Методы доступа к элементам массивов


Содержание

Доступ к элементам массива

Выполнить операцию над массивом означает выполнить действия над элементами этого массива. Элементы массива называются также переменными с индексами. Получить доступ к каждому элементу-ячейке массива можно путём указания индекса в квадратных скобках.

Например, k := R[1] + R[5]; R[3] := 34;

Здесь, в первом случае переменной k присваивается сумма значений элементов массива R с порядковыми номерами 1 и 5. Во втором примере элементу массива R с порядковым номером 3 присваивается значение 34.

В качестве индекса может использоваться выражение, результатом которого является целое число.

Например, R[2*I] – элементы массива с чётным индексом; R[2*I-1] – элементы массива с нечётным индексом.

Все операции по формированию элементов массива, обработке массива, выводу на печать выполняются в цикле с параметром.

В частности, для ввода и вывода числовых значений массива используются циклы:

FOR I := 1 TO 10 DO READ (A[I]);

FOR I := 1 TO 10 DO WRITE (A[I]);

В операторах присваивания можно использовать не только элементы массивов, но и массивы в целом. Оператор вида A := B выглядит лаконичнее и выполняется быстрее цикла for i :=1 to n do A[i] := B[i]. Используя в операторах присваивания массивы, следует помнить, что такая конструкция приводит к копированию всего массива! Массивы в целом можно использовать в логических отношениях равенства (=) и неравенства (<>). Другие операции отношения применяются только к отдельным элементам массива.

Элементы массива могут вводиться с клавиатуры или формироваться случайным образом.

В последнем случае используется функция – генератор случайных чисел Random. Эта функция согласно определённому алгоритму при каждом обращении к ней возвращает случайное число – либо вещественное, из интервала [0..1], если аргумент отсутствует, либо целое, если задан целочисленный аргумент. Чтобы эта функция работала корректно, рекомендуется вначале её инициализировать, вызвав процедуру Randomize без параметров.

for i := 1 to 10 do R[i] := random; (из интервала [0..1])

for i := 1 to 10 do R[i] := random(11); (из интервала [0..10])

Условия чётности и нечётности элемента массива:

If R[i] mod 2 = 0 then …

If odd (R[i]) then …или

If odd (R[i]) = false then …

If R[i] mod 2 <>0 then …

If not odd (R[i]) then …или

If odd (R[i]) = true then …

Задача 7.1.В массиве, состоящем из пяти элементов подсчитать количество положительных и отрицательных элементов. Положительные элементы записать в один одномерный массив, а отрицательные – в другой.

A, B, C : ARRAY [1..N] OF INTEGER;

WRITE (‘Введите размерность массива R[i]. Если оно выполнено, то продолжать перебор, иначе присвоить max := R[i]и index = i и продолжать перебор.

VAR R : ARRAY [1..N] OF INTEGER;

I, MAX, INDEX : INTEGER;

FOR I:=1 TO N DO R[I]:=random(11);

FOR I l= 2 TO N DO IF MAX ’);

Алгоритм решения программы №2:

1. Сформировать случайный целочисленный массив R;

2. Присвоить вспомогательной переменной index порядковый номер первого элемента массива, то есть 1;

3. Для каждого элемента массива, начиная со второго и заканчивая последним, проверить выполнение условия R[index] > R[i]. Если оно выполнено, то продолжать перебор, иначе присвоить index:=i и продолжать перебор.

VAR R : ARRAY [1..N] OF INTEGER;

I, INDEX : INTEGER;

FOR I := 1 TO N DO R[I] := random (11)-5;

FOR I= 2 TO N DO

Задача 7.3.Сформировать элементы массива случайным образом и вывести на экран в обратном порядке.

VAR A : ARRAY [1..100] OF INTEGER; I : INTEGER;

WRITELN (‘Сформированный массив: ’);

FOR I := 1 TO 100 DO

A[I] := RANDOM (11) — 6;

WRITELN (‘Изменённый массив: ’);

FOR I := 100 DOWNTO 1 DO WRITE (‘A[’, I, ‘]= ’, A[I]:3, ‘’:2);

Задача 7.4.Сформировать массив случайным образом, состоящим из 1000 элементов, числа находятся в диапазоне от 150 до 250. Сосчитать количество чисел больших 200.

VAR A : ARRAY [1..1000] OF INTEGER;

WRITELN (‘Сформированный массив:’);

FOR I := 1 TO 1000 DO

A[I] := RANDOM (101) +150;

FOR I := 1 TO 1000 DO IF A[I] > 200 THEN K := K +1;

WRITELN (‘Количество элементов >200 = ’, K:2);

Вопросы для самопроверки

1. Дайте определение массива?

2. Как осуществляется объявление массива в разделе Var (1 способ)?

3. Каким образом можно объявить массив в разделе Var, если создан новый тип массива в разделе Type (2 способ)?

4. Что необходимо знать, чтобы обратиться к определённому элементу массива?

5. Объясните назначение 2-го способа объявления массива?

6. Как организовать ввод и вывод элементов массива?

7. Как можно реализовать формирование элементов массива случайным способом?

Массивы

Ярким примером ссылочного типа данных являются массивы (как объекты!).

Массив представляет собой совокупность переменных одного типа с общим для обращения к ним именем.
В C# массивы могут быть как одномерными, так и многомерными.
Массивы служат самым разным целям, поскольку они предоставляют удобные средства для объединения связанных вместе переменных.
Массивами в C# можно пользоваться практически так же, как и в других языках программирования.
Тем не менее, у них имеется одна особенность: они реализованы в виде объектов. Смотрите также заметку «Массивы. Класс System.Array».
Объединение данных возможно и в коллекции, об этом — в статье Класс ArrayList. Пример необобщенной коллекции

Объявление массивов

Для того чтобы воспользоваться массивом в программе, требуется двухэтапная процедура. Во-первых, необходимо объявить переменную, которая может обращаться к массиву. И во-вторых, нужно создать экземпляр массива (объект), используя оператор new.

Важно! Если массив только объявляется, но явно не инициализируется, каждый его элемент будет установлен в значение, принятое по умолчанию для соответствующего типа данных (например, элементы массива типа bool будут устанавливаться в false, а элементы массива типа int — в 0). В примере, если мы удалим строки с инициализацией, будет напечатано пять нулей.

Примечание. Такие же действия с полями объекта-структуры выполняет конструктор по умолчанию (без параметров).

Доступ к элементам массива

Для обращения к элементам массива используются индексы . Индекс представляет номер элемента в массиве, при этом нумерация начинается с нуля, поэтому индекс первого элемента будет равен 0. А чтобы обратиться к пятому элементу в массиве, нам надо использовать индекс 4, к примеру: myArr[4] .

