начнём с процедуры.
var Form1: TForm1; A, B, Summa: Integer; procedure Sum(A, B: Integer); procedure TForm1.Button1Click(Sender: TObject); procedure Sum(A, B: Integer); |
Наша процедура находится после обработчика нажатия кнопки, где осуществляется её вызов. И программа работает именно потому, что заголовок процедуры вынесен в блок описания данных. Но всё же операция суммирования в данном случае производится как-то невнятно.
Теперь сделаем то же самое с помощью функции.
var
Form1: TForm1;
A, B, Summa: Integer;
function Sum(A, B: Integer): Integer;
procedure TForm1.Button1Click(Sender: TObject);
begin
A:=StrToInt(Edit1.Text);
B:=StrToInt(Edit2.Text);
Summa:=Sum(A, B); // На мой взгляд, сейчас более понятно, откуда что берётся
Caption:=IntToStr(Summa);
end;
function Sum(A, B: Integer): Integer;
begin
Result:=A+B;
end;
Есть особенности в использовании в качестве параметров больших по объёму структур данных, например, массивов, состоящих из нескольких тысяч (и больше) элементов. При передаче в подпрограмму данных большого объёма могут быть большие расходы ресурсов и времени системы. Поэтому используется передача не самих значений элементов (передача «по значению», как в предыдущих примерах), а ссылки на имя переменной или константы (передача «по имени»). Достигается это вставкой перед теми параметрами, которые мы хотим передать по имени, ключевого слова var.
function Sum(A, B: Integer; var Arr: array[1..1000000] of Integer): Integer;
Если взглянуть на описание нашей подпрограммы и описание обработчика нажатия кнопки (это тоже подпрограмма!), который был создан Delphi, то видим, что перед именем обработчика (Button1Click) стоит TForm1. Как мы знаем, в Delphi точкой разделяется объект и его атрибуты (свойства и методы). Таким образом, Delphi создаёт Button1Click как метод объекта Form1. Причём, буква T перед объектом говорит о том, что Button1Click не просто метод объекта, а метод класса объекта. Не будем этим пока заморачиваться, а просто будем поступать также. Описав свою процедуру или функцию как метод класса TForm1, мы получаем возможность использовать в ней объекты класса без указания его имени, что гораздо удобнее. То есть, если мы используем в нашей подпрограмме какие-либо компоненты, размещённые на Форме (например, Button1), то мы пишем
Button1.W >
а не
Form1.Button1.W >
Также появляется возможность использовать встроенные переменные, такие как параметр Sender. В каждом обработчике этот объект указывает на источник, то есть тот объект, который вызывает данную подпрограмму. Например, в нашей процедуре суммирования Sender = Button1. Проанализировав эту переменную, можно принять решение о тех или иных действиях.
Описав подпрограмму как метод класса, её описание мы должны поместить туда же, куда их помещает описание класса TForm1. Смотрите сами, где находится описание процедуры Button1Click. Для этого, поставив курсор внутрь подпрограммы Button1Click, нажмите CTRL+Shift и кнопку управления курсором «Вверх» или «Вниз» одновременно. Произойдёт переход к описанию подпрограммы (чтобы вернуться обратно, повторите это действие ещё раз). Ставьте описание своей подпрограммы рядом, с новой строки. Обратите внимание, что TForm1 уже не пишется.
Рекурсия — важное и мощное свойство процедур и функций в Delphi. Рекурсия это возможность подпрограммы в процессе работы обращаться к самой себе. Без использования рекурсии приходилось бы применять циклы, а это усложняет чтение программы. Рекурсивный вызов подпрограммы сразу проясняет смысл происходящего. Естественно, приходится следить за тем, чтобы в подпрограмме обязательно было условие, при выполнении которого дальнейшая рекурсия прекращается, иначе подпрограмма зациклится.
Пример. Вычисление факториала
Вычисление факториала — классическая в программировании задача на использование рекурсии. Факториал числа N — результат перемножения всех чисел от 1 до N (обозначается N!):
Создавая программу вычисления факториала числа, мы можем применить и функции, и рекурсию. Можно скачать проект данной программы.
Удобство применения рекурсии особенно наглядно при вычислении дискриминанта матрицы. Дискриминант матрицы можно подсчитать методом Гаусса — приведением матрицы к треугольному виду, что требует использования нескольких вложенных циклов. Алгоритм получается достаточно громоздкий. Используя вместо этого рекурсию, получается очень элегантный алгоритм: вычисление дискриминанта матрицы с использованием рекурсии.
Как записать функцию y=lg(sin²x)+x³ в Delphi 7?
Составьте программу вычисления значения выражения для данного натурального числа N: 1² + 2² + 3² + … + N²
Составьте программу вычисления значения выражения для данного натурального числа N: 1² + 2² + 3² +.
Составить программу для вычисления выражения z=y³+y²/2*y½ с помощью подпрограмм и процедур
Составить программу для вычисления выражения z=y³+y²/2*y½ с помощью подпрограмм и процедур
Решение
Вычислить сумму ряда S=1/2²+3/4²+5/6²+7/8²+9/10²+.
помогите решить задачку плиииз составить программу (на алгоритмическом языке паскаль) для.
Дано натуральное число n. Получить такие натуральные числа q, что n делится на q² и не делится на q³
Дано натуральное число n. Получить такие натуральные числа q, что n делится на q² и не делится на .
Lo — Функция Delphi
Изучив основные «кирпичики», из которых составляются программные инструкции, а именно — переменные и операторы, мы можем приступить к исследованию вопросов их эффективного расположения в теле программы. Для этих целей рассмотрим вопрос использования подпрограмм.
О подпрограммах в Object Pascal
Важной составной частью программирования в Object Pascal является использование подпрограмм — специальным образом оформленных и логически законченных блоков инструкций. Подпрограмму можно вызывать любое число раз из других мест программы, или из других подпрограмм. Таким образом, использование подпрограмм позволяет сделать исходный код более стройным и наглядным.
Структура подпрограммы похожа на программу в миниатюре: она содержит заголовок, блок объявления переменных и блок инструкций. Из отличий можно выделить лишь невозможность подключать модули (блок uses), а так же ограничения на объявления типов данных: если локальные простые и даже составные типы в подпрограммах вполне допустимы, то более сложные типы — объекты, классы и интерфейсы, локальными быть не могут, а потому в подпрограммах их объявлять нельзя.
Использование подпрограммы состоит из 2 этапов: сначала подпрограмму описывают, а затем, уже в блоке инструкций программы, вызывают. Отметим, что в библиотеке Delphi имеется описание тысяч готовых подпрограмм, описывать которые, разумеется, уже не надо. А их вызовом мы уже неоднократно занимались — достаточно взглянуть на любой пример, где мы встречали инструкции, подобные таким:
write(‘Hello, world!’); readln;
Здесь и write, и readln — стандартные подпрограммы Object Pascal. Таким образом, с вызовом подпрограмм мы уже знакомы. Осталось узнать, как создавать собственные, или пользовательские, подпрограммы. Но прежде отметим, что все подпрограммы делятся на 2 лагеря: процедуры и функции. Мы уже использовали эти термины, и даже давали им описание, однако повторимся: процедуры — это такие подпрограммы, которые выполняют предназначенное действие и возвращают выполнение в точку вызова. Функции в целом аналогичны процедурам, за тем исключением, что они еще и возвращают результат своего выполнения. Результатом работы функции могут быть данные любого типа, включая объекты.
Вместе с тем, значение, возвращаемое функцией, можно проигнорировать, в таком случае она ничем не будет отличаться от процедуры. Разумеется, при этом функция все-таки должна выполнить какое-либо действие, сказывающееся на выполнении программы, иначе она потеряет всякий смысл. С другой стороны, процедуры могут возвращать значения через свои параметры — например, как это делает DecodeDate. Таким образом, различия между процедурами и функциями в современном программировании весьма призрачны.
Как процедурам, так и функциям могут передаваться данные для обработки. Делается это при помощи списка параметров. Список параметров в описании подпрограммы и список аргументов, указываемых при ее вызове должен совпадать. Иначе говоря, если в описании определено 2 параметра типа Integer, то, вызывая такую подпрограмму, в качестве аргументов так же следует указать именно 2 аргумента и именно типа Integer или совместимого (скажем, Word или Int64).
ПРИМЕЧАНИЕ
На самом деле, Object Pascal позволяет довольно гибко обращаться с аргументами, для чего имеются различные методы, включая «перегружаемые» функции, значения параметров по умолчанию и т.д. Тем не менее, в типичном случае, количество, тип, и порядок перечисления аргументов при объявлении и при вызове процедуры или функции, должны совпадать.
Любые подпрограммы выполняются до тех пор, пока не будет выполнена последняя инструкция в блоке подпрограммы, или пока в ее теле не встретится специальная процедура exit. Процедура exit досрочно прерывает выполнение подпрограммы и возвращает управление инструкции, следующей за вызовом данной подпрограммы.
Процедуры
Итак, начнем исследование подпрограммы с процедур. Как уже было отмечено, процедуру надо описать. Описание процедуры состоит из заголовка и тела процедуры.
Заголовок состоит из ключевого слова procedure, за которым следует имя процедуры и, при необходимости, список параметров, заключенных в круглые скобки:
Вслед за заголовком может следовать блок объявления локальных меток, типов и переменных. Локальными они называются потому, что предназначены исключительно для этой процедуры.
ПРИМЕЧАНИЕ
Вопросы локальных и глобальных переменных, и вообще видимости в программах, будет рассмотрен позже в этой главе.
После заголовочной части следует тело процедуры, заключаемое в begin и end. Таким образом, исходный код процедуры может выглядеть примерно таким образом:
procedure TriplePrint(str: string); var i: integer; begin for i := 1 to 3 do begin writeln(‘»‘+str+'»‘); end; // конец цикла for end; // конец процедуры TriplePrint
Здесь мы определили процедуру TriplePrint, которая будет трижды выводить переданную ей в качестве аргумента строку, заключенную в двойные кавычки. Как видно, данная процедура имеет все составные части: ключевое слово procedure, имя, список параметров (в данном случае он всего один — строковая переменная str), блок объявления собственных переменных (целочисленная переменная i), и собственное тело, состоящее из оператора цикла for.