Инициализация массива

Помимо заполнения массива элемент за элементом (как показано в предыдущем примере), можно также заполнять его с использованием специального синтаксиса инициализации массивов.

Для этого необходимо перечислить включаемые в массив элементы в фигурных скобках < >. Такой синтаксис удобен при создании массива известного размера, когда нужно быстро задать его начальные значения:

1) инициализация массива с использованием ключевого слова new:
int[] m1 = new int[] <10,20,30,40,50>;

2) инициализации строкового массива без использования слова new:
string[] m2 = < «Фамилия», «Имя», «Отчество» >;

3) используем ключевое слово new и желаемый размер массива символов:
char[] m3 = new char[4] < ‘Я’,’з’,’ы’,’к’ >;

Обратите внимание, что в случае применения синтаксиса с фигурными скобками размер массива указывать не требуется (как видно на примере создания переменной m1), поскольку этот размер автоматически вычисляется на основе количества элементов внутри фигурных скобок.

Кроме того, применять ключевое слово new не обязательно (как при создании массива m2).

Неявно типизированные массивы

Ключевое слово var позволяет определить переменную так, чтобы лежащий в ее основе тип выводился компилятором. Аналогичным образом можно также определять неявно типизированные локальные массивы. С использованием такого подхода можно определить новую переменную массива без указания типа элементов, содержащихся в массиве.

Результат:

Разумеется, как и при создании массива с использованием явного синтаксиса C#, элементы, указываемые в списке инициализации массива, должны обязательно иметь один и тот же базовый тип (т.е. должны все быть int, string или char). Обратите внимание на метод GetType(), позволяющий программным путем определять тип элементов массива.

Определение массива объектов

В большинстве случаев при определении массива тип элемента, содержащегося в массиве, указывается явно.

Хотя на первый взгляд это выглядит довольно понятно, существует одна важная особенность. В основе каждого типа в системе типов .NET (в том числе фундаментальных типов данных) в конечном итоге лежит базовый класс System.Object.

В результате получается, что в случае определения массива объектов находящиеся внутри него элементы могут представлять собой что угодно.

Если обратимся к определению массива, данному выше: «Массив представляет собой совокупность переменных одного типа с общим для обращения к ним именем», то это выглядит несколько противоречиво. Но тем не менее, все это возможно потому, что каждый элемент является объектом. Приведем пример:

Обратите внимание на четвертый тип цикла foreach (object me in arrByObject). Легко запомнить: Для каждого (for each) объекта с именем me, входящего в (in) массив arrByObject (учите английский!). На печать выводится как сам объект (элемент массива объектов), так и тип этого объекта (метод GetType(), присущий всем объектам класса Object, от которого наследуются все типы).

Свойство Length

Реализация в C# массивов в виде объектов дает целый ряд преимуществ. Одно из них заключается в том, что с каждым массивом связано свойство Length, содержащее число элементов, из которых может состоять массив. Следовательно, у каждого массива имеется специальное свойство, позволяющее определить его длину.

Когда запрашивается длина многомерного массива, то возвращается общее число элементов, из которых может состоять массив. Благодаря наличию у массивов свойства Length операции с массивами во многих алгоритмах становятся более простыми, а значит, и более надежными.

Вставим в предыдущем примере перед Console.ReadKey() оператор
Console.WriteLine(arrByObject.Length);
Будет напечатано значение, равное 4 (число объектов в массиве). Чаще всего оно используется для задания числа элементов массива в цикле for<>.

Многомерные массивы

Многомерным называется такой массив, который отличается двумя или более измерениями, причем доступ к каждому элементу такого массива осуществляется с помощью определенной комбинации двух или более индексов. Многомерный массив индексируется двумя и более целыми числами.

Двумерные массивы. Простейшей формой многомерного массива является двумерный массив. Местоположение любого элемента в двумерном массиве обозначается двумя индексами. Такой массив можно представить в виде таблицы, на строки которой указывает первый индекс, а на столбцы — второй. Пример объявления и инициализации двумерного массива показан ниже:

Обратите особое внимание на способ объявления двумерного массива. Схематическое представление массива myArr[,] показано ниже:

Заметим, что в программе используется еще один объект – ran, принадлежащий к классу Random, метод которого (функция Next() ) возвращает целое число в заданном диапазоне (1,15).

В C# допускаются массивы трех и более измерений. Ниже приведена общая форма объявления многомерного массива:
тип[,…,] имя_массива = new тип[размер1, размер2, … размеры];

Инициализация многомерных массивов

Для инициализации многомерного массива достаточно заключить в фигурные скобки список инициализаторов каждого его размера:
тип[,] имя_массива = <
,
< val, val, val, …, val>,

>;
где val обозначает инициализирующее значение, а каждый внутренний блок — отдельный ряд.

Первое значение в каждом ряду сохраняется на первой позиции в массиве, второе значение — на второй позиции и т.д.


Обратите внимание на то, что блоки инициализаторов разделяются запятыми, а после завершающей эти блоки закрывающей фигурной скобки ставится точка с запятой.

Ниже в качестве примера приведена общая форма инициализации двумерного массива (4 строки, 2 столбца):

Перейдем к рассмотрению примеров решения задач, где применяются массивы и циклы.

Задача «Три цикла»

Требуется найти сумму и произведение N элементов массива, используя три варианта циклов (for, while, do-while).
Решение. В классе Program объявим статический массив действительных чисел a[1000] и 7 методов (кроме Main()), ввод исходных данных и вычисление сумм и произведений с использованием трех типов циклов.

Тогда наша программа может быть написана так:

Результат:

Задание. Сравните алгоритмы вычисления суммы и произведения и циклы между собой, найдите общее и различия.

Оператор foreach

Последний пример иллюстрирует применение оператора foreach к массивам. Если есть необходимость выполнить некоторые действия со всеми элементами массивов, то этот оператор цикла будет самым кратким.

Задачи, предполагающие использование массивов и циклов, подробно рассмотрены в разделе «Примеры решения задач на тему «Массивы строки»»

Перейдем к рассмотрению объектов, относящихся к классу String (строка).

Новые книги

TCP/IP: Architecture, Protocols, and Implementation with IPv6 and IP Security» style=»float: left; margin: 4px; box-shadow: 0 0 8px rgba(0, 0, 0, 0.8);»> Второе издание популярного справочника полностью переработано и расширено с целью предоставить читателю наиболее полное описание средств разработки, конфигурирования, использования и обслуживания сетей TCP/IP и соответствующих служб.

Книга написана увлекательно и доступно. Она содержит дополнительные материалы о нескольких протоколах Интернета, используемых серверами и браузерами WWW, а также рассматривает все последние изменения в этой области. В книгу включены главы о новом стандарте безопасности IP и протоколе IP следующего поколения, известном как IPng или IPv6. Рисунки и таблицы наглядно показывают влияние средств безопасности IP и IPng на существующие сетевые среды.