Для использования данной процедуры в любом месте программы достаточно написать инструкцию вызова процедуры, состоящую из имени процедуры и списка аргументов, например:
Отметим так же, что рассмотренная нами процедура сама содержит вызов другой процедуры — writeln. Процедуры могут быть встроенными. Иначе говоря, объявление одной процедуры можно помещать в заголовочную часть другой. Например, наша процедура TriplePrint может иметь вспомогательную процедуру, которая будет «подготавливать» строку к выводу. Для этого перед объявлением переменной i, разместим объявление еще одной процедуры. Назовем ее PrepareStr:
procedure PrepareStr; begin str := ‘»‘+str+'»‘; end;
Отметим, что переменная str, хотя и не передается этой процедуре в качестве параметра, тем не менее может в ней использоваться, поскольку данная процедура является составной частью процедуры TriplePrint, внутри которой данная переменная доступна для использования.
Таким образом, мы получаем две процедуры, одна из которых (TriplePrint) может использоваться во всей программе, а другая (PrepareStr) — только внутри процедуры TriplePrint. Чтобы преимущество использования процедур было очевидно, рассмотрим их на примере программы, которая будет использовать ее неоднократно, для чего обратимся к листингу 6.1 (см. так же пример в Demo\Part1\Procs).
Листинг 6.1. Использование процедур
program procs; <$APPTYPE CONSOLE>procedure TriplePrint(str: string); procedure PrepareStr; begin str := ‘»‘+str+'»‘; end; var i: integer; begin PrepareStr; for i := 1 to 3 do begin writeln(str); end; end; // конец процедуры TriplePrint begin // начало тела основной программы TriplePrint(‘Hello. ‘); // первый вызов TriplePrint TriplePrint(‘How are you. ‘); // 2-й вызов TriplePrint(‘Bye. ‘); // 3-й readln; end.
Очевидно, что если бы не процедура, то нам трижды пришлось бы писать цикл, свой для каждого слова. Таким образом, процедуры позволяют использовать единожды написанный код многократно, что существенно облегчает написание программ.
Функции
Подобно процедурам, описание функции состоит из заголовка и тела. Однако описание заголовка имеет 2 отличия: прежде всего, для функций используется ключевое слово function. Кроме того, поскольку функции всегда возвращают результат, завершается строка заголовка типом возвращаемого значения. Таким образом, для объявления функции мы получаем следующий синтаксис:
Возвращаемое значение может быть любого типа, кроме файлового. Что касается дальнейшего описания функции, то оно полностью аналогично таковому для процедур. Единственным дополнением является то, что в теле функции обязательно должна присутствовать хотя бы одна операция присваивания, в левой части которой должно быть либо имя функции, либо ключевое слово result. Именно это выражение и определяет возвращаемое функцией значение.
Рассмотрим пример функции, которая будет возвращать куб числа, переданного ей в качестве аргумента:
function cube(value: integer) : integer; result := value * value * value; >
Здесь определена функция, имеющая параметр value типа целого числа, которое она возводит в третью степень путем троекратного умножения, и результат присваивается специальной переменной result. Таким образом, чтобы в любом месте программы вычислить значение числа в 3-й степени, достаточно написать такое выражение:
В результате выполнения этого выражения переменной x будет присвоено значение 27. Данный пример иллюстрирует использование функций в классическом случае — для явного вычисления значения переменной. Однако функции могут использоваться в выражениях и напрямую. Например, можно поставить вызов функции cube в каком-либо месте арифметического выражения подобно обычной переменной:
Подобно процедурам, функции так же могут быть встроенными. Кроме того, функции могут включать в себя не только локальные функции, но и процедуры. Впрочем, верно и обратное — в процедурах могут использоваться локальные функции. Например, в той же процедуре TriplePrint можно было бы использовать не процедуру, а функцию PrepareStr, которая принимала бы строку и возвращала ее же в кавычках:
procedure TriplePrint(str: string); function PrepareStr(s: string) : string; begin result := ‘»‘+s+'»‘; end; var i: integer; begin for i := 1 to 3 do begin writeln(PrepareStr(str)); // функция использована как переменная end; end;
Как уже отмечалось, помимо специальной переменной result, в функциях можно использовать другую автоматически объявляемую переменную, имя которой соответствует имени функции. Так, для функции cube имя переменной также будет cube:
function cube(value: integer) : integer; cube := value * value * value; >
В данном случае оба варианта будут вести себя полностью аналогично. Различия проявляются лишь в том случае, если использовать такую переменную в выражениях в теле функции. В подобных случаях следует использовать именно переменную result, а не имя функции, поскольку использ0овании имени функции в выражении внутри самой функции приведет к ее рекурсивному вызову.
Рекурсия
Таким образом мы подошли к теме рекурсии — вызову подпрограммы из самой себя. Это не является ошибкой, более того, целый ряд алгоритмов решить без рекурсии вообще было бы затруднительно.
Рассмотрим вопрос рекурсии на следующем примере:
function recfunc(x: integer) : integer begin dec(x); // функция декремента, уменьшает целое на 1 if x > 5 then x := recfunc(x); result := 0; // возвращаемое значение тут не используется end;
Здесь мы объявили функцию recfunc, принимающую один аргумент, и вызывающую саму себя до тех пор, пока значение этого аргумента больше 5. Хотя на первый взгляд может показаться, что такое поведение функции похоже на обычный цикл, на самом деле все работает несколько по-иному: если вы вызовите ее со значением 8, то она выдаст вам 3 сообщения в следующей последовательности: 5, 6, 7. Иначе говоря, функция вызывала саму себя до тех пор, пока значение x было больше 5, и собственно вывод сообщений начала 3-я по уровню получившейся вложенности функция, которая и вывела первое сообщение (в данном случае им стало 5, т.е. уменьшенное на единицу 6).
Чтобы представить себе более наглядно, как работает рекурсивный вызов, дополним эту функцию выводом комментариев, а так же счетчиком глубины рекурсии. Для этого мы, во-первых, задействуем возвращаемое функцией значение, а во-вторых, добавим еще один параметр, который и будет счетчиком. Результат проделанной работы приведен в листинге 6.2.
Листинг 6.2. Рекурсия с комментариями
program recurse; <$APPTYPE CONSOLE>function recfunc(x, depth: integer) : integer; begin dec(x); if x > 5 then begin write(‘Current recursion depth is: ‘); write(depth); write(‘, current x value is: ‘); writeln(x); inc(depth); depth:=recfunc(x, depth); end else writeln(‘End of recursive calls. ‘); write(‘Current recursion depth is: ‘); write(depth); write(‘, current x value is: ‘); writeln(x); dec(depth); result := depth; end; begin recfunc(8,0); readln; end.
Исходный код находится в Demo\Part1\Recurse, там же находится и исполняемый файл recurse.exe, результат работы которого вы можете увидеть на своем экране.
Использование параметров
Параметры в процедурах и функциях могут применяться не только по своему прямому предназначению — для передачи данных подпрограмме, но так же могут быть использованы для возвращения значений. Подобное их использование может быть вызвано, например, необходимостью получить более одного значения на выходе функции. Синтаксис объявления параметров в таком случае несколько отличается от стандартного — перед именем параметра следует использовать ключевое слово var:
procedure Circle (square: real; var radius, length: real);
Данная процедура принимает «на обработку» одно значение — площадь (square), а возвращает через свои параметры два — радиус (radius) и длину окружности (length). Практическая ее реализация может выглядеть таким образом:
procedure Circle (square: real; var radius, length: real); begin radius := sqrt(square / pi); // функция pi возвращает значение числа ? length := pi * radius * 2; end;
Теперь, чтобы воспользоваться этой функцией, следует объявить в программе 2 переменные, которые будут переданы в качестве аргументов этой процедуре и получат результаты. Их имена не важны, важно лишь, чтобы они были такого же, или совместимого типа, т.е. вещественные, например:
var r,l: real; . Circle(100,r,l);
После вызова функции Circle, переменные r и l получат значения радиуса и длины окружности. Остается их вывести при помощи writeln. Исходный код программы приведен в листинге 6.3.
Листинг 6.3. Процедура с параметрами
program params; <$APPTYPE CONSOLE>procedure Circle (square: real; var radius, length: real); begin //функция sqrt извлекает корень, а функция pi возвращает значение числа ? radius := sqrt(square / pi); length := pi * radius * 2; end; var r,l: real; begin Circle(100,r,l); writeln(r); writeln(l); readln; end.
Запустив такую программу, можно убедиться, что она работает и выводит верные результаты, однако вид у них получается довольно-таки неудобочитаемый, например, длина окружности будет представлена как «3,54490770181103E+0001». Чтобы сделать вывод более удобным для восприятия, нам понадобится функция FloatToStrF. С ее помощью мы можем определить вывод числа на свое усмотрение, например:
Кроме того, не помешало бы указать, где радиус, а где — длина окружности. Для этого модернизируем строки вывода результатов следующим образом:
writeln(‘Radius is: ‘+FloatToStrF(r,ffFixed,12,8)); writeln(‘Length is: ‘+FloatToStrF(l,ffFixed,12,8));
Наконец, не помешало бы сделать программу более полезной, для чего предусмотрим возможность ввода значения площади круга пользователем. В этих целях нам понадобится еще одна переменная (назовем ее s) и выражение для считывания ввода. Не помешает так же приглашение, объясняющее пользователю, что надо делать. В итоге основной блок программы получит следующий вид:
. var s,r,l: real; begin write(‘Input square: ‘); readln(s); Circle(s,r,l); writeln(‘Radius is: ‘+FloatToStrF(r,ffFixed,12,8)); writeln(‘Length is: ‘+FloatToStrF(l,ffFixed,12,8)); readln; end.