Издание содержит следующие дополнительные разделы:

• Безопасность IP и IPv6

• Описание средств WWW, новостей Интернета и приложений для работы с gopher

• Подробное описание серверов имен доменов (DNS), маски подсети и бесклассовой маршрутизации в Интернете

• Таблицы и протоколы маршрутизации

• Руководство по реализации средств безопасности для каждого из протоколов и приложений

• Примеры диалогов с новыми графическими инструментами

Новое издание бестселлера по TCP/IP станет незаменимым помощником для разработчиков сетей и приложений, для сетевых администраторов и конечных пользователей.

Вы решили привлекать клиентов для своего бизнеса с помощью Интернета и являетесь потенциальным заказчиком SEO-услуг? Тогда вам необходимо знать, что же такое поисковый маркетинг и какие подводные камни подстерегают вас – неискушенного клиента.

Эта книга наполнена практическими советами о том, как не допустить ошибки, заказывая услуги поисковой оптимизации. При соблюдении всех технологий ваши главные цели – рост продаж и увеличение прибыли – будут успешно достигнуты.

• каковы выгоды от использования SEO-технологий;

• как SEO приносит успех и как бизнес может заработать на SEO;

• какие виды SEO-услуг доступны, как они работают;

• каковы плюсы и минусы контекстной рекламы;

• как работает маркетинг в социальных медиа;

• применение веб-аналитики – как оценить эффективность ваших рекламных кампаний.

Также издание поможет определиться, какие из SEO-услуг подходят именно вашему бизнесу, на чем вы можете заработать прямо сейчас и куда можно вкладывать заработанное.

Книга адресована всем, кто по долгу службы начинает постигать основы поисковой оптимизации и является потенциальным заказчиком SEO-услуг; а также будет интересна специалистам, отвечающим за поддержку веб-проектов организаций, интернет-маркетологам и руководителям IT-компаний, желающим поднять свой опыт взаимодействия с клиентами на новый уровень.

1.7.1. Методы доступа кэлементам массивов

1.7.1. Методы доступа к элементам массивов

В языке СИ между указателями и массивами существует тесная связь. Например, когда объявляется массив в виде int array[25], то этим определяется не только выделение памяти для двадцати пяти элементов массива, но и для указателя с именем array, значение которого равно адресу первого по счету (нулевого) элемента массива, т.е. сам массив остается безымянным, а доступ к элементам массива осуществляется через указатель с именем array. С точки зрения синтаксиса языка указатель arrey является константой, значение которой можно использовать в выражениях, но изменить это значение нельзя.

Поскольку имя массива является указателем допустимо, например, такое присваивание:

Здесь указатель ptr устанавливается на адрес первого элемента масcива, причем присваивание ptr=arrey можно записать в эквивалентной форме ptr=&arrey[0].

Для доступа к элементам массива существует два различных способа. Первый способ связан с использованием обычных индексных выражений в квадратных скобках, например, array[16]=3 или array[i+2]=7. При таком способе доступа записываются два выражения, причем второе выражение заключается в квадратные скобки. Одно из этих выражений должно быть указателем, а второе — выражением целого типа. Последовательность записи этих выражений может быть любой, но в квадратных скобках записывается выражение следующее вторым. Поэтому записи array[16] и 16[array] будут эквивалентными и обозначают элемент массива с номером шестнадцать. Указатель используемый в индексном выражении не обязательно должен быть константой, указывающей на какой-либо массив, это может быть и переменная. В частности после выполнения присваивания ptr=array доступ к шестнадцатому элементу массива можно получить с помощью указателя ptr в форме ptr[16] или 16[ptr].

Второй способ доступа к элементам массива связан с использованием адресных выражений и операции разадресации в форме *(array+16)=3 или *(array+i+2)=7. При таком способе доступа адресное выражение равное адресу шестнадцатого элемента массива тоже может быть записано разными способами *(array+16) или *(16+array).

При реализации на компьютере первый способ приводится ко второму, т.е. индексное выражение преобразуется к адресному. Для приведенных примеров array[16] и 16[array] преобразуются в *(array+16).

Для доступа к начальному элементу массива (т.е. к элементу с нулевым индексом) можно использовать просто значение указателя array или ptr. Любое из присваиваний

присваивает начальному элементу массива значение 2, но быстрее всего выполнятся присваивания *array=2 и *ptr=2, так как в них не требуется выполнять операции сложения.

1.7.2. Указатели на многомерные массивы

Указатели на многомерные массивы в языке СИ — это массивы массивов, т.е. такие массивы, элементами которых являются массивы. При объявлении таких массивов в памяти компьютера создается несколько различных объектов. Например при выполнении объявления двумерного массива int arr2[4][3] в памяти выделяется участок для хранения значения переменной arr, которая является указателем на массив из четырех указателей. Для этого массива из четырех указателей тоже выделяется память. Каждый из этих четырех указателей содержит адрес массива из трех элементов типа int, и, следовательно, в памяти компьютера выделяется четыре участка для хранения четырех массивов чисел типа int, каждый из которых состоит из трех элементов. Такое выделение памяти показано на схеме на рис.3.

в
а
а
а
а
Рис.3. Распределение памяти для двумерного массива.

Таким образом, объявление arr2[4][3] порождает в программе три разных объекта: указатель с идентификатором arr, безымянный массив из четырех указателей и безымянный массив из двенадцати чисел типа int. Для доступа к безымянным массивам используются адресные выражения с указателем arr. Доступ к элементам массива указателей осуществляется с указанием одного индексного выражения в форме arr2[2] или *(arr2+2). Для доступа к элементам двумерного массива чисел типа int должны быть использованы два индексных выражения в форме arr2[1][2] или эквивалентных ей *(*(arr2+1)+2) и (*(arr2+1))[2]. Следует учитывать, что с точки зрения синтаксиса языка СИ указатель arr и указатели arr[0], arr[1], arr[2], arr[3] являются константами и их значения нельзя изменять во время выполнения программы.

Размещение трехмерного массива происходит аналогично и объявление float arr3[3][4][5] порождает в программе кроме самого трехмерного массива из шестидесяти чисел типа float массив из четырех указателей на тип float, массив из трех указателей на массив указателей на float, и указатель на массив массивов указателей на float.

При размещении элементов многомерных массивов они располагаются в памяти подряд по строкам, т.е. быстрее всего изменяется последний индекс, а медленнее — первый. Такой порядок дает возможность обращаться к любому элементу многомерного массива, используя адрес его начального элемента и только одно индексное выражение.

Например, обращение к элементу arr2[1][2] можно осуществить с помощью указателя ptr2, объявленного в форме int *ptr2=arr2[0] как обращение ptr2[1*4+2] (здесь 1 и 2 это индексы используемого элемента, а 4 это число элементов в строке) или как ptr2[6]. Заметим, что внешне похожее обращение arr2[6] выполнить невозможно так как указателя с индексом 6 не существует.

Для обращения к элементу arr3[2][3][4] из трехмерного массива тоже можнo использовать указатель, описанный как float *ptr3=arr3[0][0] с одним индексным выражением в форме ptr3[3*2+4*3+4] или ptr3[22].

Далее приведена функция, позволяющая найти минимальный элемент в трехмерном массиве. В функцию передается адрес начального элемента и размеры массива, возвращаемое значение — указатель на структуру, содержащую индексы минимального элемента.

1.7.3. Операции с указателями

Над указателями можно выполнять унарные операции: инкремент и декремент. При выполнении операций ++ и — значение указателя увеличивается или уменьшается на длину типа, на который ссылается используемый указатель.

В бинарных операциях сложения и вычитания могут участвовать указатель и величина типа int. При этом результатом операции будет указатель на исходный тип, а его значение будет на указанное число элементов больше или меньше исходного.

В операции вычитания могут участвовать два указателя на один и тот же тип. Результат такой операции имеет тип int и равен числу элементов исходного типа между уменьшаемым и вычитаемым, причем если первый адрес младше, то результат имеет отрицательное значение.

Значения двух указателей на одинаковые типы можно сравнивать в операциях ==, !=, , >= при этом значения указателей рассматриваются просто как целые числа, а результат сравнения равен 0 (ложь) или 1 (истина).

В данном примере значение ptr1 меньше значения ptr2 и поэтому оператор a[3]=4 не будет выполнен.

1.7.4. Массивы указателей

В языке СИ элементы массивов могут иметь любой тип, и, в частности, могут быть указателями на любой тип. Рассмотрим несколько примеров с использованием указателей.

Следующие объявления переменных

порождают программные объекты, представленные на схеме на рис.4.

в
а . . . . .
в в в в в
а
Рис.4. Схема размещения переменных при объявлении.

При выполнении операции pp-p получим нулевое значение, так как ссылки pp и p равны и указывают на начальный элемент массива указателей, связанного с указателем p ( на элемент p[0]).

После выполнения операции pp+=2 схема изменится и примет вид, изображенный на рис.5.

в
а . . . . .
в в в в в
а
Рис.5. Схема размещения переменных после выполнения операции pp+=2.

Результатом выполнения вычитания pp-p будет 2, так как значение pp есть адрес третьего элемента массива p. Ссылка *pp-a тоже дает значение 2, так как обращение *pp есть адрес третьего элемента массива a, а обращение a есть адрес начального элемента массива a. При обращении с помощью ссылки **pp получим 12 — это значение третьего элемента массива a. Ссылка *pp++ даст значение четвертого элемента массива p т.е. адрес четвертого элемента массива a.

Если считать, что pp=p, то обращение *++pp это значение первого элемента массива a (т.е. значение 11), операция ++*pp изменит содержимое указателя p[0], таким образом, что он станет равным значению адреса элемента a[1].

Сложные обращения раскрываются изнутри. Например обращение *(++(*pp)) можно разбить на следующие действия: *pp дает значение начального элемента массива p[0], далее это значение инкременируется ++(*p) в результате чего указатель p[0] станет равен значению адреса элемента a[1], и последнее действие это выборка значения по полученному адресу, т.е. значение 11.

В предыдущих примерах был использован одномерный массив, рассмотрим теперь пример с многомерным массивом и указателями. Следующие объявления переменных

порождают в программе объекты представленные на схеме на рис.6.

Рис.6. Схема размещения указателей на двумерный массив.

Согласно этой схеме доступ к элементу a[0][0] получить по указателям a, p, pa при помощи следующих ссылок: a[0][0], *a, **a[0], *p, **pa, *p[0].

Рассмотрим теперь пример с использованием строк символов. Объявления переменных

можно изобразить схемой представленной на рис.7.

Рис.7. Схема размещения указателей на строки.

1.7.5. Динамическое размещение массивов

При динамическом распределении памяти для массивов следует описать соответствующий указатель и присваивать ему значение при помощи функции calloc. Одномерный массив a[10] из элементов типа float можно создать следующим образом

Для создания двумерного массива вначале нужно распределить память для массива указателей на одномерные массивы, а затем распределять память для одномерных массивов. Пусть, например, требуется создать массив a[n][m], это можно сделать при помощи следующего фрагмента программы:

Аналогичным образом можно распределить память и для трехмерного массива размером n,m,l. Следует только помнить, что ненужную для дальнейшего выполнения программы память следует освобождать при помощи функции free.

Рассмотрим еще один интересный пример, в котором память для массивов распределяется в вызываемой функции, а используется в вызывающей. В таком случае в вызываемую функцию требуется передавать указатели, которым будут присвоены адреса выделяемой для массивов памяти.

Отметим также то обстоятельство, что указатель на массив не обязательно должен показывать на начальный элемент некоторого массива. Он может быть сдвинут так, что начальный элемент будет иметь индекс отличный от нуля, причем он может быть как положительным так и отрицательным.

В качестве последнего примера рассмотрим динамическое распределение памяти для массива указателей на функции, имеющие один входной параметр типа double и возвращающие значение типа double.

Методы доступа к элементам массивов, использование указателей

В языке СИ под указателями понимают объекты, значением которых являются адреса других объектов памяти (переменных, массивов, функций и т.д.).

В общем случае указатель объявляется следующим образом:

Такой указатель может содержать адрес переменной целого типа int. Тип данных, используемый при описании, называется базовым и может быть любым.

В языке СИ между указателями и массивами существует тесная связь. Например, когда объявляется массив в виде int array[25], то этим определяется не только выделение памяти для двадцати пяти элементов массива, но и для указателя с именем array, значение которого равно адресу первого по счету (нулевого) элемента массива, т.е. сам массив остается безымянным, а доступ к элементам массива осуществляется через указатель с именем array. С точки зрения синтаксиса языка указатель arrey является константой, значение которой можно использовать в выражениях, но изменить это значение нельзя.

Поскольку имя массива является указателем допустимо, например, такое присваивание:

Здесь указатель ptr устанавливается на адрес первого элемента массива, причем присваивание ptr=arrey можно записать в эквивалентной форме ptr=&arrey[0].

Для доступа к элементам массива существует два различных способа. Первый способ связан с использованием обычных индексных выражений в квадратных скобках, например, array[16]=3 или array[i+2]=7. При таком способе доступа записываются два выражения, причем второе выражение заключается в квадратные скобки. Одно из этих выражений должно быть указателем, а второе — выражением целого типа. Последовательность записи этих выражений может быть любой, но в квадратных скобках записывается выражение следующее вторым. Поэтому записи array[16] и 16[array] будут эквивалентными и обозначают элемент массива с номером шестнадцать. Указатель используемый в индексном выражении не обязательно должен быть константой, указывающей на какой-либо массив, это может быть и переменная. В частности после выполнения присваивания ptr=array доступ к шестнадцатому элементу массива можно получить с помощью указателя ptr в форме ptr[16] или 16[ptr].