В принципе, это уже лучше, однако не помешало бы добавить обработку возможных ошибок ввода. Скажем, площадь должна быть больше 0. Проверку на то, является ли значение s больше нуля, можно производить непосредственно в основном коде программы, но в целях создания более универсального кода, вынесем ее в подпрограмму. Для этого первой инструкцией процедуры Circle должна быть проверка значения площади:
Таким образом, в случае, если введенное пользователем значение окажется нулевым или отрицательным, выполнение процедуры будет прекращено. Но возникает другой вопрос: как сообщить программе о том, что вычисления не были выполнены? Пожалуй, в данном случае следовало бы заменить процедуру функцией, которая возвращала бы истину, если вычисления произведены, и ложь в противном случае. Вот что у нас получится:
function Circle(square: real; var radius, length: real) : boolean; begin result := false; if (square
В начале функции мы определили возвращаемое значение как ложь. В результате, если параметр square не проходит проверку, то функция будет завершена и возвратит именно это значение. Если же проверка будет пройдена, то функция выполнится до конца, т.е. как раз до того момента, когда ее результатом станет истина.
Поскольку программа теперь может получить сведения о том, выполнились ли преобразования на основании возвращаемого функцией Circle булевского значения, остается добавить такую проверку в тело программы. В качестве условия для условного оператора в таком случае подойдет сама функция Circle (на самом деле, условием будет выступать не функция, а как раз возвращаемое ей значение):
if Circle(s,r,l) then begin // вывод end else // сообщить об ошибке
Результатом проделанной работы будет программа, приведенная в листинге 6.4. Она же находится в Demo\Part1\Params.
Листинг 6.4. Функция с параметрами
program params; <$APPTYPE CONSOLE>uses sysutils; //этот модуль соджержит функцию FloatToStrF function Circle(square: real; var radius, length: real) : boolean; begin result := false; if (square
Итак, при помощи ключевого слова var в списке параметров подпрограммы мы можем добиться использования передаваемых аргументов в том блоке, где был произведен вызов данной подпрограммы. В несколько другом аспекте используется ключевое слово const. Фактически, оно объявляет локальную константу, т.е. значение, которое нельзя изменять внутри данной процедуры или функции. Это бывает полезным в том случае, когда такое изменение недопустимо по логике программы и служит гарантией того, что такое значение не будет изменено.
При этом открывается еще одна возможность, связанная с константами, а именно — использование предопределенных значений. Например, можно определить функцию следующим образом:
function MyBetterFunc(val1: integer; const val2: integer = 2); begin result := val1*val2; end;
Обращение же к такой функции может иметь 2 варианта: с указанием только одного аргумента (для параметра val1), или же с указанием обоих:
x := MyBetterFunc(5); // получим 10 x := MyBetterFunc(5,4); // получим 20
Оба вызова будут верными, просто в первом случае для второго параметра будет использовано значение, заданное по умолчанию.
Области видимости
Еще одной важной деталью, касающейся использования подпрограмм, является видимость переменных. Само понятие видимости подразумевает под собой тот факт, что переменная, объявленная в одном месте программы может быть доступна, или наоборот, недоступна, в другом. Прежде всего, это касается подпрограмм: как мы уже успели отметить, переменные, объявленные в заголовке процедур или функций, только в данной процедуре (функции) и будут доступны — на то они и называются локальными:
program Project1; procedure Proc1; var a: integer; begin a := 5; //верно. Локальная переменная a здесь видна end; begin a := 10; //Ошибка! Объявленная в процедуре Proc1 переменнаая здесь не видна end.
В то же время переменные, объявленные в основном заголовке программы, доступны во всех входящих в нее подпрограммах. Потому они и называются глобальными. Единственное замечание по этому поводу состоит в том, что глобальная переменная должна быть объявлена до функции, т.е. выше ее по коду программы:
program Project2; var a: integer; // глобальная переменная a procedure Proc1; begin a := 5; // верно b := 10; // Ошибка! Переменая b на этот момент еще не объявлена end; var b: integer; // глобальная переменная b begin a := 10; // верно b := 5; // тоже верно. Здесь видны все г var a: integer; // глобальная переменная end.
Теперь рассмотрим такой вариант, когда у нас имеются 2 переменных с одним и тем же именем. Разумеется, компилятор еще на стадии проверки синтаксиса не допустит, чтобы в программе были объявлены одноименные переменные в рамках одного диапазона видимости (скажем, 2 глобальных переменных X, или 2 локальных переменных X в одной и той же подпрограмме). Речь в данном случае идет о том, что произойдет, если в одной и той же программе будет 2 переменных X, одна — глобальная, а другая — локальная (в какой-либо подпрограмме). Если с основным блоком программы все ясно — в нем будет присутствовать только глобальная X, то как быть с подпрограммой? В таком случае в действие вступает правило близости, т.е. какая переменная ближе (по структуре) к данному модулю, та и есть верная. Применительно к подпрограмме ближней оказывается локальная переменная X, и именно она будет задействована внутри подпрограммы.
program Project3; var X: integer; procedure Proc1; var X: integer; begin X := 5; // Здесь значение будет присвоено локальной переменной X end; begin X := 10; // Здесь же значение будет присвоено голобальной переменной X end.
Таким образом, мы внесли ясность в вопрос видимости переменных. Что касается видимости подпрограмм, то она определяется аналогичным образом: подпрограммы, объявленные в самой программе, видны всюду. Те же подпрограммы, которые объявлены внутри процедуры или функции, доступны только внутри нее:
program Project1; procedure Proc1; procedure SubProc; begin end; begin SubProc; // Верно. Вложенная процедура здесь видна. end; begin Proc1; // Верно. Процедура Proc1 объявлена в зоне глобальной видимости SubProc; // Ошибка! Процедура SubProc недоступна за пределами Proc1. end.
Наконец в том случае, когда имена встроенной и некой глобальной процедуры совпадают, то, по аналогии с переменными, в области видимости встроенной процедуры, именно она и будет выполнена.
Видимость в модулях
Все то, что мы уже рассмотрели, касалось программ, умещающихся в одном единственном файле. На практике же, особенно к тому моменту, когда мы перейдем к визуальному программированию, программы будут включать в себя множество файлов. В любом случае, программа на Object Pascal будет иметь уже изученный нами файл проекта — dpr, или основной модуль программы. Все прочие файлы будут располагаться в других файлах, или модулях (units), с типичным для Pascal расширением pas. При объединении модулей в единую программу возникает вопрос видимости переменных, а так же процедур и функций в различных модулях.
Для начала вернемся к рассмотрению структуры модуля, которая имеет ряд отличий от структуры программы. Итак, в простейшем случае, модуль состоит из названия, определяемого при помощи ключевого слова unit, и 2 секций — interface и implementation. Так вот как раз первая секция, interface, и служит для определения (декларации) типов данных, переменных, функций и процедур данного модуля, которые должны быть доступны за пределами данного модуля.
Чтобы лучше в этом разобраться, создадим программу, состоящую из 2 модулей — основного (dpr) и дополнительного (pas). Для этого сначала создайте новый проект типа Console Application, а затем добавьте к нему модуль, для чего из подменю File ‘ New выберите пункт Unit. После этого сохраните проект, щелкнув по кнопке Save All (или File ‘ Save All). Обратите внимание, что первым будет предложено сохранить не файл проекта, а как раз файл дополнительного модуля. Назовем его extunit.pas, а сам проект — miltiunits (см. Demo\Part1\Visibility). При этом вы увидите, что в части uses файла проекта произошло изменение: кроме постоянно добавляемого модуля SysUtils, появился еще один модуль — extunit, т.е. код стал таким:
uses SysUtils, extunit in ‘extunit.pas’;
Мы видим, что Delphi автоматически добавила пояснение, в каком файле находится подключаемый модуль. Это вызвано тем, что если о расположении собственных модулей Delphi все известно, то пользовательские модули могут находиться где угодно на жестком диске ПК. Но в данном случае мы сохранили и файл программы, и подключаемый модуль в одном каталоге, следовательно, их пути совпадают, и данное указание можно было бы опустить:
uses SysUtils, extunit;
Тем не менее, оставим код как есть, и приступим к разработке модуля extunit. В нем, в части implementation, напишем 2 процедуры — ExtProc1 и ExtProc2. Обе они будут делать одно и то же — выводить строку со своим названием. Например, для первой:
Теперь вернемся к главному модулю программы и попробуем обратиться к процедуре ExtProc1:
. begin ExtProc1; end.
Попытка компиляции или запуска такой программы приведет к ошибке компилятора «Undeclared identifier», что означает «неизвестный идентификатор». И действительно, одного лишь описания процедуры недостаточно, чтобы она была доступна вне своего модуля. Так что перейдем к редактированию extunit и в секции interface напишем строку:
Такая строка, помещенная в секцию interface, является объявлением процедуры ExtProc1, и делает ее видимой вне данного модуля. Отметим, что в секции interface допускается лишь объявлять процедуры, но не определять их (т.е. тело процедуры здесь будет неуместно). Еще одним полезным эффектом от объявления процедур является то, что таким образом можно обойти такое ограничение, как необходимость определения подпрограммы до ее вызова. Иначе говоря, поскольку в нашем файле уже есть 2 процедуры, ExtProc1и ExtProc2, причем они описаны именно в таком порядке — сначала ExtProc, а потом ExtProc2, то выведя объявление ExtProc2 в interface, мы сможем обращаться к ExtProc2 из ExtProc1, как это показано в листинге 6.5:
Листинг 6.5. Объявление процедур в модуле
unit extunit; interface procedure ExtProc1; procedure ExtProc2; implementation procedure ExtProc1; begin writeln(‘ExtProc1’); ExtProc2; // Если объявления не будет, то компилятор выдаст ошибку end; procedure ExtProc2; begin writeln(‘ExtProc2’); end; end.
Отметим, что теперь процедуры ExtProc2, так же, как и ExtProc1, будет видна не только по всему модулю extunit, но и во всех использующей этот модуль программе multiunits.
Разумеется, все, что было сказано о процедурах, верно и для функций. Кроме того, константы и переменные, объявленные в секции interface, так же будут видны как во всем теле модуля, так и вне него. Остается лишь рассмотреть вопрос пересечения имен, т.е. когда имя переменной (константы, процедуры, функции) в текущем модуле совпадает с таковым в подключенном модуле. В этом случае вновь вступает в силу правило «кто ближе, тот и прав», т.е. будет использоваться переменная из данного модуля. Например, если в extunit мы объявим типизированную константу Z, равную 100, а в multiunits — одноименную константу, равную 200, то обратившись к Z из модуля extunit, мы получим значение 100, а из multiunits — 200.