Второй способ доступа к элементам массива связан с использованием адресных выражений и операции разыменовании в форме *(array+16)=3 или *(array+i+2)=7. При таком способе доступа адресное выражение равное адресу шестнадцатого элемента массива тоже может быть записано разными способами *(array+16) или *(16+array).

При реализации на компьютере первый способ приводится ко второму, т.е. индексное выражение преобразуется к адресному. Для приведенных примеров array[16] и 16[array] преобразуются в *(array+16).

Для доступа к начальному элементу массива (т.е. к элементу с нулевым индексом) можно использовать просто значение указателя array или ptr. Любое из присваиваний

*array = 2; array[0]=2; *(array+0)=2; *ptr = 2; ptr[0] = 2; *(ptr+0) = 2;

присваивает начальному элементу массива значение 2, но быстрее всего выполнятся присваивания *array=2 и *ptr=2, так как в них не требуется выполнять операции сложения.

Не нашли, что искали? Воспользуйтесь поиском:


Доступ к двумерному массиву через указатели

Мне нужно выводить на экран массив размером около 1000×1000 . Если постоянно обращаться к элементам массива через [][] , это занимает долго времени. Хочу сделать через указатели. Так же должно быть быстрее. Как лучше сделать пробег по такому массиву с наименьшим временем через указатели?

3 ответа 3

Ты думаешь, если был бы выигрыш, то компилятор не догадался бы оптимизировать ptr[ i ][ j ] как

Да и, с большой долей вероятности, боттлнеком у тебя будут именно функции вывода, а не доступа.

А почему вы уверены, что это даст прирост производительности? Ведь объявление вида

практически аналогично (если не принимать во внимание фрагментацию памяти и алгоритмы аллокатора) вот этому:

Объявления массивов через указатели имеет смысл только если вы заранее (на стадии компиляции) не знаете размер массива и вынуждены выделять память динамически. А вот что действительно может ускорить работу с двумерным массивом, так это объявление его как одномерного и доступ к его элементам через адресную арифметику:

Эта запись аналогична этой:

Раз тут пошла такая пьянка, расскажу немного про указатели, которые указывают на двумерные массивы в памяти.

Вот здесь будет выделено n-ое число указателей, которые следуют друг за другом (проверить можете легко).

Далее мы выделяем память для этих mat[n] = PTR указателей, ведь диспетчер памяти не обязан выделять память строго друг за другом потому, что это не противоречит самой идеи указателей (здесь фрагментация как таковая роли не играет). Возьмём, к примеру, разряжённую матрицу, в которой каждая строка это односвязной список.

А вот пример, как пройтись одними указателями по динамическому двумерному массиву.

Другое дело статический двумерный массив: вот как раз тут элементы матрицы расположены в памяти друг за другом.

Dexter384, так что в твоём вопросе никакой экономии на спичках не будет. В asm для удобства также есть индексация массивов, только индекс массива умножаем на размер типа, то бишь удобно чтобы лишний раз регистр не смещать туда-сюда. В С/С++ компилятор эту работу делает за нас, то есть умножает на размер типа, если доступ к массиву по индексу, а если через указатель — то смещение на n-байт (то есть на размер типа).

И последнее — для того, чтобы лишний раз куча не фрагментировалась, лучше использовать

1. Объявление массива

Объявление массива имеет следующий синтаксис:
[ ]; [ ];

Здесь квадратные скобки являются элементом синтаксиса, а не признаком необязательности конструкции.

Объявление массива может иметь одну из двух синтаксических форм, указанных выше. Квадратные скобки, следующие за именем, – признак того, что переменная является массивом. Константное выражение, заключенное в квадратные скобки определяет число элементов в массиве. Индексация элементов массива в языке C++ начинается с нуля. Таким образом, последний элемент массива имеет индекс на единицу меньше, чем число элементов массива.

Во второй синтаксической форме константное выражение в квадратных скобках опущено. Эта форма может быть использована, если в объявлении массива присутствует инициализатор, либо массив объявляется как формальный параметр функции, либо данное объявление является ссылкой на объявление массива где-то в другом месте программы. Однако для многомерного массива может быть опущена только первая размерность.

Многомерный массив, или массив массивов, объявляется путем задания последовательности константных выражений в квадратных скобках, следующей за именем:
[ ][ ] . ;

Каждое константное выражение определяет количество элементов в данном измерении массива, поэтому объявление двумерного массива содержит два константных выражение, трехмерного – три и т.д.

Массив может состоять из элементов любого типа, кроме типа void и функций, т.е. элементы массива могут иметь базовый, перечислимый, структурный тип, быть объединением, указателем или массивом.

Примеры объявлений массивов

int x[10]; // Одномерный массив из 10 целых чисел. Индексы меняются от 0 до 9.
double y[2][10]; // Двумерный массив вещественных чисел из 2 строк и 10 столбцов.

2. Инициализация массивов

Как и простые переменные, массивы могут быть инициализированы при объявлении. Инициализатор для объектов составных типов (каким является массив) состоит из списка инициализаторов, разделенных запятыми и заключенных в фигурные скобки. Каждый инициализатор в списке представляет собой либо константу соответствующего типа, либо, в свою очередь, список инициализаторов. Эта конструкция используется для инициализации многомерных массивов.

Наличие списка инициализаторов в объявлении массива позволяет не указывать число элементов по его первой размерности. В этом случае количество элементов в списке инициализаторов и определяет число элементов по первой размерности массива. Тем самым определяется размер памяти, необходимой для хранения массива. Число элементов по остальным размерностям массива, кроме первой, указывать обязательно.

Если в списке инициализаторов меньше элементов, чем в массиве, то оставшиеся элементы неявно инициализируются нулевыми значениями. Если же число инициализаторов больше, чем требуется, то выдается сообщение об ошибке.

Примеры инициализации массивов

int a[3] = <0, 1, 2>; // Число инициализаторов равно числу элементов
double b[5] = <0.1, 0.2, 0.3>; // Число инициализаторов меньше числа элементов
int c[ ] = <1, 2, 4, 8, 16>; // Число элементов массива определяется по числу инициализаторов
int d[2][3] = <<0, 1, 2>,
<3, 4, 5>>;
// Инициализация двумерного массива. Массив состоит из двух строк, // в каждой из которых по 3 элемента. Элементы первой строки // получают значения 0, 1 и 2, а второй – значения 3, 4 и 5.
int e[3] = <0, 1, 2, 3>; // Ошибка – число инициализаторов больше числа элементов

Обратите внимание, что не существует присваивания массиву, соответствующего описанному выше способу инициализации.

int a[3] = <0, 1, 2>; // Объявление и инициализация
a = <0, 1, 2>; // Ошибка

3. Работа с массивами

3.1. Доступ к элементу массива

Для доступа к конкретному элементу массива используются так называемые индексные выражения:
[ ]

Здесь квадратные скобки являются требованием синтаксисам языка, а не признаком необязательности конструкции.

Индекс массива может быть не только константой, но и выражением, которое имеет целочисленный тип, например, a [ i + 1] (здесь a должно быть именем ранее объявленного массива, а i – переменной целого типа).

Объявление массива и индексное выражение, используемое для доступа к элементу массива, имеют схожий синтаксис. Различаются они по месту в программе. Это особенно важно, когда мы определяем индекс последнего элемента массива. Как было сказано ранее, индексы элементов массива в языке C начинаются с 0, и номер последнего элемента на 1 меньше количества элементов массива. Поэтому если Вы объявили массив x из 10 элементов, Вы не можете написать индексное выражение x [10], т.к. в этом случае Вы пытаетесь обратиться к элементу с индексом 10, которого нет в Вашем массиве. Компилятор не выдаст сообщения об ошибке, но результаты работы такой программы будут непредсказуемы.

Имя массива является адресом его начала! Оно имеет тип константный указатель на . Конструкция a [ i ] эквивалентна *( a + i ) (см. лекцию 5).

Для многомерного массива надо указать соответствующее количество индексов в квадратных скобках.

3.2. Обработка массивов

Для обработки элементов массива обычно используется оператор пошагового цикла for.

for (i = 0; // Присваиваем счетчику цикла значение индекса первого элемента
i // В теле цикла происходит обработка одного элемента массива

Для обработки многомерного массива используется соответствующее количество циклов.

Массивы не самодостаточны в том смысле, что не гарантируется хранение информации о количестве элементов вместе с самим массивом. В большинстве реализаций С++ отсутствует проверка диапазона индексов для массивов. Таков традиционный низкоуровневый подход к массивам. Более совершенное понятие массива можно реализовать при помощи классов.

В С++ массивы тесно связаны с указателями. Имя массива можно использовать в качестве указателя на его первый элемент. Гарантируется осмысленность значения указателя на элемент, следующий за последним элементом массива. Это важно для многих алгоритмов. Но ввиду того, что такой указатель на самом деле не указывает ни на какой элемент массива, его нельзя использовать ни для чтения, ни для записи. Результат получения адреса элемента массива, предшествующего первому, не определён, и такой операции следует избегать.

Неявное преобразование имени массива в указатель на его первый элемент широко используется в вызовах функций.

int f(. int x[], . ) < . >int f(. int *x, . ) < . >void main() < int a[10]; . // Можно использовать любой из двух вариантов
f(. a, . ); . > // Передаём в функцию f указатель на массив a

Неявное преобразование массива в указатель при вызове функции приводит к потере информации о размере массива. Вызываемая функция должна каким-либо образом определить этот размер, чтобы выполнять осмысленные действия.

При объявлении многомерного массива как параметра функции можно опустить только первую размерность.

int g(. int x[][10], . ) // Вторая и последующие размерности обязательны

Это ограничение при желании можно обойти. Правда, при этом возникают другие проблемы (см. пример 3 в конце лекции).

3.3. Ввод/вывод массивов

В языке C нет возможности вводить и выводить весь массив одним оператором ввода/вывода. Можно вводить и выводить только один элемент массива. Следовательно, для того чтобы ввести весь массив, надо использовать цикл.

int a[10], n; printf(«Введите количество элементов массива (от 0 до 9): «); // Объявляем массив и переменную для количества элементов массива
scanf(«%d», &n); // Ввод количества элементов массива
if (n 9) // Если входные данные неверны, // то печатаем соответствующее сообщение и выходим из программы
for (i = 0; i for (i = 0; i a[1] = 4 a[2] = 15 a[3] = -2 .

3.4. Пример 1. Обработка одномерного массива

Даны три массива разной размерности. Определить в каком массиве больше сумма элементов.

#include #include const int nmax = 100;
int ArrayInput( int *n, double x[], char *fname); // Функция ввода массива из файла
double Sum( double x[], int n); void main( int argc, char *argv[]) < double a[nmax], b[nmax], c[nmax]; double sa, sb, sc, max; int na, nb, nc; setlocale(LC_ALL, "rus"); // Функция поиска суммы элементов массива // Меняем кодировку для консольного приложения
if (argc return ; > if (!ArrayInput(&na, a, argv[1])) return ; if (!ArrayInput(&nb, b, argv[2])) return ; if (!ArrayInput(&nc, c, argv[3])) return ; sa = Sum(a, na); sb = Sum(b, nb); sc = Sum(c, nc); max = sa; if (sb > max) max = sb; if (sc > max) max = sc; if (sa == max) printf(«Массив А имеет максимальную сумму элементов: %9.3lf\n», max); if (sb == max) printf(«Массив B имеет максимальную сумму элементов: %9.3lf\n», max); if (sc == max) printf(«Массив C имеет максимальную сумму элементов: %9.3lf\n», max); > double Sum( double x[], int n) < double s = 0; for ( int i = 0; i return s; >int ArrayInput( int *n, double x[], char *fname) < FILE *file; if ((file = fopen(fname, "r")) == NULL) < printf("Невозможно открыть файл '%s'\n", fname); return 0; >if (fscanf(file, «%d», n) return 0; > if (*n nmax) < printf("Кол-во эл-тов массива должно быть от 1 до %d! (файл '%s')\n", nmax, fname); return 0; >for ( int i = 0; i if (fscanf(file, «%lf», &x[i]) return 0; > fclose(file); return 1; >

3.5. Пример 2. Обработка двумерного массива

Для каждой строки матрицы проверить наличие нулевых элементов.

Попытка найти различные методы доступа к элементам массива?

Я новичок в C, но решил научиться хорошему C. Мне нужна ваша помощь. В то время как я занимаюсь массивами, я просто подумал, что я понял, что способ доступа к элементу массива прав, или, может быть, может быть лучший способ сделать это. Проверьте следующий код и предложите хороший способ использования массива с указателями. Я был бы очень признателен, если бы кто-нибудь мог привести меня к учебнику для передовой практики массива с указателями.

У вас программа утечки памяти

unsigned int * ptr_arr = (unsigned int *) malloc (sizeof (unsigned int));

Нет необходимости выделять память для ptr_arr.

достаточно присвоения адреса arr1

Другой способ использовать это — увеличивать указатель каждый раз и использовать его

Оба способа доступа к элементу массива действительны. Но для удобства чтения используйте array[subscript] вместо *(arrayStart+index) .