Если же нам в multiunits непременно понадобится именно та Z, которая находится в модуле extunit, то мы все-таки можем к ней обратиться, для чего нам пригодится точечная нотация. При этом в качестве имени объекта указывают название модуля:
Именно таким образом можно явно ссылаться на переменные, функции и процедуры, находящиеся в других модулях.
Некоторые стандартные функции
В Object Pascal, как уже отмечалось, имеются огромное количество стандартных процедур и функций, являющихся составной частью языка, и с некоторыми мы уже знакомы (например, приведенные в табл. 5.1 и 5.2 функции преобразования). Детальное описание всех имеющихся в Object Pascal процедур и функций можно получить в справочной системе Delphi, однако мы все-таки рассмотрим здесь некоторые из них, чтобы составить общее представление — см. таблицу 6.1.
Синтаксис | Группа | Модуль | Описание |
---|---|---|---|
function Abs(X); | арифметические | System | Возвращает абсолютное значение числа |
procedure ChDir(const S: string); | управления файлами | System | Изменяет текущий каталог |
function Concat(s1 [, s2. sn]: string): string; | строковые | System | Объединяет 2 и более строк в 1 |
function Copy(S; Index, Count: Integer): string; | строковые | System | Возвращает часть строки |
function Cos(X: Extended): Extended; | тригонометрические | System | Вычисляет косинус угла |
procedure Delete(var S: string; Index, Count: Integer); | строковые | System | Удаляет часть строки |
function Eof(var F): Boolean; | ввод-вывод | System | Проверяет, достигнут ли конец файла |
procedure Halt [ ( Exitcode: Integer) ]; | управления | System | Инициирует досрочное прекращение программы |
function High(X); | диапазона | System | Возвращает максимальное значение из диапазона |
procedure Insert(Source: string; var S: string; Index: Integer); | строковые | System | Вставляет одну строку в другую |
function Length(S): Integer; | строковые | System | Возвращает длину строки или количество элементов массива |
function Ln(X: Real): Real; | арифметические | System | Возвращает натуральный логарифм числа (Ln(e) = 1) |
function Low(X); | диапазона | System | Возвращает минимальное значение из диапазона |
procedure New(var P: Pointer); | размещения памяти | System | Создает новую динамическую переменную и назначает указатель для нее |
function ParamCount: Integer; | командной строки | System | Возвращает количество параметров командной строки |
function ParamStr(Index: Integer): string; | командной строки | System | Возвращает указанный параметр из командной строки |
function Pos(Substr: string; S: string): Integer; | строковые | System | Ищет вхождение указанной подстроки в строку и возвращает порядковый номер первого совпавшего символа |
procedure RmDir(const S: string); | ввод-вывод | System | Удаляет указанный подкаталог (должен быть пустым) |
function Slice(var A: array; Count: Integer): array; | разные | System | Возвращает часть массива |
function UpCase(Ch: Char): Char; | символьные | System | Преобразует символ в верхний регистр |
function LowerCase(const S: string): string; | строковые | SysUtils | Преобразует ASCII-строку в нижний регистр |
procedure Beep; | разные | SysUtils | Инициирует системный сигнал |
function CreateDir(const Dir: string): Boolean; | управления файлами | SysUtils | Создает новый подкаталог |
function CurrentYear: Word; | даты и времени | SysUtils | Возвращает текущий год |
function DeleteFile(const FileName: string): Boolean; | управления файлами | SysUtils | Удаляет файл с диска |
function ExtractFileExt(const FileName: string): string; | имен файлов | SysUtils | Возвращает расширение файла |
function FileExists(const FileName: string): Boolean; | управления файлами | SysUtils | Проверяет файл на наличие |
function IntToHex(Value: Integer; Digits: Integer): string; | форматирования чисел | SysUtils | Возвращает целое в шестнадцатеричном представлении |
function StrPCopy(Dest: PChar; const Source: string): PChar; | строковые | SysUtils | Копирует Pascal-строку в C-строку (PChar) |
function Trim(const S: string): string; | строковые | SysUtils | Удаляет начальные и конечные пробелы в строке |
function TryStrToInt(const S: string; out Value: Integer): Boolean; | преобразования типов | SysUtils | Преобразует строку в целое |
function ArcCos(const X: Extended): Extended; | тригонометрические | Math | Вычисляет арккосинус угла |
function Log2(const X: Extended): Extended; | арифметические | Math | Возвращает логарифм по основанию 2 |
function Max(A,B: Integer): Integer; | арифметические | Math | Возвращает большее из 2 чисел |
function Min(A,B: Integer): Integer; | арифметические | Math | Возвращает меньшее из 2 чисел |
Те функции, которые имеются в модуле System, являются основными функциями языка, и для их использования не требуется подключать к программе какие-либо модули. Все остальные функции и процедуры можно назвать вспомогательными, и для их использования следует подключить тот или иной модуль, указав его в uses, например, как это делает Delphi уже при создании новой программы с SysUtils:
Что касается практического применения той или иной функции, то оно определяется, прежде всего, той группой, к которой данная функция относится. Например, арифметические функции используются для различных математических расчетов, строковые используются для манипуляций со строками и т.д. Разумеется, в каждой категории имеется множество других функций, помимо тех, что приведены в таблице 6.1, однако по ней можно получить общее представление о том, что есть в распоряжении Delphi-программиста.
Функции в действии
В целом мы уже ознакомились с несколькими десятками предопределенных процедур и функций, а так же умеем создавать собственные. Пора применить полученные знания на практике, для чего вновь вернемся к программе, рассмотренной в главе, посвященной операторам — игре «Угадай-ка». В ней, по сути, был реализован только один из рассмотренных в самом начале книги алгоритмов — угадывания числа. Что касается алгоритма управления, то на тот момент мы оставили его без внимания.
Но прежде, чем вносить в программу изменения, определимся с тем, что мы все-таки хотим получить в итоге. Допустим, что мы хотим сделать следующие вещи:
- Реализовать-таки возможность повторного прохождения игры без перезапуска программы;
- Добавить немного «геймплея». Иначе говоря, введем уровни сложности и подсчет очков. Новые уровни можно реализовать как повторное прохождение игры с увеличением сложности (скажем, за счет расширения диапазона загадываемых значений);
- В продолжение п. 2 добавить еще и таблицу рекордов, которая будет сохраняться на диске.
Поскольку часть работы уже выполнена, то для того, чтобы приступить к разработке новой версии игры (назовем ее «Угадай-ка 2.0»), мы не будем как обычно создавать новый консольный проект в Delphi, а откроем уже существующий (Ugadaika) и сохраним его под новым именем, скажем, Ugadaika2, и в новом каталоге. Таким образом, мы уже имеем часть исходного кода, отвечающую за угадывание, в частности, цикл while (см. листинг 4.5). Этот фрагмент логичнее всего выделить в отдельную процедуру, вернее даже функцию, которая будет возвращать число попыток, сделанное пользователем. Для этого создадим функцию, которая будет принимать в качестве аргумента число, которое следует угадать, а возвращаемым значением будет целое, соответствующее числу попыток. Ее объявление будет таким:
function GetAttempts(a: integer):integer;
Данная функция так же должна иметь в своем распоряжении переменную, необходимую для ввода пользователем своего варианта ответа. Еще одна переменная нужна для подсчета результата, т.е. количества попыток. В качестве первой можно было бы использовать глобальную переменную (b), однако во избежание накладок, для локального использования в функции следует использовать локальную же переменную. Что касается переменной-счетчика, то для нее как нельзя лучше подходит автоматическая переменная result. Еще одним изменением будет использование цикла repeat вместо while. Это вызвано тем, что с одной стороны, тем, что хотя бы 1 раз пользователь должен ввести число, т.е. условие можно проверять в конце цикла, а с другой мы можем избавиться от присвоения лишнего действия, а именно — присвоения заведомо ложного значения переменной b. Ну и еще одно дополнение — это второе условие выхода, а именно — ограничение на число попыток, которое мы установим при помощи константы MAXATTEMPTS:
const MAXATTEMPTS = 10;
В результате код функции получится таким, как представлено в листинге 6.6.
Листинг 6.6. Функция GetAttempts
function GetAttempts(a: integer):integer; var b: integer; begin Result:=0; repeat inc(Result); // увеличиваем счетчик числа попыток write(#13+#10+’?:’); read(b); if (b>a) then begin write(‘Too much!’); continue; end; if (b
Теперь, когда подготовительная работа сделана, можно браться за реализацию намеченных изменений. Прежде всего, в теле программы нам потребуется цикл, который как раз и будет обеспечивать логику исполнения программы. Для него нам так же понадобятся переменные. В частности, нужны счетчик цикла, устанавливающий текущий уровень сложности, так же нужны переменные для хранения набранных очков и числа попыток, и, кроме того, не помешает заранее определить файловую переменную для таблицы рекордов и строковую — для ввода имени «рекордсмена». Итого мы получаем следующий список переменных перед основным блоком программы:
var level, score, attempt: integer; f: TextFile; s: string;
Теперь инициализируем счетчик псевдослучайных чисел (т.е. оставим randomize на месте) и инициализируем нулем значения счета и уровня:
Наконец, напишем цикл для основного блока программы. Этот цикл должен быть выполнен хотя бы один раз и будет продолжать выполняться до тех пор, пока число попыток в последнем уровне было меньше максимально допустимого. В результате получаем цикл repeat со следующим условием:
В самом цикле нам потребуется, прежде всего, выводить информацию о текущем уровне, а так же о диапазоне отгадываемых чисел. После этого надо будет получить число попыток при помощи функции GetAttempts, вычислить набранные очки и сообщить о них пользователю, после чего увеличить счетчик цикла на 1 и перейти к следующей его итерации. В результате мы получим следующий фрагмент кода:
repeat writeln(‘Level ‘+IntToStr(level)+’:’); writeln(‘From 0 to ‘+IntToStr(level*100)); attempt:=GetAttempts(random(level*100+1)); score:=score+(MAXATTEMPTS-attempt)*level; writeln(#10+’You current score is: ‘+IntToStr(score)); inc(level); until attempt>MAXATTEMPTS;
После завершения работы цикла, т.е. когда пользователь хоть раз истратит на отгадывание все 10 попыток, следует сообщить итоговый результат и сравнит его с предыдущим значением, которое следует считать из файла. Файл мы назовем records.txt, и сопоставим с переменной f:
Но прежде, чем попытаться что-либо прочитать из этого файла, необходимо убедиться, что такой файл уже есть, а если нет — то создать его, записав в него некий минимальный результат.
if not FileExists(‘record.txt’) then begin Rewrite(f); writeln(f,’0′); // первая строка содержит число-рекорд writeln(f,’None’); // а вторая — имя последнего победителя CloseFile(f); end;
Теперь можно считать этот файл. Правда, мы упустили из виду, что нам здесь тоже нужна переменная — для считывания предыдущего рекорда. В то же время, на данный момент мы уже имеем 2 ненужных для дальнейшей работы программы переменных — attempt и level, так что вполне можно воспользоваться любой из них для этих целей. Таким образом, мы получим следующий код:
Reset(f); readln(f, attempt); readln(f,s); writeln(#10+’BEST SCORE: ‘+IntToStr(attempt)+’ by ‘+s); CloseFile(f);
Ну и последнее, чего нам остается — это проверить, является ли новое значение выше рекорда, и если да — то записать новый рекорд в файл, не забыв спросить имя игрока:
Вот, собственно, и все. Полный код получившейся программы можно увидеть на листинге 6.7, или же в файле проекта в каталоге Demo\Part1\Ugadaika2.
Листинг 6.7. Программа угадай-ка, окончательный вариант
В завершение отметим, что эта программа использует использование не только функций, но и констант, глобальных и локальных переменных, а так же циклов и операций файлового ввода-вывода. Таким образом, на текущий момент мы познакомились со всеми основами обычного, процедурного программирования. Пора двигаться дальше — к объектно-ориентированному программированию в Object Pascal!
DelphiComponent.ru — бесплатно видеоуроки по Delphi, статьи, исходники
Процедуры и функции в Delphi
Посмотрите видеоурок по процедурам и функциям (подпрограммы):
Скачайте бесплатно видеокурс Мастер Delphi Lite прямо сейчас — в нем больше видеоуроков — СКАЧАТЬ БЕСПЛАТНО!
Процедуры и функции — это наиболее важный материал, который необходимо усвоить, прежде чем можно будет называть себя программистом. Объектно-ориентированное программирование в целом и программирование в Delphi в частности в огромной степени основано на использовании процедур и функций.
Использование процедур Write и WriteLn действительно не представляет особой сложности, поскольку они встроены в компилятор Delphi. Компилятор содержит лишь небольшое количество встроенных процедур. Большинство процедур и функций можно найти в отдельных исходных файлах, называемых модулями. Все модули Delphi имеют расширение . pas.
Прежде чем процедуру можно будет использовать в приложении, следует знать имя процедуры, модуль, в котором она объявлена, и принимаемые процедурой параметры. Имя процедуры и список параметров — составные части заголовка процедуры. Заголовок простой процедуры выглядит следующим образом:
После зарезервированного слова procedure всегда указывается имя процедуры, которым может быть любой допустимый идентификатор. В приведенном примере процедура не имеет параметров. Заголовок процедуры со списком параметров выглядит следующим образом:
Список параметров — это механизм передачи значений процедурам (равно как и функциям). Список параметров может содержать один или более параметров. Если список содержит более одного параметра, они разделяются точкой с запятой. Ниже приведен пример заголовка процедуры, которая принимает единственное строковое значение:
interface
implementation
end.
Программирование на языке Delphi. Глава 2. Основы языка Delphi. Часть 2
Оглавление
Операторы
Общие положения
Основная часть программы на языке Delphi представляет собой последовательность операторов, выполняющих некоторое действие над данными, объявленными в секции описания данных. Операторы выполняются строго последовательно в том порядке, в котором они записаны в тексте программы и отделяются один от другого точкой с запятой.
Все операторы принято в зависимости от их назначения разделять на две группы: простые и структурные. Простые операторы не содержат в себе никаких других операторов. К ним относятся операторы присваивания, вызова процедуры и безусловного перехода. Структурные операторы содержат в себе простые или другие структурные операторы и подразделяются на составной оператор, условные операторы и операторы повтора.
При изучении операторов мы рекомендуем вам обратить особое внимание на наши рекомендации по поводу того, где какой оператор надо применять. Это избавит вас от множества ошибок в практической работе.
Оператор присваивания
Оператор присваивания (:=) вычисляет выражение, заданное в его правой части, и присваивает результат переменной, идентификатор которой расположен в левой части. Например:
Во избежании ошибок присваивания необходимо следить, чтобы тип выражения был совместим с типом переменной. Под совместимостью типов данных понимается возможность автоматического преобразования значений одного типа данных в значения другого типа данных. Например, все целочисленные типы данных совместимы с вещественными (но не наоборот!).
В общем случае для числовых типов данных действует следующее правило: выражение с более узким диапазоном возможных значений можно присвоить переменной с более широким диапазоном значений. Например, выражение с типом данных Byte можно присвоить переменной с типом данных Integer, а выражение с типом данных Integer можно присвоить переменной с типом данных Real. В таких случаях преобразование данных из одного представления в другое выполняется автоматически:
Исключение составляет случай, когда выражение принадлежит 32-разрядному целочисленному типу данных (например, Integer), а переменная — 64-разрядному целочисленному типу данных Int64. Для того, чтобы на 32-разрядных процессорах семейства x86 вычисление выражения происходило правильно, необходимо выполнить явное преобразование одного из операндов выражения к типу данных Int64. Следующий пример поясняет сказанное:
Оператор вызова процедуры
Оператор вызова процедуры представляет собой не что иное, как имя стандартной или пользовательской процедуры. О том, что это такое, вы узнаете чуть позже, а пока достаточно просто наглядного представления. Примеры вызова процедур:
Составной оператор
Составной оператор представляет собой группу из произвольного числа операторов, отделенных друг от друга точкой с запятой и заключенную в так называемые операторные скобки — begin и end :
Частным случаем составного оператора является тело следующей программы:
Хотя символ точки с запятой служит разделителем между операторами и перед словом end может опускаться, мы рекомендуем ставить его в конце каждого оператора (как в примере), чтобы придать программе более красивый вид и избежать потенциальных ошибок при наборе текста.
Составной оператор может находиться в любом месте программы, где разрешен простой оператор. Он широко используется с условными операторами и операторами повтора.
Оператор ветвления if
Оператор ветвления if — одно из самых популярных средств, изменяющих естественный порядок выполнения операторов программы. Вот его общий вид:
Условие — это выражение булевского типа, оно может быть простым или сложным. Сложные условия образуются с помощью логических операций и операций отношения. Обратите внимание, что перед словом else точка с запятой не ставится.
Логика работы оператора if очевидна: выполнить оператор 1, если условие истинно, и оператор 2, если условие ложно. Поясним сказанное на примере:
В данном случае значение выражения А > В ложно, следовательно на экране появится сообщение C=8.
У оператора if существует и другая форма, в которой else отсутствует:
Логика работы этого оператора if еще проще: выполнить оператор, если условие истинно, и пропустить оператор, если оно ложно. Поясним сказанное на примере:
В результате на экране появится сообщение С=0, поскольку выражение А > В ложно и присваивание С := А + В пропускается.
Один оператор if может входить в состав другого оператора if . В таком случае говорят о вложенности операторов. При вложенности операторов каждое else соответствует тому then , которое непосредственно ему предшествует. Например
Конструкций со степенью вложенности более 2-3 лучше избегать из-за сложности их анализа при отладке программ.
Оператор ветвления case
Оператор ветвления case является удобной альтернативой оператору if , если необходимо сделать выбор из конечного числа имеющихся вариантов. Он состоит из выражения, называемого переключателем , и альтернативных операторов, каждому из которых предшествует свой список допустимых значений переключателя :
Оператор case вычисляет значение переключателя (который может быть задан выражением), затем последовательно просматривает списки его допустимых значений в поисках вычисленного значения и, если это значение найдено, выполняет соответствующий ему оператор. Если переключатель не попадает ни в один из списков, выполняется оператор, стоящий за словом else . Если часть else отсутствует, управление передается следующему за словом end оператору.
Переключатель должен принадлежать порядковому типу данных. Использовать вещественные и строковые типы в качестве переключателя не допускается.
Список значений переключателя может состоять из произвольного количества констант и диапазонов, отделенных друг от друга запятыми. Границы диапазонов записываются двумя константами через разграничитель в виде двух точек (..). Все значения переключателя должны быть уникальными, а диапазоны не должны пересекаться, иначе компилятор сообщит об ошибке. Тип значений должен быть совместим с типом переключателя. Например:
Если значения переключателя записаны в возрастающем порядке, то поиск требуемого оператора выполняется значительно быстрее, так как в этом случае компилятор строит оптимизированный код. Учитывая сказанное, перепишем предыдущий пример:
Операторы повтора — циклы
Алгоритм решения многих задач требует многократного повторения одних и тех же действий. При этом суть действий остается прежней, но меняются данные. С помощью рассмотренных выше операторов трудно представить в компактном виде подобные действия в программе. Для многократного (циклического) выполнения одних и тех же действий предназначены операторы повтора (циклы) . К ним относятся операторы for, while и repeat . Все они используются для организации циклов разного вида.
Любой оператор повтора состоит из условия повтора и повторяемого оператора (тела цикла) . Тело цикла представляет собой простой или структурный оператор. Оно выполняется столько раз, сколько предписывает условие повтора. Различие среди операторов повтора связано с различными способами записи условия повтора.
Оператор повтора for
Оператор повтора for используется в том случае, если заранее известно количество повторений цикла. Приведем наиболее распространенную его форму:
где — это переменная любого порядкового типа данных (переменные вещественных типов данных недопустимы); и — выражения, определяющие соответственно начальное и конечное значения параметра цикла (они вычисляются только один раз перед началом работы цикла); — тело цикла.
Оператор for обеспечивает выполнение тела цикла до тех пор, пока не будут перебраны все значения параметра цикла от начального до конечного. После каждого повтора значение параметра цикла увеличивается на единицу. Например, в результате выполнения следующей программы на экран будут выведены все значения параметра цикла (от 1 до 10), причем каждое значение — в отдельной строке:
Заметим, что если начальное значение параметра цикла больше конечного значения, цикл не выполнится ни разу.
В качестве начального и конечного значений параметра цикла могут использоваться выражения. Они вычисляются только один раз перед началом выполнения оператора for. В этом состоит важная особенность цикла for в языке Delphi , которую следует учитывать тем, кто имеет опыт программирования на языках C/C++.
После выполнения цикла значение параметра цикла считается неопределенным, поэтому в предыдущем примере нельзя полагаться на то, что значение переменной I равно 10 при выходе из цикла.
Вторая форма записи оператора for обеспечивает перебор значений параметра цикла не по возрастанию, а по убыванию:
Например, в результате выполнения следующей программы на экран будут выведены значения параметра цикла в порядке убывания (от 10 до 1):
Если в такой записи оператора for начальное значение параметра цикла меньше конечного значения, цикл не выполнится ни разу.
Оператор повтора repeat
Оператор повтора repeat используют в тех случаях, когда тело цикла должно быть выполнено перед тем, как произойдет проверка условия завершения цикла . Он имеет следующий формат
Тело цикла выполняется до тех пор, пока условие завершения цикла (выражение булевского типа) не станет истинным. Оператор repeat имеет две характерные особенности, о которых нужно всегда помнить:
- между словами repeat и until может находиться произвольное число операторов без операторных скобок begin и end ;
- так как условие завершения цикла проверяется после выполнения операторов, цикл выполняется, по крайней мере, один раз.
В следующем примере показано, как оператор repeat применяется для суммирования вводимых с клавиатуры чисел. Суммирование прекращается, когда пользователь вводит число 0:
Часто бывает, что условие выполнения цикла нужно проверять перед каждым повторением тела цикла. В этом случае применяется оператор while , который, в отличие от оператора repeat , содержит условие выполнения цикла, а не условие завершения.
Оператор повтора while
Оператор повтора while имеет следующий формат:
Перед каждым выполнением тела цикла происходит проверка условия. Если оно истинно, цикл выполняется и условие вычисляется заново; если оно ложно, происходит выход из цикла, т.е. переход к следующему за циклом оператору. Если первоначально условие ложно, то тело цикла не выполняется ни разу. Следующий пример показывает использование оператора while для вычисления суммы S = 1 + 2 + .. + N, где число N задается пользователем с клавиатуры:
Прямая передача управления в операторах повтора
Для управления работой операторов повтора используются специальные процедуры-операторы Continue и Break, которые можно вызывать только в теле цикла.
Процедура-оператор Continue немедленно передает управление оператору проверки условия, пропуская оставшуюся часть цикла (рисунок 4):
Рисунок 4. Схема работы процедуры-оператора Continue
Процедура-оператор Break прерывает выполнение цикла и передает управление первому оператору, расположенному за блоком цикла (рисунок 5):
Рисунок 5. Схема работы процедуры-оператора Break
Оператор безусловного перехода
Среди операторов языка Delphi существует один редкий оператор, о котором авторы сперва хотели умолчать, но так и не решились. Это оператор безусловного перехода goto («перейти к»). Он задумывался для того случая, когда после выполнения некоторого оператора надо выполнить не следующий по порядку, а какой-либо другой, отмеченный меткой, оператор.
Метка — это именованная точка в программе, в которую можно передать управление. Перед употреблением метка должна быть описана. Раздел описания меток начинается зарезервированным словом label , за которым следуют имена меток, разделенные запятыми. За последним именем ставится точка с запятой. Типичный пример описания меток:
В разделе операторов метка записывается с двоеточием. Переход на метку выполняется с помощью зарезервированного слова goto , за которым следует имя метки:
Эта программа будет выполняться бесконечно, причем второй оператор Write не выполнится ни разу!
Внимание! В соответствии с правилами структурного программирования следует избегать применения оператора goto , поскольку он усложняет понимание логики программы. Оператор goto использовался на заре программирования, когда выразительные возможности языков были скудными. В языке Delphi без него можно успешно обойтись, применяя условные операторы, операторы повтора, процедуры Break и Continue, операторы обработки исключений (последние описаны в главе 4).
Подпрограммы
Общие положения
В практике программирования часто встречается ситуация, когда одну и ту же группу операторов требуется выполнить без изменений в нескольких местах программы. Чтобы избавить программиста от многократного дублирования одинаковых фрагментов, была предложена концепция подпрограмм. В этом разделе мы расскажем о том, как эта концепция реализована в языке Delphi.
Подпрограммой называется именованная логически законченная группа операторов, которую можно вызвать по имени (т.е. выполнить) любое количество раз из различных мест программы. В языке Delphi подпрограммы оформляются в виде процедур и функций.
Процедура — это подпрограмма, имя которой не может использоваться в выражениях в качестве операнда. Процедура состоит из заголовка и тела. По структуре ее можно рассматривать как программу в миниатюре. Когда процедура описана, ее можно вызвать по имени из любой точки программы (в том числе из нее самой!). Когда процедура выполнит свою задачу, программа продолжится с оператора, следующего непосредственно за оператором вызова процедуры. Использование имени процедуры в программе называется оператором вызова процедуры.
Функция также является подпрограммой, но в отличие от процедуры ее имя может использоваться в выражениях в качестве операнда, на место которого подставляется результат работы этой функции.
Все процедуры и функции языка Delphi подразделяются на две группы: встроенные и определенные программистом.
Встроенные процедуры и функции являются частью языка и могут вызываться по имени без предварительного описания. В данной главе рассматриваются лишь базовые группы встроенных процедур и функций, остальные будут рассмотрены в других главах по ходу изложения материала.
Процедуры и функции программиста пишутся программистом, т.е. вами, в соответствии с синтаксисом языка и представляют собой локальные блоки. Предварительное описание процедур и функций программиста обязательно.
Стандартные подпрограммы
Выражение
Результат
Выражение
Результат
Заметим, что в состав среды Delphi входит стандартный модуль Math, который содержит высокопроизводительные подпрограммы для тригонометрических, логорифмических, статистических и финансовых вычислений.
Функции выделения целой или дробной части
Выражение
Результат
Функции генерации случайных чисел
Подпрограммы для работы с порядковыми величинами
Выражение
Результат
Подпрограммы для работы с датой и временем
Процедуры передачи управления
Разные процедуры и функции
Выражение
Результат
Процедуры программиста
Очевидно, что встроенных процедур и функций для решения большинства прикладных задач недостаточно, поэтому приходиться придумывать собственные процедуры и функции. По своей структуре они очень напоминают программу и состоят из заголовка и блока. Заголовок процедуры состоит из зарезервированного слова procedure , имени процедуры и необязательного заключенного в круглые скобки списка формальных параметров. Имя процедуры — это идентификатор, уникальный в пределах программы. Формальные параметры — это данные, которые вы передаете в процедуру для обработки, и данные, которые процедура возвращает (подробно параметры описаны ниже). Если процедура не получает данных извне и ничего не возвращает, формальные параметры (в том числе круглые скобки) не записываются. Тело процедуры представляет собой локальный блок, по структуре аналогичный программе:
Описания констант, типов данных и переменных действительны только в пределах данной процедуры. В теле процедуры можно использовать любые глобальные константы и переменные, а также вызывать любые подпрограммы (процедуры и функции).
Вызов процедуры для выполнения осуществляется по ее имени, за которым в круглых скобках следует список фактических параметров , т.е. передаваемых в процедуру данных:
Если процедура не принимает данных, то список фактических параметров (в том числе круглые скобки) не указываются.
Понятие процедуры является чрезвычайно важным, так как именно оно лежит в основе одной из самых популярных технологий решения задач на языке Delphi. Технология эта внешне проста: задача разбивается на несколько логически обособленных подзадач и решение каждой из них оформляется в виде отдельной процедуры. Любая процедура может содержать в себе другие процедуры, их количество ограничено только объемом памяти вашего компьютера.
Приведем пример небольшой программы, использующей процедуру Power для вычисления числа X в степени Y. Результат вычисления процедура Power заносит в глобальную переменную Z.
Функции программиста
Функции программиста применяются в тех случаях, когда надо создать подпрограмму, участвующую в выражении как операнд. Как и процедура, функция состоит из заголовка и блока. Заголовок функции состоит из зарезервированного слова function , имени функции, необязательного заключенного в круглые скобки списка формальных параметров и типа возвращаемого функцией значения. Функции возвращают значения любых типов данных кроме Text и file of (см. файлы). Тело функции представляет собой локальный блок, по структуре аналогичный программе.
В теле функции должен находиться по крайней мере один оператор, присваивающий значение имени функции или неявной локальной переменной Result. Если таких присваиваний несколько, то результатом функции будет значение последнего из этих операторов. Преимущество от использования переменной Result состоит в том, что она может участвовать в выражениях как операнд.
В качестве примера заменим явно неуклюжую процедуру Power (см. выше) на функцию с таким же именем:
Параметры процедур и функций
Параметры служат для передачи исходных данных в подпрограммы и для приема результатов работы этих подпрограмм.
Исходные данные передаются в подпрограмму с помощью входных параметров, а результаты работы подпрограммы возвращаются через выходные параметры. Параметры могут быть входными и выходными одновременно.
Входные параметры объявляются с помощью ключевого слова const ; их значения не могут быть изменены внутри подпрограммы:
Для объявления выходных параметров служит ключевое слово out :
Установка значений выходных параметров внутри подпрограммы приводит к установке значений переменных, переданных в качестве аргументов:
После вызова процедуры GetScreenResolution переменные W и H будут содержать значения, которые были присвоены формальным параметрам Width и Height соответственно.
Если параметр является одновременно и входным , и выходным , то он описывается с ключевым словом var :
Изменение значений var -параметров внутри подпрограммы приводит к изменению значений переменных, переданных в качестве аргументов:
При вызове подпрограмм на место out — и var -параметров можно подставлять только переменные, но не константы и не выражения.
Если при описании параметра не указано ни одно из ключевых слов const , out , или var , то параметр считается входным, его можно изменять, но все изменения не влияют на фактический аргумент, поскольку они выполняются с копией аргумента, создаваемой на время работы подпрограммы. При вызове подпрограммы на месте такого параметра можно использовать константы и выражения. Пример подпрограммы:
Параметр A в приведенной функции является входным, но при этом он используется в качестве локальной переменной для хранения промежуточных данных.
Разные способы передачи параметров ( const, out, var и без них) можно совмещать в одной подпрограмме. В следующем законченном примере процедура Average принимает четыре параметра. Первые два (X и Y) являются входными и служат для передачи исходных данных. Вторые два параметра являются выходными и служат для приема в вызывающей программе результатов вычисления среднего арифметического (M) и среднего геометрического (P) от значений X и Y:
Существует разновидность параметров без типа. Они называются нетипизированными и предназначены для передачи и для приема данных любого типа. Нетипизированные параметры описываются с помощью ключевых слов const и var , при этом тип данных опускается:
Внутри подпрограммы тип таких параметров не известен, поэтому программист должен сам позаботиться о правильной интерпретации переданных данных. Заметим, что при вызове подпрограмм на место нетипизированных параметров (в том числе и на место нетипизированных const-параметров) можно подставлять только переменные.
Передача фактических аргументов в подпрограмму осуществляется через специальную область памяти — стек . В стек помещается либо значение передаваемого аргумента ( передача значения ), либо адрес аргумента ( передача ссылки на значение ). Конкретный способ передачи выбирается компилятором в зависимости от того, как объявлен параметр в заголовке подпрограммы. Связь между объявлением параметра и способом его передачи поясняет таблица 10:
Ключевое слово
Назначение
Способ передачи
Таблица 10. Способы передачи параметров
Если передается значение, то подпрограмма манипулирует копией аргумента. Если передается ссылка на значение, то подпрограмма манипулирует непосредственно аргументом, обращаясь к нему через переданный адрес.
Опущенные параметры процедур и функций
В языке Delphi существует возможность задать параметрам процедур и функций стандартные значения. Они указываются через знак равенства после типа параметра. Например, опишем процедуру, которая заполняет некоторую область памяти заданным значением:
Для параметра InitValue задано стандартное значение, поэтому его можно опустить при вызове процедуры Initialize:
Подпрограмма может содержать любое количество параметров со стандартными значениями, однако такие параметры должны быть последними в списке. Другими словами, после параметра со стандартным значением не может следовать обычный параметр, поэтому следующее описание будет воспринято компилятором как ошибочное:
Перегрузка процедур и функций
В некоторых случаях возникает необходимость в написании подпрограмм, которые выполняют одинаковые логические действия, но над переменными разных типов данных. Например:
В языке Delphi существует возможность дать двум и более процедурам (функциям) одинаковые идентификаторы при условии, что все такие процедуры (функции) отличаются списком параметров. Такая возможность называется перегрузкой. Для указания того, что процедура (функция) перегружена, служит стандартная директива overload . С ее помощью вышеприведенный пример можно переписать следующим образом:
Какую именно процедуру использовать в том или ином случае компилятор будет определять на этапе компиляции программы по типам фактических аргументов, передаваемых при вызове.
При перегрузке процедур и функций существует особенность, связанная с целочисленными типами данных. Допустим, имеются две процедуры:
Если мы попробуем вызвать процедуру Print, указав в качестве фактического аргумента целочисленную константу, то увидим, что выбор компилятором варианта процедуры зависит от значения константы.
Очевидно, что одно и то же число может интерпретироваться и как Longint, и как Shortint (например, числа 5 и -1). Логика компилятора в таких случаях такова: если значение фактического параметра попадает в диапазон значений нескольких типов, по которым происходит перегрузка, то компилятор выбирает процеудуру (функцию), у которой тип параметра имеет меньший диапазон значений. Например, вызов Print(5) будет означать вызов того варианта процедуры, который имеет тип параметра Shortint. А вот вызов Print(150) будет означать вызов того варианта процедуры, который имеет тип параметра Longint, т.к. число 150 не вмещается в диапазон значений типа данных Shortint.
Поскольку в нынешней версии среды Delphi обощенный тип данных Integer совпадает с фундаментальным типом данных Longint, следующий вариант перегрузки является ошибочным:
Такая же ошибка возникает при использовании пользовательских типов данных, определенных через общий базовый тип.
Что делать в тех случаях, когда такая перегрузка просто необходима? Для этого пользовательский тип данных необходимо создавать с использованием ключевого слова type :
Необходимо заметить, что при использовании перегруженных процедур (функций), у которых есть параметры, имеющие стандартные значения, нужно быть очень внимательным, т.к. могут возникнуть ситуации, когда компилятор просто не будет знать, какую именно процедуру (функцию) вы хотите вызвать. Например:
Вызов процедуры Increment с одним параметром вызовет неоднозначность:
Запрещается также перегружать функции, которые отличаются лишь типом возвращаемого значения.
Соглашения о вызове подпрограмм
В различных языках программирования используются различные правила вызова подпрограмм. Для того чтобы из программ, написанных на языке Delphi, возможно было вызывать подпрограммы, написанные на других языках (и наоборот), в языке Delphi существуют директивы, соответствующие четырем известным соглашениям о вызове подпрограмм: register, stdcall, pascal, cdecl .
Директива, определяющая правила вызова, помещается в заголовок подпрограммы, например:
Директива register задействует регистры процессора для передачи параметров и поэтому обеспечивает наиболее эффективный способ вызова подпрограмм. Эта директива применяется по умолчанию. Директива stdcall используется для вызова стандартных подпрограмм операционной системы. Директивы pascal и cdecl используются для вызова подпрограмм, написанных на языках Delphi и C/C++ соответственно.
Рекурсивные подпрограммы
В ряде приложений алгоритм решения задачи требует вызова подпрограммы из раздела операторов той же самой подпрограммы, т.е. подпрограмма вызывает сама себя. Такой способ вызова называется рекурсией. Рекурсия полезна прежде всего в тех случаях, когда основную задачу можно разделить на подзадачи, имеющие ту же структуру, что и первоначальная задача. Подпрограммы, реализующие рекурсию, называются рекурсивными . Для понимания сути рекурсии лучше понимать рекурсивный вызов как вызов другой подпрограммы. Практика показывает, что в такой трактовке рекурсия воспринимается значительно проще и быстрее.
Приведенная ниже программа содержит функцию Factorial для вычисления факториала. Напомним, что факториал числа определяется через произведение всех натуральных чисел, меньших либо равных данному (факториал числа 0 принимается равным 1):
Из определения следует, что факториал числа X равен факториалу числа (X — 1), умноженному на X. Математическая запись этого утверждения выглядит так:
Последняя формула используется в функции Factorial для вычисления факториала:
При написании рекурсивных подпрограмм необходимо обращать особое внимание на условие завершения рекурсии, иначе рекурсия окажется бесконечной и приложение будет прервано из-за ошибки переполнения стека.
Бывает встречается такая рекурсия, когда первая подпрограмма вызывает вторую, а вторая — первую. Такая рекурсия называется косвенной . Очевидно, что записанная первой подпрограмма будет содержать еще неизвестный идентификатор второй подпрограммы (компилятор не умеет заглядывать вперед). В результате компилятор сообщит об ошибке использования неизвестного идентификатора. Эта проблема решается с помощью упреждающего (предварительного) описания процедур и функций.
Упреждающее объявление процедур и функций
Для реализации алгоритмов с косвенной рекурсией в языке Delphi предусмотрена специальная директива предварительного описания подпрограмм forward . Предварительное описание состоит из заголовка подпрограммы и следующего за ним зарезервированного слова forward, например:
Заметим, что после такого первичного описания в полном описании процедуры или функции можно не указывать список формальных параметров и тип возвращаемого значения (для функции). Например:
Процедурные типы данных
Наряду с уже известными типами данных в языке Delphi введен так называемый процедурный тип , с помощью которого обычные процедуры и функции можно интерпретировать как некоторую разновидность переменных. Определение процедурного типа состоит из зарезервированного слова procedure или function , за которым следует полное описание параметров. Для функции дополнительно указывается тип результата. Символические имена параметров никакой роли не играют, поскольку нигде не используются.
Определив процедурный тип, можно непосредственно перейти к так называемым процедурным переменным . Они объявляются точно так же, как и обычные переменные.
При работе с процедурной переменной важно понимать, что она не дублирует код подпрограммы, а содержит лишь ее адрес. Если обратиться к такой переменной как к подпрограмме, произойдет выполнение подпрограммы, адрес которой записан в переменной.
Программирование на языке Delphi
Глава 2. Основы языка Delphi
Авторы: А.Н. Вальвачев
К.А. Сурков
Д.А. Сурков
Ю.М. Четырько
Опубликовано: 12.11.2005
Исправлено: 10.12.2020
Версия текста: 1.0
В основе среды Delphi лежит одноименный язык программирования — Delphi, ранее известный как Object Pascal. При разработке программы среда Delphi выполняет свою часть работы — создает пользовательский интерфейс согласно вашему дизайну, а вы выполняете свою часть — пишите обработчики событий на языке Delphi. Объем вашей работы зависит от программы: чем сложнее алгоритм, тем тяжелее ваш труд. Необходимо заранее усвоить, что невозможно заставить средство разработки делать всю работу за вас. Некоторые задачи среда Delphi действительно полностью берет на себя, например создание простейшей программы для просмотра базы данных. Однако большинство задач не вписываются в стандартные схемы — вам могут понадобиться специализированные компоненты, которых нет в палитре компонентов, или для задачи может не оказаться готового решения, и вы вынуждены будете решать ее старым дедовским способом — с помощью операторов языка Delphi. Поэтому мы настоятельно рекомендуем вам не игнорировать эту главу, поскольку на практике вы не избежите программирования. Мы решили изложить язык в одной главе, не размазывая его по всей книге, чтобы дать вам фундаментальные знания и обеспечить быстрый доступ к нужной информации при использовании книги в качестве справочника.
2.1. Алфавит
2.1.1. Буквы
Изучая в школе родной язык, вы начинали с букв, слов и простейших правил синтаксиса. Для постижения основ языка Delphi мы предлагаем вам сделать то же самое.
Текст программы на языке Delphi формируется с помощью букв, цифр и специальных символов.
Буквы — это прописные и строчные символы латинского алфавита и символ подчеркивания:
Цифры представлены стандартной арабской формой записи:
применяются в основном в качестве знаков арифметических операций, разделителей, ограничителей и т.д. Из специальных символов формируются составные символы :
Они служат, в частности, для обозначения операций типа «не равно», «больше или равно», указания диапазонов значений, комментирования программы, т.д.
Все перечисленные знаки отражены на клавиатуре и при нажатии соответствующих клавиш появляются на экране. Как вы видите, среди них нет русских букв, хотя на клавиатуре вашего компьютера они наверняка присутствуют. Дело в том, что такие буквы в языке Delphi несут чисто информационную нагрузку и используются только в качестве данных или при написании комментария к программе.
2.1.2. Числа
Одно и то же число можно записать самыми разными способами, например:
В языке Delphi имеется возможность применять все способы записи, но чаще всего используют целые и вещественные числа.
Целые числа состоят только из цифр и знака + или – . Если знак опущен и число не равно 0, то оно рассматривается как положительное, например:
Вещественные числа содержат целую и дробную части, разделенные точкой:
Вещественные числа могут быть представлены в двух формах: с фиксированной и плавающей точкой.
Форма с фиксированной точкой совпадает с обычной записью чисел, например:
Форма с плавающей точкой используется при работе с очень большими или очень малыми числами. В этой форме число, стоящее перед буквой E, умножается на 10 в степени, указанной после буквы E:
Число, стоящее перед буквой E, называется мантиссой , а число после буквы E — порядком .
В этой книге мы чаще будем использовать форму с фиксированной точкой, так как она воспринимается лучше второй формы и совпадает с привычной математической записью чисел.
2.1.3. Слова-идентификаторы
Неделимые последовательности символов алфавита образуют слова ( идентификаторы ). Идентификатор начинается с буквы и не должен содержать пробелов. После первого символа допускаются буквы и цифры. Напоминаем, что символ подчеркивания считается буквой.
При написании идентификаторов могут использоваться как прописные, так и строчные буквы (между ними не делается различий). Длина идентификатора может быть любой, но значимы только первые 255 символов (вполне достаточный предел, не так ли). Примеры написания идентификаторов приведены ниже:
Правильно | Неправильно |
---|---|
RightName | Wrong Name |
E_mail | E–mail |
_5inches | 5inches |
Все идентификаторы подразделяются на зарезервированные слова, стандартные директивы, стандартные идентификаторы и идентификаторы программиста.
Зарезервированные (ключевые) слова составляют основу языка Delphi, любое их искажение вызовет ошибку компиляции. Вот полный перечень зарезервированных слов:
Стандартные директивы интерпретируются либо как зарезервированные слова, либо как идентификаторы программиста в зависимости от контекста, в котором используются. Вот они:
Стандартные идентификаторы — это имена стандартных подпрограмм, типов данных языка Delphi, т.д. В качестве примера приведем имена подпрограмм ввода и вывода данных и нескольких математических функций. Вы, без сомнения, сами угадаете их назначение:
Идентификаторы программиста определяются программистом, т.е вами, и носят произвольный характер. Если идентификатор состоит из двух или более смысловых частей, то для удобства их лучше выделять заглавной буквой или разделять символом подчеркивания:
Имя идентификатора обязательно должно нести смысловую нагрузку, тогда вы сможете читать программу как книгу и не потратите время на расшифровку непонятных обозначений.
2.1.4. Комментарии
С помощью комментариев вы можете пояснить логику работы своей программы. Комментарий пропускается компилятором и может находиться в любом месте программы. Комментарием является:
2.2. Данные
2.2.1. Понятие типа данных
Программа в процессе выполнения всегда обрабатывает какие-либо данные. Данные могут представлять собой целые и дробные числа, символы, строки, массивы, множества и др. Так как компьютер всего лишь машина, для которой данные — это последовательность нулей и единиц, он должен абсолютно точно «знать», как их интерпретировать. По этой причине все данные в языке Delphi подразделены на типы. Для описания каждого типа данных существует свой стандартный идентификатор: для целых — Integer, для дробных — Real, для строк — string и т.д. Программист может образовывать собственные типы данных и давать им произвольные имена (о том, как это делается, мы поговорим чуть позже).
Тип данных показывает, какие значения принимают данные и какие операции можно с ними выполнять. Каждому типу данных соответствует определенный объем памяти, который требуется для размещения данных. Например, в языке Delphi существует тип данных Byte. Данные этого типа принимают значения в целочисленном диапазоне от 0 до 255, могут участвовать в операциях сложения, вычитания, умножения, деления, и занимают 1 байт памяти.
Все типы данных в языке Delphi можно расклассифицировать следующим образом:
- простые типы данных. Они в свою очередь подразделяются на порядковые и вещественные типы данных. К порядковым типам относятся целочисленные, символьные, булевские, перечисляемые и интервальные типы данных;
- временной тип данных. Служит для представления значений даты и времени;
- строковые типы данных. Служат для представления последовательностей из символов, например текста;
- составные типы данных (в некоторых источниках — структурированные типы данных). Формируются на основе всех остальных типов. К ним относятся массивы, множества, записи, файлы, классы и ссылки на классы;
- процедурные типы данных. Позволяют манипулировать процедурами и функциями как данными программы;
- указательные типы данных. Данные этих типов хранят адреса других данных, с их помощью организуются различные динамические структуры: списки, деревья и т.д.;
- тип данных с непостоянным типом значений. Служит для представления значений, тип которых заранее неизвестен; с его помощью легко организуется работа со списком разнотипных значений;
Некоторые предопределенные типы данных делятся на фундаментальные и обобщенные типы. Данные фундаментальных типов имеют неизменный диапазон значений и объем занимаемой памяти на всех моделях компьютеров. Данные обобщенных типов на различных моделях компьютеров могут иметь разный диапазон значений и занимать разный объем памяти. Деление на фундаментальные и обобщенные типы характерно для целых, символьных и строковых типов данных.
По ходу изложения материала мы рассмотрим все перечисленные типы данных и более подробно объясним их смысл и назначение в программе.
2.2.2. Константы
Данные, независимо от типа, имеют некоторое значение и в программе предстают как константы или переменные. Данные, которые получили значение в начале программы и по своей природе изменяться не могут, называются константами . Константами, например, являются скорость света в вакууме и соотношение единиц измерения (метр, сантиметр, ярд, фут, дюйм), которые имеют научно обоснованные или традиционно принятые постоянные значения. Константы описываются с помощью зарезервированного слова const . За ним идет список имен констант, каждому из которых с помощью знака равенства присваивается значение. Одно присваивание отделяется от другого с помощью точки с запятой. Тип константы распознается компилятором автоматически, поэтому его не надо указывать при описании. Примеры констант:
После такого описания для обращения к нужному значению достаточно указать лишь имя соответствующей константы.
Значение константы можно задавать и выражением. Эту возможность удобно использовать для комплексного представления какого-либо понятия. Например, временной промежуток, равный одному месяцу, можно задать так:
Очевидно, что, изменив базовую константу SecondsInMinute, можно изменить значение константы SecondsInDay.
При объявлении константы можно указать ее тип:
Такие константы называются типизированными; их основное назначение — объявление константных значений составных типов данных.
2.2.3. Переменные
Переменные в отличие от констант могут неограниченное число раз менять свое значение в процессе работы программы. Если в начале программы некоторая переменная X имела значение 0, то в конце программы X может принять значение 10000. Так бывает, например, при суммировании введенных с клавиатуры чисел.
Переменные описываются с помощью зарезервированного слова var . За ним перечисляются идентификаторы переменных, и через двоеточие указывается их тип. Каждая группа переменных отделяется от другой группы точкой с запятой. Например:
В теле программы переменной можно присвоить значение. Для этого используется составной символ := , например:
Вы можете присвоить значение переменной непосредственно при объявлении:
Объявленные таким образом переменные называются инициализированными . На инициализированные переменные накладывается ограничение: они не могут объявляться в подпрограммах (процедурах и функциях). Если переменная не инициализируется при объявлении, то по умолчанию она заполняется нулем.
Каждый используемый в программе элемент данных должен быть описан в разделе const или var . Исключение составляют данные, заданные непосредственно значением , например:
2.3. Простые типы данных
2.3.1. Целочисленные типы данных
Целочисленные типы данных применяются для описания целочисленных данных. Для решения различных задач могут потребоваться различные целые числа. В одних задачах счет идет на десятки, в других — на миллионы. Соответственно в языке Delphi имеется несколько целочисленных типов данных, среди которых вы можете выбрать наиболее подходящий для своей задачи (таблица 2.1).
Фундаментальные типы данных:
Тип данных | Диапазон значений | Объем памяти (байт) |
---|---|---|
Byte | 0..255 | 1 |
Word | 0..65535 | 2 |
Shortint | –128..127 | 1 |
Smallint | –32768..32767 | 2 |
Longint | –2147483648..2147483647 | 4 |
Longword | 0.. 4294967295 | 4 |
Int64 | –2^63..2^63–1 | 8 |
Обобщенные типы данных:
Тип данных | Диапазон значений | Формат (байт) |
---|---|---|
Cardinal | 0.. 4294967295 | 4* |
Integer | –2147483648..2147483647 | 4* |
ПРИМЕЧАНИЕ
* — количество байт памяти, требуемых для хранения переменных обобщенных типов данных, приведено для 32-разрядных процессоров семейства x86. Пример описания целочисленных данных: Позволим себе дать небольшой совет. При программировании алгоритмов предпочтение следует отдавать обобщенным типам даных, поскольку они позволяют достичь максимальной производительности программ при переходе на другие модели компьютеров (например, при переходе на компьютеры, построенные на основе новых 64-разрядных процессоров). Переменные обобщенных типов данных могут храниться в памяти по-разному в зависимости от конкретной модели компьютера, и для работы с ними компилятор может генерировать наиболее оптимальный код. Однако при использовании переменных обобщенных типов данных ни в коем случае нельзя полагаться на формат их хранения в памяти, в частности на размер. 2.3.2. Вещественные типы данныхВещественные типы данных применяются для описания вещественных данных с плавающей или с фиксированной точкой (таблица 2.2).
|