В массиве элементы смежно располагаются, начиная с array(say address 0x00000000) . Предполагая 32-битный целочисленный размер, 2 помещается по адресу array + 4 , который находится по адресу 0x00000004 , аналогично следующий элемент 3 находится в array + 8 адресов array + 8 , который является адресом 0x00000008 и т.д.

Когда я пишу array[2] я имею в виду, что я хочу второй элемент после элемента в array (или array[0] ), который на самом деле является третьим элементом в массиве. Следовательно, индексы массива начинаются с 0 .

Это буквально означает: array[0] = *(array + 0) , array[1] = *(array + 1) , array[2] = *(array+2)

лабы по информатике, егэ

лабораторные работы и задачи по программированию и информатике, егэ по информатике

PHP занятие 2. Массивы

PHP: объявление массива

Массивы с числовыми индексами

$fruits[0]=»яблоко»; $fruits[1]=»груша»; $fruits[2]=»апельсин»; $fruits[3]=»абрикос»;

Данный вариант инициализации массива сегодня практически не используется. Используется следующий вариант работы с массивами:

Данный вариант создания массива использует объект array :

$fruits = array( 1 => «яблоко», 2 => «груша», 3 => «апельсин», 4 => «абрикос» ); // Начиная с версии PHP 5.4 $fruits = array[ 1 => «яблоко», 2 => «груша», 3 => «апельсин», 4 => «абрикос» ];

Доступ к элементам массива

$fruits[0]=»яблоко»; $fruits[1]=»груша»; $fruits[2]=»апельсин»; $fruits[3]=»абрикос»; echo «Первый элемент массива — «. $fruits[0] .»
«; echo «Второй элемент массива — «. $fruits[1] .»
«; echo «Третий элемент массива — «. $fruits[2] .»
«;

Результатом выполнения программы будет:

$student = array( ‘Name’ => John, ‘Surname’ => Smith, ‘Age’ => 20 ); echo «имя пользователя » . $student[‘Name’] . «
«; echo «фамилия пользователя » . $student[‘Surname’] . «
«; echo «возраст пользователя » . $student[‘Age’] . «
«;

$student[‘Name’] = ‘John’; $student[‘Surname’] = ‘Smith’; $student[‘Age’] = 20; echo «имя пользователя » . $student[‘Name’] . «
«; echo «фамилия пользователя » . $student[‘Surname’] . «
«; echo «возраст пользователя » . $student[‘Age’] . «
«;

Индексированные массивы без ключа:

Также следует учесть, что индексы в массиве вообще можно не писать при инициализации массива значениями. Тогда мы создаем так называемый массив-коллекцию (объект-коллекцию):

$student = array(‘John’,’Smith’, 20);

В таком случае интерпретатор сам присвоит им числовые индексы, начиная с 0

«a», «1»=> «b», 2 => «c», 2 => «d», ); var_dump($my_array); ?>

«1», 2 => 2, «multi» => array( «1_1» => «1_1» ) ); var_dump($array_odnom [«first»]); var_dump($array_odnom [2]); var_dump($array_odnom [«multi»][«1_1»]); ?>

$array_odnom = array( 1 => array( 1 => «1_1», 2 => «1_2», 3 => «1_3»), 2 => array( 1 => «2_1», 2 => «2_2», 3 => «2_3»), ); echo $array_odnom[1][1];

Используйте шаблон объявления и ориентируйтесь по цветам:

Красным – массивы.
Коричневым – числовая переменная.
Синим – константа.

Уважаемый (ая), Иван Иванович !
Приглашаем Вас на день открытых дверей .
Дата события: 12 мая.
С уважением, Василий.

// объявление константы define(«SIGN»,»С уважением, Вася»); // массив для имен адресатов $names = array(. ); // массив для событий $events = array( «op_doors» => «день открытых дверей», «vistavka» => «выставку», . ); $str = «Уважаемый(ая), $names[0]!
«; $str .= . ; $str .= . ; echo . ;

Для того чтобы стать настоящим гуру в области программирования работы с API ВКОНТАКТЕ предлагаем пройти добротный и очень подробный видеокурс по PHP: работа с вконтакте. Замечательная, очень понятная форма подачи материала, пошаговость и доступные примеры гарантируют успешное усвоение и получение необходимых навыков. Подробно о курсе можно ознакомиться Для приобретения курса пройдите по .

Массивы

Объекты позволяют хранить данные со строковыми ключами. Это замечательно.

Но довольно часто мы понимаем, что нам необходима упорядоченная коллекция данных, в которой присутствуют 1-й, 2-й, 3-й элементы и т.д. Например, она понадобится нам для хранения списка чего-либо: пользователей, товаров, элементов HTML и т.д.

В этом случае использовать объект неудобно, так как он не предоставляет методов управления порядком элементов. Мы не можем вставить новое свойство «между» уже существующими. Объекты просто не предназначены для этих целей.


Для хранения упорядоченных коллекций существует особая структура данных, которая называется массив, Array .

Объявление

Существует два варианта синтаксиса для создания пустого массива:

Практически всегда используется второй вариант синтаксиса. В скобках мы можем указать начальные значения элементов:

Элементы массива нумеруются, начиная с нуля.

Мы можем получить элемент, указав его номер в квадратных скобках:

Мы можем заменить элемент:

…Или добавить новый к существующему массиву:

Общее число элементов массива содержится в его свойстве length :

Вывести массив целиком можно при помощи alert .

В массиве могут храниться элементы любого типа.

Список элементов массива, как и список свойств объекта, может оканчиваться запятой:

«Висячая запятая» упрощает процесс добавления/удаления элементов, так как все строки становятся идентичными.

Методы pop/push, shift/unshift

Очередь – один из самых распространённых вариантов применения массива. В области компьютерных наук так называется упорядоченная коллекция элементов, поддерживающая два вида операций:

  • push добавляет элемент в конец.
  • shift удаляет элемент в начале, сдвигая очередь, так что второй элемент становится первым.

Массивы поддерживают обе операции.

На практике необходимость в этом возникает очень часто. Например, очередь сообщений, которые надо показать на экране.

Существует и другой вариант применения для массивов – структура данных, называемая стек.

Она поддерживает два вида операций:

  • push добавляет элемент в конец.
  • pop удаляет последний элемент.

Таким образом, новые элементы всегда добавляются или удаляются из «конца».

Примером стека обычно служит колода карт: новые карты кладутся наверх и берутся тоже сверху:

Массивы в JavaScript могут работать и как очередь, и как стек. Мы можем добавлять/удалять элементы как в начало, так и в конец массива.

В компьютерных науках структура данных, делающая это возможным, называется двусторонняя очередь.

Методы, работающие с концом массива:

Удаляет последний элемент из массива и возвращает его:

Добавляет элемент в конец массива:

Вызов fruits.push(. ) равнозначен fruits[fruits.length] = . .

Методы, работающие с началом массива:

Удаляет из массива первый элемент и возвращает его:

Добавляет элемент в начало массива:

Методы push и unshift могут добавлять сразу несколько элементов:

Внутреннее устройство массива

Массив – это особый подвид объектов. Квадратные скобки, используемые для того, чтобы получить доступ к свойству arr[0] – это по сути обычный синтаксис доступа по ключу, как obj[key] , где в роли obj у нас arr , а в качестве ключа – числовой индекс.

Массивы расширяют объекты, так как предусматривают специальные методы для работы с упорядоченными коллекциями данных, а также свойство length . Но в основе всё равно лежит объект.

Следует помнить, что в JavaScript существует всего 7 основных типов данных. Массив является объектом и, следовательно, ведёт себя как объект.

Например, копируется по ссылке:

…Но то, что действительно делает массивы особенными – это их внутреннее представление. Движок JavaScript старается хранить элементы массива в непрерывной области памяти, один за другим, так, как это показано на иллюстрациях к этой главе. Существуют и другие способы оптимизации, благодаря которым массивы работают очень быстро.

Но все они утратят эффективность, если мы перестанем работать с массивом как с «упорядоченной коллекцией данных» и начнём использовать его как обычный объект.

Например, технически мы можем сделать следующее:

Это возможно, потому что в основе массива лежит объект. Мы можем присвоить ему любые свойства.

Но движок поймёт, что мы работаем с массивом, как с обычным объектом. Способы оптимизации, используемые для массивов, в этом случае не подходят, поэтому они будут отключены и никакой выгоды не принесут.

Варианты неправильного применения массива:

  • Добавление нечислового свойства, например: arr.test = 5 .
  • Создание «дыр», например: добавление arr[0] , затем arr[1000] (между ними ничего нет).
  • Заполнение массива в обратном порядке, например: arr[1000] , arr[999] и т.д.

Массив следует считать особой структурой, позволяющей работать с упорядоченными данными. Для этого массивы предоставляют специальные методы. Массивы тщательно настроены в движках JavaScript для работы с однотипными упорядоченными данными, поэтому, пожалуйста, используйте их именно в таких случаях. Если вам нужны произвольные ключи, вполне возможно, лучше подойдёт обычный объект <> .

Эффективность

Методы push/pop выполняются быстро, а методы shift/unshift – медленно.

Почему работать с концом массива быстрее, чем с его началом? Давайте посмотрим, что происходит во время выполнения:

Просто взять и удалить элемент с номером 0 недостаточно. Нужно также заново пронумеровать остальные элементы.

Операция shift должна выполнить 3 действия:

  1. Удалить элемент с индексом 0 .
  2. Сдвинуть все элементы влево, заново пронумеровать их, заменив 1 на 0 , 2 на 1 и т.д.
  3. Обновить свойство length .

Чем больше элементов содержит массив, тем больше времени потребуется для того, чтобы их переместить, больше операций с памятью.

То же самое происходит с unshift : чтобы добавить элемент в начало массива, нам нужно сначала сдвинуть существующие элементы вправо, увеличивая их индексы.

А что же с push/pop ? Им не нужно ничего перемещать. Чтобы удалить элемент в конце массива, метод pop очищает индекс и уменьшает значение length .

Действия при операции pop :

Метод pop не требует перемещения, потому что остальные элементы остаются с теми же индексами. Именно поэтому он выполняется очень быстро.

Аналогично работает метод push .

Перебор элементов

Одним из самых старых способов перебора элементов массива является цикл for по цифровым индексам:

Но для массивов возможен и другой вариант цикла, for..of :

Цикл for..of не предоставляет доступа к номеру текущего элемента, только к его значению, но в большинстве случаев этого достаточно. А также это короче.

Технически, так как массив является объектом, можно использовать и вариант for..in :

Но на самом деле это – плохая идея. Существуют скрытые недостатки этого способа:

Цикл for..in выполняет перебор всех свойств объекта, а не только цифровых.

В браузере и других программных средах также существуют так называемые «псевдомассивы» – объекты, которые выглядят, как массив. То есть, у них есть свойство length и индексы, но они также могут иметь дополнительные нечисловые свойства и методы, которые нам обычно не нужны. Тем не менее, цикл for..in выведет и их. Поэтому, если нам приходится иметь дело с объектами, похожими на массив, такие «лишние» свойства могут стать проблемой.

Цикл for..in оптимизирован под произвольные объекты, не массивы, и поэтому в 10-100 раз медленнее. Увеличение скорости выполнения может иметь значение только при возникновении узких мест. Но мы всё же должны представлять разницу.

В общем, не следует использовать цикл for..in для массивов.

Немного о «length»

Свойство length автоматически обновляется при изменении массива. Если быть точными, это не количество элементов массива, а наибольший цифровой индекс плюс один.

Например, единственный элемент, имеющий большой индекс, даёт большую длину:

Обратите внимание, что обычно мы не используем массивы таким образом.

Ещё один интересный факт о свойстве length – его можно перезаписать.

Если мы вручную увеличим его, ничего интересного не произойдёт. Зато, если мы уменьшим его, массив станет короче. Этот процесс необратим, как мы можем понять из примера:

Таким образом, самый простой способ очистить массив – это arr.length = 0; .

new Array()

Существует ещё один вариант синтаксиса для создания массива:

Он редко применяется, так как квадратные скобки [] короче. Кроме того, у него есть хитрая особенность.

Если new Array вызывается с одним аргументом, который представляет собой число, он создаёт массив без элементов, но с заданной длиной.

Давайте посмотрим, как можно оказать себе медвежью услугу:

Как мы видим, в коде, представленном выше, в new Array(number) все элементы равны undefined .

Чтобы избежать появления таких неожиданных ситуаций, мы обычно используем квадратные скобки, если, конечно, не знаем точно, что по какой-то причине нужен именно Array .

Многомерные массивы

Массивы могут содержать элементы, которые тоже являются массивами. Это можно использовать для создания многомерных массивов, например, для хранения матриц:

toString

Массивы по-своему реализуют метод toString , который возвращает список элементов, разделённых запятыми.

Методы доступа к элементам массивов

Вступайте в мою группу помощник программиста.
В ней мы обсуждаем программирование в 1С.

Массив

Описание:

Предназначен для доступа к элементам массива, его методам и конструктору.

Элементы коллекции: Произвольный

Для объекта доступен обход коллекции посредством оператора Для каждого … Из … Цикл. При обходе выбираются значения элементов массива.

Возможно обращение к значению элемента посредством оператора [. ]. В качестве аргумента передается индекс значения (нумерация с 0).

Илон Маск рекомендует:  Mean - Функция Delphi
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL