Моделирование при сжатии текстовых данных lzr


Содержание

Алгоритмы сжатия и компрессии

Опрос

Новички

Контекстное моделирование

Итак, нам необходимо решить задачу оценки вероятностей появления символов в каждой позиции обрабатываемой последовательности. Для того чтобы разжатие произошло без потерь, мы можем пользоваться только той информацией, которая в полной мере известна как кодеру, так и декодеру. Обычно это означает, что оценка вероятности очередного символа должна зависеть только от свойств уже обработанного блока данных.

Пожалуй, наиболее простой способ оценки реализуется с помощью по­луадаптивного моделирования и заключается в предварительном подсчете безусловной частоты появления символов в сжимаемом блоке. Полученное распределение вероятностей используется для статистического кодирования всех символов блока. Если, например, такую модель применить для сжатия текста на русском языке, то в среднем на кодирование каждого символа бу­дет потрачено примерно 4.5 бита. Это значение является средней длиной кодов для модели, базирующейся на использовании безусловного распределения вероятностей букв в тексте. Заметим, что уже в этом простом случае достигается степень сжатия 1.5 по отношению к тривиальному кодированию, когда всем символам назначаются коды одинаковой длины. Действительно, размер алфавита русского текста превышает 64 знака, но меньше 128 знаков (строчные и заглавные буквы, знаки препинания, пробел), что требует 7-битовых кодов.

Анализ распространенных типов данных, — например, тех же текстов на естественных языках, — выявляет сильную зависимость вероятности появ­ления символов от непосредственно им предшествующих. Иначе говоря, большая часть данных, с которыми мы сталкиваемся, порождается источни­ками с памятью. Допустим, нам известно, что сжимаемый блок является текстом на русском языке. Если, например, строка из трех только что обра­ботанных символов равна «_цы» (подчеркиванием здесь и далее обозначает­ся пробел), то текущий символ скорее всего входит в следующую группу: «г» («цыган»), «к» («цыкать»), «п» («цыпочки»), «ц» («цыц»). Или, в случае анализа фазу нескольких слов, если предыдущая строка равна «Вста-вай,_проклятьем_заклейменный,», то продолжением явно будет «весь_мир_». Следовательно, учет зависимости частоты появления символа (в общем случае — блока символов) от предыдущих должен давать более точные оценки и в конечном счете лучшее сжатие. Действительно, в случае посим­вольного кодирования при использовании информации об одном непосред­ственно предшествующем символе достигается средняя длина кодов в 3.6 бита для русских текстов, при учете двух последних — уже порядка 3.2 бита. В первом случае моделируются условные распределения вероятностей сим­волов, зависящие от значения строки из одного непосредственно предшест­вующего символа, во втором — зависящие от строки из двух предшествую­щих символов.

Любопытно, что модели, оперирующие безусловными частотами и часто­тами в зависимости от одного предшествующего символа, дают примерно оди­наковые результаты для всех европейских языков (за исключением, быть мо­жет, самых экзотических) -4.5 и 3.6 бита соответственно.

Улучшение сжатия при учете предыдущих элементов (пикселов, сэмп­лов, отсчетов, чисел) отмечается и при обработке данных других распро­страненных типов: объектных файлов, изображений, аудиозаписей, таблиц чисел.

Под контекстным моделированием будем понимать оценку вероятности появления символа (элемента, пиксела, сэмпла, отсчета и даже набора каче­ственно разных объектов) в зависимости от непосредственно ему предшест­вующих, или контекста.

Заметим, что в быту понятие «контекст» обычно используется в глобаль­ном значении — как совокупность символов (элементов), окружающих те­кущий обрабатываемый. Это контекст в широком смысле. Выделяют также «левосторонние» и «правосторонние» контексты, т. е. последовательности символов, непосредственно примыкающих к текущему символу слева и справа соответственно. Здесь и далее под контекстом будем понимать именно классический левосторонний: так, например, для последнего симво­ла «о» последовательности «. молоко. » контекстом является «. молок».

Если длина контекста ограничена, то такой подход будем называть кон­текстным моделированием ограниченного порядка (finite-context modeling), при этом под порядком понимается максимальная длина используемых кон­текстов N. Например, при моделировании порядка 3 для последнего симво­ла «о» в последовательности «. молоко. » контекстом максимальной длины 3 является строка «лок». При сжатии этого символа под «текущими контек­стами» могут пониматься «лок», «ок», «к», а также пустая строка «». Все эти контексты длины от N до 0 назовем активными контекстами в том смысле, что при оценке символа может быть использована накопленная для них сть тистика.

Далее вместо «контекст длины о, о N , где q — размер алфавита обрабатываемой последовательности. КМ(0) и КМ(-1) всегда ак­тивны.

Заметим, что часто не делается различий между понятиями «контекст» и «контекстная модель». Авторы этой книги такое соглашение не поддержи­вают.

Часто говорят о «родительских» и «дочерних» контекстах. Для контекста «к» дочерними являются «ок» и «лк», поскольку они образованы сцеплением (конкатенацией) одного символа и контекста «к». Аналогично для контекста «лок» родительским является контекст «ок», а контекстами-предками — «ок», «к», «». Очевидно, что «пустой» контекст «» является предком для всех. Ана­логичные термины применяются для КМ, соответствующих контекстам.

Совокупность КМ образует модель источника данных. Под порядком модели понимается максимальный порядок используемых КМ.

ВИДЫ КОНТЕКСТНОГО МОДЕЛИРОВАНИЯ

Пример обработки строки «абсабвбабс» иллюстрирует сразу две пробле­мы контекстного моделирования:

■ как выбирать подходящий контекст (или контексты) среди активных с целью получения более точной оценки, ведь текущий символ может лучше предсказываться не контекстом 2-го порядка «аб», а контекстом 1-го порядка «б»;

■ как оценивать вероятность символов, имеющих нулевую частоту (на­пример, «г»).

Выше были приведены цифры, в соответствии с которыми при увеличе­нии длины используемого контекста сжатие данных улучшается. К сожале­нию, при кодировании блоков типичной длины — одного или нескольких мегабайтов и меньше — это справедливо только для небольших порядков модели, так как статистика для длинных контекстов медленно накапливает­ся. При этом также следует учитывать, что большинство реальных данных характеризуется неоднородностью, нестабильностью силы и вида статисти­ческих взаимосвязей, поэтому «старая» статистика контекстно-зависимых частот появления символов малополезна или даже вредна. Поэтому модели, строящие оценку только на основании информации КМ максимального по­рядка N, обеспечивают сравнительно низкую точность предсказания. Кроме того, хранение модели большого порядка требует много памяти.

Если в модели используются для оценки только КМ(ЛО, то иногда такой подход называют «чистым» (pure) контекстным моделированием порядка N. Из-за вышеуказанного недостатка «чистые» модели представляют обычно только научный интерес.

Действительно, реально используемые файлы обычно имеют сравни­тельно небольшой размер, поэтому для улучшения их сжатия необходимо учитывать оценки вероятностей, получаемые на основании статистики кон­текстов разных длин. Техника объединения оценок вероятностей, соответ­ствующих отдельным активным контекстам, в одну оценку называется смешиванием (blending). Известно несколько способов выполнения смеши­вания.

Рассмотрим модель произвольного порядка N. Если q(si\o) есть вероят­ность, присваиваемая в активной КМ(о) символу j, алфавита сжимаемого потока, то смешанная вероятность q(si) вычисляется в общем случае как

где w(o) — вес оценки КМ(о).

Оценка q(Sj\o) обычно определяется через частоту символа s,- по триви­альной формуле

rnfiJ[si\o) — частота появления символа st в соответствующем контексте по­рядка о; До) — общая частота появления соответствующего контекста поряд­ка о в обработанной последовательности.

Заметим, что правильнее было бы писать не, скажем, Ду/|о), иДз^С^), т. е. «частота появления символа S/ в КМ порядка о с номером До)», по­скольку контекстных моделей порядка о может быть огромное количество. Но при сжатии каждого текущего символа мы рассматриваем только одну КМ для каждого порядка, так как контекст определяется непосредственно примыкающей слева к символу строкой определенной длины. Иначе говоря, для каждого символа мы имеем набор из N+1 активных контекстов длины от N до 0, каждому из которых однозначно соответствует только одна КМ, если она вообще есть. Поэтому здесь и далее используется сокращенная за­пись.

Если вес w(-l) > 0, то это гарантирует успешность кодирования любого символа входного потока, так как наличие КМ(-1) позволяет всегда получать ненулевую оценку вероятности и, соответственно, код конечной длины.

Различают модели с полным смешиванием (fully blended), когда предска­зание определяется статистикой КМ всех используемых порядков, и с час­тичным смешиванием (partially blended) — в противном случае.

Рассмотрим процесс оценки отмеченного на рисунке стрелкой символа

«л», встретившегося в блоке «молочноемолоко». Считаем, что модель рабо­тает на уровне символов.

Сжатие текстовой информации

  • повторить и обобщить понятие о кодировании текстовой информации.


1. Организационный момент, проверка домашнего задания

2. Ознакомление учащихся с понятие «сжатие информации» на примерах (см. слайды №2 и №3).

Сжатие информации – это выбор или создание такого способа ее записи, чтобы при хранении она требовала как можно меньше места. В повседневной жизни или при изучении разных предметов мы активно пользуемся этим приемом работы с информацией. Например, число можно записать в виде текста, а можно – цифрами. Отдельные слова можно сокращать, и таким образом запись текста станет короче. Из курса истории, возможно, вам известно, что в древнерусских документах слова писались без пробелов. Трудно сказать, почему так случилось, но можно быть уверенными в том, что такая запись позволяет уместить немного больше текста на странице. Во многих восточных языках присутствуют иероглифы, которые заменяют при письме не отдельные буквы, а целые слова или даже предложения. В математике применяются различные сокращения для часто используемых слов «принадлежит», «существует», «параллельно», «больше», «меньше» и других.
Работа по карточкам (Приложение 1)учащимся предлагается вспомнить какие способы сжатия текстовой информации они могли встречать в младшей школе. Обращается внимание, что не всякое сжатие обратимо, то есть не всегда возможно по сжатой информации восстановить ее оригинал.

3. Метод Шеннона-Фано (по презентации Приложение 2, см. слайды №№ 4-9)

Как мы уже видели при решении задач, информацию нельзя сжимать до бесконечности. То есть в какой-то момент должна появиться своего рода граница, при сжатии дальше которой восстановление информации неоднозначно или просто невозможно. То есть хотелось бы, чтобы выбранный нами способ кодирования был оптимальным: с одной стороны, чтобы обеспечивалось максимально возможное сжатие, с другой стороны, чтобы записанная таким образом информация не теряла свою полноту. Одним из методов, обеспечивающих такое оптимальное кодирование отдельных символов является метод Шеннона-Фано.
Суть метода состоит в следующем: пусть дан некоторый алфавит (конечный набор символов, который будет использован для написания текста). Пусть также дано сообщение. Какие-то символы в сообщении обычно встречаются чаще, какие-то – реже. Для часто используемых символов создадим более короткие коды, для реже используемых – длинные (слайд №4 – частота использования букв русского языка).
Для начала, в качестве повторения, оценим (например, по формуле Хартли) сколько бит необходимо отвести для записи кода одного символа, и создадим «обычные» коды равной длины (слайд №5).

Теперь подсчитаем для каждого символа какую часть сообщения он занимает (проверка: сумма всех таких дробей должна быть равна единице – целому сообщению). Сведем наши данные в таблицу и упорядочим ее по убыванию долей (слайд №6).

Далее, разделим таблицу на две части, чтобы сумма долей всех символов в одной была как можно ближе к сумме долей всех символов другой. Пусть коды всех символов из первой части начинаются на 0, коды всех символов из второй – на 1 (слайд №7). Если в какой-то части находится более одного символа, то повторим для нее процесс деления, находя вторую, третью и так далее цифры кода. Как только для всех символов найдены коды – процесс завершен (слайды №8 и №9)
Осталось только подчитать количество бит, которые необходимы для представления сообщения в новом коде (слайд №10).

4. Закрепление пройденного материала, решение задач (слайд №11)

Методы сжатия

Читайте также:

  1. II.Численные методы решения нормальных краевых задач для уравнений параболического типа. №13
  2. V. Основные методы проектирования ИС
  3. Административно-правовые методы управления
  4. Административные методы мотивации
  5. Административные методы мотивации
  6. Адсорбционные и хемосорбционные методы очистки отходящих газов
  7. Анализ» и «синтез» как общенаучные методы познания, их роль и особенности
  8. Антивирусные методы и программные средства.
  9. Аудиторская выборка. Виды и методы выборки
  10. Бесконтактные методы оценки
  11. Биологические методы борьбы с вредителями
  12. БИОЛОГИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОБЪЕКТОВ СУДЕБНОЙ ЭКСПЕРТИЗЫ

Современные архиваторы

Специальные программы

Лекция 6

Архиваторы – это программы для создания архивов. Архивы предназначены для хранения данных в удобном компактном виде. В качестве данных обычно выступают файлы и папки. Как правило, данные предварительно подвергаются процедуре сжатия или упаковки. Поэтому почти каждый архиватор одновременно является программой для сжатия данных. С другой стороны, любая программа для сжатия данных может рассматриваться как архиватор. Эффективность сжатия является важнейшей характеристикой архиваторов. От нее зависит размер создаваемых архивов. Чем меньше архив, тем меньше места требуется для его хранения. Для передачи нужна меньшая пропускная способность канала передачи или затрачивается меньшее время. Преимущества архивов очевидны, если учесть, что данные уменьшаются в размере и в 2 раза, и в 5 раз.

Сжатие данных используется очень широко. Можно сказать, почти везде. Например, документы PDF, как правило, содержат сжатую информацию. Довольно много исполняемых файлов EXE сжаты специальными упаковщиками. Всевозможные мультимедийные файлы (GIF, JPG, MP3, MPG) являются своеобразными архивами.

Основным недостатком архивов является невозможность прямого доступа к данным. Их сначала необходимо извлечь из архива или распаковать. Операция распаковки, впрочем, как и упаковки, требует некоторых системных ресурсов. Это не мгновенная операция. Поэтому архивы в основном применяют со сравнительно редко используемыми данными. Например, для хранения резервных копий или установочных файлов.

В данный момент существует много архиваторов. Они имеют разную распространенность и эффективность. Некоторые интересные архиваторы не известны широкому кругу потенциальных пользователей. Особый интерес представляют оценка и сравнение эффективности сжатия популярных архиваторов.

Разработано большое количество разнообразных методов, их модификаций и подвидов для сжатия данных. Современные архиваторы, как правило, одновременно используют несколько методов одновременно. Можно выделить некоторые основные.

Кодирование длин серий (RLE — сокращение от run-length encoding — кодирование длин серий)

Очень простой метод. Последовательная серия одинаковых элементов данных заменяется на два символа: элемент и число его повторений. Широко используется как дополнительный, так и промежуточный метод. В качестве самостоятельного метода применяется, например, в графическом формате BMP.

Словарный метод (LZ — сокращение от Lempel Ziv — имена авторов)

Наиболее распространенный метод. Используется словарь, состоящий из последовательностей данных или слов. При сжатии эти слова заменяются на их коды из словаря. В наиболее распространенном варианте реализации в качестве словаря выступает сам исходный блок данных.

Основным параметром словарного метода является размер словаря. Чем больше словарь, тем больше эффективность. Однако для неоднородных данных чрезмерно большой размер может быть вреден, так как при резком изменении типа данных словарь будет заполнен неактуальными словами. Для эффективной работы данного метода при сжатии требуется дополнительная память. Приблизительно на порядок больше, чем нужно для исходных данных словаря. Существенным преимуществом словарного метода является простая и быстрая процедура распаковки. Дополнительная память при этом не требуется. Такая особенность особенно важна, если необходим оперативный доступ к данным.

Энтропийный метод (Huffman — кодирование Хаффмена, Arithmetic coding — арифметическое кодирование)

В этом методе элементы данных, которые встречаются чаще, кодируются при сжатии более коротким кодом, а более редкие элементы данных кодируются более длинным кодом. За счет того, что коротких кодов значительно больше, общий размер получается меньше исходного.

Широко используется как дополнительный метод. В качестве самостоятельного метода применяется, например, в графическом формате JPG.

Метод контекстного моделирования (CM — сокращение от context modeling — контекстное моделирование)

В этом методе строится модель исходных данных. При сжатии очередного элемента данных эта модель выдает свое предсказание или вероятность. Согласно этой вероятности, элемент данных кодируется энтропийным методом. Чем точнее модель будет соответствовать исходным данным, тем точнее она будет выдавать предсказания, и тем короче будут кодироваться элементы данных.

Для построения эффективной модели требуется много памяти. При распаковке приходится строить точно такую же модель. Поэтому скорость и требования к объему оперативной памяти для упаковки и распаковки почти одинаковы. В данный момент методы контекстного моделирования позволяют получить наилучшую степень сжатия, но отличаются чрезвычайно низкой скоростью.

PPM (PPM — Prediction by Partial Matching — предсказание по частичному совпадению)

Это особый подвид контекстного моделирования. Предсказание выполняется на основании определенного количества предыдущих элементов данных. Основным параметром является порядок модели, который задает это количество элементов. Чем больше порядок модели, тем выше степень сжатия, но требуется больше оперативной памяти для хранения данных модели. Если оперативной памяти недостаточно, то такая модель с большим порядком показывает низкие результаты. Метод PPM особенно эффективен для сжатия текстовых данных.

Предварительные преобразования или фильтрация

Данные методы служат не для сжатия, а для представления информации в удобном для дальнейшего сжатия виде. Например, для несжатых мультимедиа данных характерны плавные изменения уровня сигнала. Поэтому для них применяют дельта-преобразование, когда вместо абсолютного значения берется относительное. Существуют фильтры для текста, исполняемых файлов, баз данных и другие.


Метод сортировки блока данных (BWT — сокращение от Burrows Wheeler Transform — по имени авторов)

Это особый вид или группа преобразований, в основе которых лежит сортировка. Такому преобразованию можно подвергать почти любые данные. Сортировка производится над блоками, поэтому данные предварительно разбиваются на части. Основным параметром является размер блока, который подвергается сортировке. Для распаковки данных необходимо проделать почти те же действия, что и при упаковке. Поэтому скорость и требования к оперативной памяти почти одинаковы. Архиваторы, которые используют данный метод, обычно показывают высокую скорость и степень сжатия для текстовых данных.

Непрерывные блоки или непрерывный режим (Solid mode — непрерывный режим)

Во многих методах сжатия начальный участок данных или файла кодируется плохо. Например, в словарном методе словарь пуст. В методе контекстного моделирования модель не построена. Когда количество файлов большое, а их размер маленький, общая степень сжатия значительно ухудшается за счет этих начальных участков. Чтобы этого не происходило при переходе на следующий файл, используется информация, полученная исходя из предыдущих файлов. Аналогичного эффекта можно добиться простым представлением исходных файлов в виде одного непрерывного файла.

Этот метод используется во многих архиваторах и имеет существенный недостаток. Для распаковки произвольного файла необходимо распаковать и файлы, которые оказались в начале архива. Это необходимо для правильного заполнения словаря или построения модели. Существует и промежуточный вариант, когда используются непрерывные блоки фиксированного размера. Потери сжатия получаются минимальными, но для извлечения одного файла, который находится в конце большого архива, необходимо распаковать только один непрерывный блок, а не весь архив.

Во всех методах сжатия при изменении типа данных собственно сам переход кодируется очень плохо. Словарь становится не актуальным, модель настроена на другие данные. В этих случаях применяется сегментирование. Это предварительная разбивка на однородные части. Затем эти части кодируются по отдельности или группами.

| следующая лекция ==>
Формат PDF | Антивирусы

Дата добавления: 2014-01-06 ; Просмотров: 1581 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Сжатие данных в примерах

Теория и стратегия представления данных

Сжатие данных широко используется в самых разнообразных контекстах программирования. Все популярные операционные системы и языки программирования имеют многочисленные инструментальные средства и библиотеки для работы с различными методами сжатия данных.

Правильный выбор инструментальных средств и библиотек сжатия для конкретного приложения зависит от характеристик данных и назначения самого приложения: потоковой передачи данных или работы с файлами; ожидаемых шаблонов и закономерностей в данных; относительной важности использования ресурсов ЦП и памяти, потребностей в каналах передачи и требований к хранению и других факторов.

Что понимается под сжатием данных? Если говорить кратко, то сжатие устраняет из данных избыточность; в терминах же теории информации сжатие увеличивает энтропию сжатого текста. Однако оба этих утверждения по существу по существу верны в силу определения самих понятий. Избыточность может быть выражена в самых разных формах. Одним типом является последовательности повторяющихся битов ( 11111111 ). Вторым – последовательности повторяющихся байтов ( XXXXXXXX ). Однако чаще избыточность проявляется в более крупном масштабе и выражается либо закономерностями в наборе данных, взятом как единое целое, либо последовательностями различной длины, имеющими общие признаки. По существу, цель сжатия данных заключается в поиске алгоритмических преобразований представлений данных, которые позволят получить более компактные представления «типовых» наборов данных. Это описание может показаться несколько туманным, но мы постараемся раскрыть его суть на практических примерах.

Илон Маск рекомендует:  Что такое код rewinddir

Сжатие без потерь и с потерями

Фактически существуют два в корне различающихся подхода к сжатию данных: сжатие с потерями и без потерь. Эта статья, в основном, посвящена методам сжатия без потерь, но для начала полезно изучить различия. Сжатие без потерь предусматривает преобразование представления набора данных таким образом, чтобы затем можно было в точности воспроизвести первоначальный набор данных путем обратного преобразования (распаковки). Сжатие с потерями – это представление, которое позволяет воспроизводить нечто «очень похожее» на первоначальный набор данных. Преимущество использования методов сжатия с потерями заключается в том, что они зачастую позволяют получать намного более компактные представления данных по сравнению с методами сжатия без потерь. Чаще всего методы сжатия с потерями применяются для обработки изображений, звуковых файлов и видео. Сжатие с потерями в этих областях может оказаться уместным благодаря тому, что человек воспринимает битовую комбинацию цифрового изображения/звука не с «побитовой» точностью, а скорее оценивает музыку или изображение в целом.

С точки зрения «обычных» данных сжатие с потерями – неудачный вариант. Нам не нужна программа, которая делает «примерно» то, а не точно то, что было запрошено в действительности. То же касается и баз данных, которые должны хранить именно те данные, которые были в них загружены. По крайней мере, это не подойдет для решения большинства задач (и мне известно очень мало практических примеров использования сжатия с потерями за пределами тех данных, которые сами по себе описывают чувственное восприятие реального мира (например, изображений и звуков)).

Пример набора данных

В данной статье будет использоваться специально подготовленное гипотетическое представление данных. Приведем простой для понимания пример. В городе Гринфилд (штат Массачусетс, США) используются префиксы телефонных номеров 772- , 773- и 774- . (К сведению читателей за пределами США: в США местные телефонные номера являются семизначными и традиционно представляются в виде ###-####; префиксы назначаются в соответствии с географическим местоположением). Также предположим, что из всех трех префиксов чаще всего используется первый. Частями суффикса могут быть любые другие цифры с приблизительно равной вероятностью. Набор интересующих нас данных находится в «списке всех телефонных номеров, которые в настоящее время находятся в активном пользовании». Можно попробовать подобрать причину, почему это могло бы быть интересным с точки зрения программирования, но в данном случае это не важно.

Изначально интересующий нас набор данных имеет стандартное представление: многоколоночный отчет (возможно, сгенерированный в качестве результата выполнения какого-либо запроса или процесса компиляции). Первые несколько строк этого отчета могли бы выглядеть следующим образом:

Таблица 1. Многоколоночный отчет

Сжатие пустых мест

Сжатие пустых мест может быть охарактеризовано в более общем смысле как «удаление того, что нас не интересует». Даже несмотря на то, что этот метод с технической точки зрения представляет собой метод сжатия с потерями, он все равно полезен для многих типов представлений данных, с которыми мы сталкиваемся в реальном мире. Например, даже несмотря на то, что HTML намного удобнее читать в текстовом редакторе при добавлении отступов и междустрочных интервалов, ни одно из этих «пустых мест» никак не влияет на визуализацию HTML-документа в Web-браузере. Если вам точно известно, что конкретный документ HTML предназначается исключительно для Web-браузера (или для какого-либо робота/поискового агента), то, возможно, будет неплохо убрать все пустые места, чтобы документ передавался быстрее и занимал меньше места в хранилище. Все то, что мы удаляем при сжатии пустых мест, в действительности не несет никакой функциональной нагрузки.

В случае с представленным примером из описанного отчета можно удалить лишь небольшую часть информации. Строка символов «=» по верхнему краю отчета не несет никакого функционального наполнения; то же самое касается символов «-» в номерах и пробелов между номерами. Все это полезно для человека, читающего исходный отчет, но не имеет никакого значения, если мы рассматриваем эти символы в качестве «данных». То, что мы удаляем, – это не совсем «пустое место» в традиционном смысле, но является им по сути.

Сжатие пустых мест крайне «дешево» с точки зрения реализации. Вопрос состоит лишь в считывании потока данных и исключении из выходного потока нескольких конкретных значений. Во многих случаях этап «распаковки» вообще не предусматривается. Однако даже если бы мы захотели воссоздать что-то близкое к оригиналу потока данных, это потребовало бы лишь небольшого объема ресурсов ЦП или памяти. Восстановленные данные не обязательно будут совпадать с исходными данными; это зависит от того, какие правила и ограничения содержались в оригинале. Страница HTML, напечатанная человеком в текстовом редакторе, вероятно, будет содержать пробелы, расставленные согласно определенным правилам. Это же относится и к автоматизированным инструментальным средствам, которые часто создают «обоснованные» отступы и интервалы в коде HTML. В случае с жестким форматом отчета, представленным в нашем примере, не существует никаких причин, по которым первоначальное представление не могло бы быть воссоздано каким-либо «форматирующим распаковщиком».

Групповое кодирование

Групповое кодирование (RLE) является простейшим из широко используемых методов сжатия без потерь. Подобно сжатию пустых мест, оно не требует особых затрат, особенно для декодирования. Идея, стоящая за данным методом, заключается в том, что многие представления данных состоят большей частью из строк повторяющихся байтов. Наш образец отчета является одним из таких представлений данных. Он начинается со строки повторяющихся символов «=» и имеет разбросанные по отчету строки, состоящие только из пробелов. Вместо того чтобы представлять каждый символ с помощью его собственного байта, метод RLE предусматривает (иногда или всегда) указание количества повторений, за которым следует символ, который необходимо воспроизвести указанное число раз.

Если в обрабатываемом формате данных преобладают повторяющиеся байты, то может быть уместным и эффективным использование алгоритма, в котором один или несколько байтов указывают количество повторений, а затем следует повторяемый символ. Однако если имеются строки символов единичной длины, для их кодирования потребуются два (или более) байта. Другими словами, для одного символа ASCII «X» входного потока мог бы потребоваться выходной битовый поток 00000001 01011000 . С другой стороны, для кодирования ста следующих друг за другом символов «X» использовалось бы то же самое количество битов: 01100100 01011000 , что весьма эффективно.

В различных вариантах RLE часто применяется избирательное использование байтов для указания числа повторений, в то время как остальные байты просто представляют сами себя. Для этого должно быть зарезервировано как минимум одно однобайтовое значение, которое в случае необходимости может удаляться из выходных данных. Например, в нашем образце отчета по телефонным номерам известно, что вся информация во входном потоке состоит из простых символов ASCII. В частности, у всех таких символов первый бит ASCII-значения равен 0. Мы могли бы использовать этот первый бит ASCII для указания на то, что байт указывает число повторений, а не обычный символ. Следующие семь битов байта итератора могли бы использоваться для указания числа повторений, а в следующем байте мог бы содержаться повторяющийся символ. Так, например, мы могли бы представить строку «YXXXXXXXX» следующим образом:

Этот пример не объясняет, как отбрасывать значения байта итератора и не предусматривает возможности использования более 127 повторений одного символа. Однако различные вариации RLE при необходимости решают и эти задачи.

Кодирование по методу Хаффмана

Кодирование по методу Хаффмана рассматривает таблицу символов как целый набор данных. Сжатие достигается путем нахождения «весовых коэффициентов» каждого символа в наборе данных. Некоторые символы используются чаще других, поэтому кодирование по методу Хаффмана предполагает, что частые символы должны кодироваться меньшим количеством бит, чем более редкие символы. Существуют различные варианты кодирования по методу Хаффмана, но исходный (и чаще всего применяемый) вариант включает поиск самого распространенного символа и кодирование его одним битом, например, 1. И если в закодированной последовательности встречается 0, это значит, что на этом месте находится другой символ, закодированный большим количеством бит.

Представим, что мы применили кодирование по методу Хаффмана для кодирования нашего примера (предположим, что мы уже подвергли отчет сжатию пустых мест). Мы могли бы получить следующий результат:

Таблица 2. Результаты кодирования по методу Хаффмана

Исходный набор символов (состоящий из чисел) может быть легко закодирован (без сжатия) в виде 4-х битных последовательностей (полубайтов). Приведенное кодирование по методу Хаффмана будет использовать до 5 битов для символов в наихудшем случае, что очевидно хуже кодирования с помощью полубайтов. Однако в лучшем случае потребуется всего 1 бит; при этом известно, что именно лучший случай будет использоваться чаще всего (так как именно этот символ чаще всего встречается в данных). Таким образом, мы могли бы закодировать конкретный телефонный номер следующим образом:


При кодировании с помощью полубайтов представление телефонного номера заняло бы 28 бит, в нашем же случае кодирование занимает 19 бит. Пробелы добавлены в пример только для лучшего восприятия; их присутствие в кодированных символах не требуется, так как по таблице кодов всегда можно определить, достигнут конец закодированного символа или нет (правда, при этом все равно необходимо отслеживать текущую позицию в данных).

Кодирование по методу Хаффмана по-прежнему является очень «дешевым» для декодирования с точки зрения процессорного времени. Однако оно требует поиска в таблице кодов, поэтому не может быть столь же «дешевым», как RLE. Кодирование по методу Хаффмана является довольно затратным, так как требует полного сканирования данных и построения таблицы частот символов. В некоторых случаях при использовании кодирования по методу Хаффмана уместным является «короткий путь». Стандартное кодирование по методу Хаффмана применяется к конкретному кодируемому набору данных, при этом в выходных данных вначале следует таблица символов. Однако если передается не одиночный набор данных, а целый формат с одинаковыми закономерностями встречаемости символов, то можно использовать глобальную таблицу Хаффмана. При наличии такой таблицы мы можем жестко запрограммировать поиск в своих исполняемых файлах, что значительно «удешевит» сжатие и распаковку (за исключением начальной глобальной дискретизации и жесткого кодирования). Например, если мы знаем, что наш набор данных будет представлять собой прозу на английском языке, то частоты появления букв хорошо известны и постоянны для различных наборов данных.

Сжатие по алгоритму Лемпеля-Зива

Вероятно, самым значимым методом сжатия без потерь является алгоритм Лемпеля-Зива. В этой статье речь пойдет о варианте LZ78, но LZ77 и другие варианты работают схожим образом. Идея, заложенная в алгоритме LZ78, заключается в кодировании потоковой последовательности байтов с использованием некоторой динамической таблицы. В начале сжатия битового потока таблица LZ заполняется фактическим набором символов, наряду с несколькими пустыми слотами. В алгоритме применяются таблицы разных размеров, но в данном примере с телефонными номерами (со сжатием пустых мест) используется таблица из 32 элементов (этого достаточно для данного примера, но может оказаться мало для других типов данных). Вначале мы заполняем первые десять слотов символами используемого алфавита (цифрами). По мере поступления новых байтов сначала выводится значение из таблицы, соответствующее самой длинной подходящей последовательности, а затем в следующий доступный слот записывается последовательность длиной N+1. В наихудшем случае мы используем 5 битов вместо 4 для отдельного символа, однако в большинстве случаев мы сможем обойтись 5 битами на несколько символов. Рассмотрим пример работы этого алгоритма (слот таблицы указан в квадратных скобках):

До сих пор мы не извлекли из этого никакой пользы, но давайте перейдем к следующему телефонному номеру:

Приведенных операций должно быть достаточно для демонстрации работы модели. Хотя никакого заметного сжатия пока не достигнуто, уже видно, что мы повторно использовали слоты 11 и 16, закодировав по два символа одним выходным символом. Кроме того, мы уже накопили крайне полезную последовательность байтов 772 в слоте 18, которая впоследствии неоднократно будет встречаться в потоке.

Алгоритм LZ78 заполняет одну таблицу символов полезными (предположительно) записями, затем записывает эту таблицу, очищает ее и начинает новую. В такой ситуации таблица из 32 символов может оказаться недостаточной, так как будет очищена прежде, чем нам удастся неоднократно воспользоваться такими последовательностями, как 772 и ей подобные. Однако с помощью небольшой таблицы проще проиллюстрировать работу алгоритма.

В типичных наборах данных варианты метода Лемпеля-Зива достигают значительно более высоких коэффициентов сжатия, чем методы Хаффмана и RLE. С другой стороны, варианты метода Лемпеля-Зива тратят значительные ресурсы на итерации, а их таблицы могут занимать много места в памяти. Большинство существующих инструментальных средств и библиотек сжатия используют комбинацию методов Лемпеля-Зива и Хаффмана.

Правильная постановка задачи

Выбрав правильный алгоритм, можно получить значительный выигрыш даже по сравнению с более оптимизированными, но неподходящими методами. Точно так же правильный выбор представления данных зачастую оказывается важнее выбора методов сжатия (которые всегда являются своего рода последующей оптимизацией требуемых функций). Простой пример набора данных, приводимый в этой статье, служит отличной иллюстрацией ситуации, когда переосмысление проблемы будет более удачным решением, чем использование любого из приведенных методов сжатия.

Необходимо еще раз взглянуть на проблему, которую представляют данные. Так как это не общий набор данных и для него существуют четкие предварительные требования, то проблему можно переформулировать. Известно, что существует максимум 30000 телефонных номеров (от 7720000 до 7749999), некоторые из которых являются активными, а некоторые – нет. Перед нами не стоит задача вывести полное представление всех активных номеров. Нам просто требуется указать с помощью логического значения, активен данный номер или нет. Размышляя о проблеме подобным образом, мы можем просто выделить 30000 битов в памяти и в системе хранения и использовать каждый бит для индикации активности («да» или «нет») соответствующего телефонного номера. Порядок битов в битовом массиве может соответствовать телефонным номерам, отсортированным по возрастанию (от меньшего к большему).

Подобное решение на основе битового массива идеально со всех точек зрения. Оно требует ровно 3750 байт для представления набора данных; различные методы сжатия будут использовать меняющийся объем в зависимости от количества телефонных номеров в наборе и эффективности сжатия. Однако если 10000 из 30000 возможных телефонных номеров являются активными и если даже самому эффективному методу сжатия требуется несколько байтов на один телефонный номер, то битовый массив однозначно выигрывает. С точки зрения потребностей в ресурсах ЦП битовый массив не только превосходит любой из рассмотренных методов сжатия, но и оказывается лучше, чем обычный метод представления телефонных номеров в виде строк (без сжатия). Проход по битовому массиву и увеличение счетчика текущего телефонного номера могут эффективно выполняться даже во встроенном кэше современных процессоров.

Из этого простого примера можно понять, что далеко не каждая проблема имеет такое идеальное решение, как рассмотренная выше. Многие проблемы действительно требуют использования значительного объема ресурсов памяти, пропускной способности, хранилища и ЦП; и в большинстве подобных случаев методы сжатия могут облегчить или снизить эти требования. Но более важный вывод состоит в том, что перед применением методов сжатия стоит еще раз удостовериться, что для представления данных выбрана правильная концепция.

Посвящается памяти Клода Шеннона (Claude Shannon).

Сжатие текстовых сообщений на основе адаптивного контекстно-морфологического моделирования

Слово как основа морфологической единицы текстового сообщения. Анализ способа повышения эффективности сжатия текстовых сообщений на основе контекстного моделирования, рассмотрение основных особенностей. Проблемы определения весовых коэффициентов.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 13.08.2013
Размер файла 118,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

Классификация и основные характеристики метода сжатия данных. Вычисление коэффициентов сжатия и оценка их эффективности. Алгоритмы полиноминальных, экстраполяционных и интерполяционных методов сжатия и их сравнение. Оптимальное линейное предсказание.

курсовая работа [1,1 M], добавлен 17.03.2011

Особенности посылки сообщений в Windows и в Win32 API. Обработка состояний простоя. Маршрутизация сообщений в Windows 3.x. Основные циклы обработки сообщений. Применение многопотоковых приложений. Основные возможности редакторов WinWord 97 и Notepad.

лекция [35,9 K], добавлен 24.06.2009

Моделирование узла коммутации сообщений, который состоит из входного буфера, процессора, двух выходных буферов и двух выходных линий. Разработка структурной схемы имитационной модели, описание ее функционирования. Выбор программных средств моделирования.

курсовая работа [197,1 K], добавлен 20.02.2012

Разработка с помощью пакета MATLAB ряда функций, осуществляющих сжатие речи по алгоритму векторного квантования, обеспечивающих сжатие речи до уровня 2400 бит/с и ниже, несколько ступеней сжатия. Дикторо-зависимый и дикторо-независимый режимы системы.

курсовая работа [1,1 M], добавлен 12.03.2009

Текстовый редактор — приложение для обработки текстовой информации. Описание текстовых процессоров как более совершенных текстовых редакторов. Типы текстовых файлов: форматированные, неформатированные. Основные правила редактирования и набора текста.

презентация [747,3 K], добавлен 26.11.2010

Технологическая схема системы. Структурно-функциональная модель обработки сообщений системой управления технологическим процессом. Поток сообщений в общем виде. Моделирование в среде GPSS и в среде C#, их результаты. Алгоритм имитационного моделирования.

курсовая работа [1,3 M], добавлен 14.12.2012

Разработка текстового автоответчика для программы Skype, который будет выдавать определенные данные на основе отправляемых пользователем сообщений. Особенности программного обеспечения для чатов. Схема взаимодействия пользователя и интерфейса чата.

курсовая работа [1,0 M], добавлен 08.06.2020


Краткий обзор основных теорий сжатия. Концепции идей и их реализация. Сжатие данных с использованием преобразования Барроуза-Вилера. Статический алгоритм Хафмана. Локально адаптивный алгоритм сжатия. Алгоритм Зива-Лемпеля (Welch) и метод Шеннона-Фано.

практическая работа [188,5 K], добавлен 24.04.2014

Описание назначения всех команд меню WinRar. Создание и распаковывание архивов для текстовых, графических и системных файлов. Примеры создания архивов с опциями: пароль, многотомный и самораспаковывающийся архивы. Теоретические основы сжатия файлов.

контрольная работа [2,3 M], добавлен 07.07.2013

Обзор существующих программ сжатия данных без потерь. Анализ методов сжатия: алгоритмов группы, KWE, Lossless JPEG, кодирование Хаффмана. Обзор составляющих компонентов. Разработка кода программы-архиватора, работающей на основе алгоритма Хаффмена.

курсовая работа [487,3 K], добавлен 14.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Алгоритмы сжатия данных (стр. 1 из 6)

Алгоритмы сжатия данных

Энтропия и количество информации

Комбинаторная, вероятностная и алгоритмическая оценка количества информации

Моделирование и кодирование

Некоторые алгоритмы сжатия данных

BWT — преобразование и компрессор

Алгоритм арифметического кодирования

Реализация алгоритма арифметического кодирования

Доказательство правильности декодирования

Приращаемая передача и получение

Переполнение и завершение

Адаптивная модель для арифметического кодирования

Приложение 1. Программный код

Приложение 2. Интерфейс программы

Основоположником науки о сжатии информации принято считать Клода Шеннона. Его теорема об оптимальном кодировании показывает, к чему нужно стремиться при кодировании информации и на сколько та или иная информация при этом сожмется. Кроме того, им были проведены опыты по эмпирической оценке избыточности английского текста. Он предлагал людям угадывать следующую букву и оценивал вероятность правильного угадывания. На основе ряда опытов он пришел к выводу, что количество информации в английском тексте колеблется в пределах 0.6 — 1.3 бита на символ. Несмотря на то, что результаты исследований Шеннона были по-настоящему востребованы лишь десятилетия спустя, трудно переоценить их значение.

Первые алгоритмы сжатия были примитивными в связи с тем, что была примитивной вычислительная техника. С развитием мощностей компьютеров стали возможными все более мощные алгоритмы. Настоящим прорывом было изобретение Лемпелем и Зивом в 1977 г. словарных алгоритмов. До этого момента сжатие сводилось к примитив­ному кодированию символов. Словарные алгоритмы позволяли кодир­овать повторяющиеся строки символов, что позволило резко повысить степень сжатия. Важную роль сыграло изобретение примерно в это же время арифметического кодирования, позволившего воплотить в жизнь идею Шеннона об оптимальном кодировании. Следующим прорывом было изобретение в 1984 г. алгоритма РРМ. Следует отметить, что это изобретение долго оставалось незамеченным. Дело в том, что алгоритм сложен и требует больших ресурсов, в первую очередь больших объемов памяти, что было серьезной проблемой в то время. Изобретенный в том же 1984 г. алгоритм LZW был чрезвычайно популярен благодаря своей простоте, хорошей рекламе и нетребовательности к ресурсам, несмотря на относительно низкую степень сжатия. На сегодняшний день алгоритм РРМ является наилучшим алгоритмом для сжатия текстовой информации, aLZW давно уже не встраивается в новые приложения (однако широко используется в старых).

Илон Маск рекомендует:  Как научиться говорить по-английски ТОП-5 Подсказок, для разработчика

Будущее алгоритмов сжатия тесно связано с будущим компью­терных технологий. Современные алгоритмы уже вплотную приблизи­лись к Шенноновской оценке 1.3 бита на символ, но ученые не видят причин, по которым компьютер не может предсказывать лучше, чем человек. Для достижения высоких степеней сжатия приходится использовать более сложные алгоритмы. Однако существовавшее одно время предубеждение, что сложные алгоритмы с более высокой степенью сжатия всегда более медленны, несостоятельно. Так, существуют крайне быстрые реализации алгоритмов РРМ для текстовой информации и SPIHT для графики, имеющие очень высокую степень сжатия.

Таким образом, будущее за новыми алгоритмами с высокими требованиями к ресурсам и все более и более высокой степенью сжатия.

Устаревают не только алгоритмы, но и типы информации, на которые они ориентированы. Так, на смену графике с малым числом цветов и неформатированному тексту пришли высококачественные изображения и электронные документы в различных форматах. Известные алгоритмы не всегда эффективны на новых типах данных. Это делает крайне актуальной проблему синтеза новых алгоритмов.

Количество нужной человеку информации неуклонно растет. Объемы устройств для хранения данных и пропускная способность линий связи также растут. Однако количество информации растет быстрее. У этой проблемы есть три решения. Первое — ограничение количества информации. К сожалению, оно не всегда приемлемо. Например, для изображений это означает уменьшение разрешения, что приведет к потере мелких деталей и может сделать изображения вообще бесполезными (например, для медицинских или космических изображений). Второе — увеличение объема носителей информации и пропускной способности каналов связи. Это решение связано с материальными затратами, причем иногда весьма значительными. Третье решение — использование сжатия информации. Это решение позволяет в несколько раз сократить требования к объему устройств хранения данных и пропускной способности каналов связи без дополнительных издержек (за исключением издержек на реализацию алгоритмов сжатия). Условиями его применимости является избы­точность информации и возможность установки специального програм­много обеспечения либо аппаратуры как вблизи источника, так и вблизи приемника информации. Как правило, оба эти условия удовлетворяются.

Именно благодаря необходимости использования сжатия информации методы сжатия достаточно широко распространены. Однако существуют две серьезные проблемы. Во-первых, широко используемые методы сжатия, как правило, устарели и не обеспечивают достаточной степени сжатия. В то же время они встроены в большое количество программных продуктов и библиотек и поэтому будут использоваться еще достаточно долгое время. Второй проблемой является частое применение методов сжатия, не соответствующих характеру данных. Например, для сжатия графики широко используется алгоритм LZW, ориентированный на сжатие одномерной информации, например текста. Решение этих проблем позволяет резко повысить эффективность применения алгоритмов сжатия.

Таким образом, разработка и внедрение новых алгоритмов сжатия, а также правильное использование существующих позволит значительно сократить издержки на аппаратное обеспечение вычислительных систем.

При реализации алгоритма арифметического кодирования использовался язык C# и визуальная среда программирования MicrosoftVisualStudio 2005. Язык C# имеет следующие преимущества: простота, объектная ориентированность, типовая защищенность, “сборка мусора”, поддержка совместимости версий, упрощение отладки программ.

Под энтропией в теории информации понимают меру неопределенности (например, меру неопределенности состояния некоторого объекта). Для того чтобы снять эту неопределенность, необходимо сообщить некоторое количество информации. При этом энтропия численно равна минимальному количеству информации, которую необходимо сообщить для полного снятия неопределенности. Энтропия также может быть использована в качестве оценки наилучшей возможной степени сжатия для некоторого потока событий.

Здесь и далее понятие события используется как наиболее общее понятие сущности, которую необходимо сжать. Так, при сжатии потока символов под событием может пониматься появление во входном потоке того или иного символа, при сжатии графики — пикселя того или иного цвета и т.д.

Наиболее простым способом оценки количества информации является комбинаторный подход. Согласно этому подходу, если переменная х может принадлежать к множеству из N элементов, то энтропия переменного

Таким образом, для передачи состояния объекта достаточно I=log2 Nбит информации. Заметим, что количество информации может быть дробным. Разумеется, дробное количество информации невозможно сохранить на носителе или передать по каналам связи. В то же время, если необходимо передать либо сохранить большое количество блоков информации дробной длины, их всегда можно сгруппировать таким образом, чтобы полностью исключить потери (например, посредством арифметического кодирования).


Основным недостатком комбинаторного подхода является его ориентированность на системы с равновероятными состояниями. В реальном мире события, как правило, не равновероятны. Вероятностный подход к оценке количества информации, учитывающий этот фактор, является наиболее широко используемым на сегодняшний день. Пусть переменная х может принимать N значений хi с вероятностью р(хi ). Тогда энтропия N

Обозначим через р(у|х) условную вероятность того, что наступит событие у если событие х уже наступило. В таком случае условная энтропия для переменной Y, которая может принимать М значений yi с условными вероятностями р(уi |х) будет

Приведенные формулы показывают, что вне зависимости от того, как были получены вероятности наступления следующих событий, для кодирования события с вероятностью р достаточно — log2 pбит (в полном соответствии с теоремой Шеннона об оптимальном кодировании).

Алгоритмический подход применим в тех случаях, когда данные обладают некоторыми закономерностями. Согласно этому подходу, если данные можно описать посредством некоторых формул либо порождающих алгоритмов, энтропия данных будет равна минимальному количеству информации, необходимой для передачи этих формул либо алгоритмов от источника информации к приемнику. Алгоритмический подход используется самостоятельно или совместно с вероятностным, например, в некоторых алгоритмах сжатия графической информации.

Сжатие информации: как это делается

Мы каждый день пользуемся различными архиваторами: zip, rar, ace окружают нас повсюду.
Графические и звуковые файлы тоже содержат сжатые данные. Если же нам нужно использовать
сжатие в своей проге, то мы используем различные dll’ки, многие из которых платные.
Шареварность — это не единственное свойство программных компонентов, мешающих их нормальному
использованию. Если, например, сжимать waw или bmp-файл архиватором, то
он будет значительно уступать специальному методу для конкретного типа данных, т.е.
метод должен учитывать особенности конкретного типа данных. Поэтому полезно уметь реализовывать сжатие самостоятельно.
В этой статье я расскажу, как вообще сжимать информацию и рассмотрю один из методов сжатия.

Классификация методов сжатия

Прежде всего, все методы сжатия делятся на
сжатие с потерями и сжатие без потерь. Задачу сжатия с потерями можно сформулировать так: требуется отобразить множество возможных
сообщений на множество, содержащее меньшее количество элементов, так, чтобы исходные сообщения
и их отображения были в определенном смысле близки (например, неразличимы на глаз), т.е.
малозначительная информация просто отбрасывается. После этого дополнительно применяется сжатие
без потерь. Сжатие без потерь — это однозначное кодирование, такое что закодированные сообщения
в среднем занимают меньше места. Именно такому сжатию посвящена эта статья.
Далее под словом «сжатие» мы будем подразумевать сжатие без потерь.

Прежде всего, ни один метод сжатия не может сжать любые данные, поскольку кодирование
должно быть однозначным. Задача состоит в том, чтобы построить правило кодирования, по которому
наиболее часто встречающимся сообщениям соответствовали бы сообщения меньшей длины. Поэтому любой метод сжатия должен быть основан на каких-либо предположениях о
вероятностной структуре сжимаемых данных. Например, для текста на определенном языке известны
частоты букв. Наиболее часто используемое предположение заключается в том, что с большей
вероятностью в сообщении будут встречаться одинаковые цепочки символов. Например, в тексте этой
статьи чаще всего встречается слово «сжатие». Если же ничего не знать о вероятностной структуре
сжимаемых данных и считать все сообщения одной длины равновероятными, то мы вообще ничего не
сожмем.

Методы сжатия делятся на статистические и словарные. Словарные методы заключаются в том,
чтобы в случае встречи подстроки, которая уже была найдена раньше, кодировать ссылку, которая
занимает меньше места, чем сама подстрока. Классическим словарным методом является метод
Лемпела-Зива (LZ). Все используемые на сегодняшний день словарные методы являются лишь
модификациями LZ.

Статистическое кодирование заключается в том, чтобы кодировать каждый символ, но
использовать коды переменной длины. Примером таких методов служит метод Хаффмана
(Huffman). Обычно словарные и статистические методы комбинируются, поскольку у каждого свои
преимущества.

Отметим один момент, который почему-то неочевиден для некоторых «теоретиков».
Правило кодирования определяется вероятностной структурой данных, а значит, декомпрессор
должен до начала раскодирования уже знать её. Если же мы получаем её из статистики конкретного
сообщения (так оно сжимается лучше), то её придется передать явно или неявно вместе со сжатым
сообщением, и еще неизвестно, будет ли общий размер меньше.

Доказано, что наименьший возможный средний размер сжатого сообщения равен энтропии
ансамбля возможных сообщений, округленной с избытком. Энтропия вычисляется по формуле:

H = -Sum(p[i] * log(p[i]))

где Sum — сумма по i, p[i] — вероятность i-го сообщения, log — логарифм по основанию 2.
Энтропия сложного сообщения равна сумме энтропий входящих в него простых сообщений.

Если кодировать каждый символ отдельно, то длина кода каждого сообщения должна быть
равна -log(p). Т.е., например, если вероятность символа 0.3, то его код должен иметь длину
1.73 бита, в то время, как реальные длины целые. Можно улучшить результаты, если не сводить
задачу к кодированию отдельных символов.

Этот метод в корне отличается от всех рассмотренных ранее методов. Его главное
преимущество в том, что достигается теоретический предел сжатия. Рассмотрим этот метод подробно. Всё сообщение целиком представляется одним числом по следующему правилу. Число должно
находиться в интервале от 0 до 1. Этот интервал делится на части, пропорциональные вероятностям
значений первого символа. Выбирается часть, соответствующая символу и делится на части по
вероятностям значений второго символа и т.д.

новая_нижняя_граница = нижняя_граница + ширина * S[i]
новая_ширина = ширина * p[i]

где p[i] — вероятность i-го символа, S[i] — сумма вероятностей символов с номерами
меньше i.

После обработки всего сообщения по этому алгоритму остается только записать любое
число из получившегося интервала. Количество битов, необходимое для записи этого числа,
примерно равно минус логарифму ширины интервала. Ширина интервала равна произведению
вероятностей символов, т.е. вероятности всего сообщения. Т.о., длина кода равна
-log(p), т.е. теоретическому пределу. На практике мы будем работать с переменными ограниченной длины,
и точность вычислений будет ограничена, а значит, сжатие будет все-таки немного хуже.

Проект, прикрепленный к этой статье, компилируется на Visual Studio .NET.
Это реализация арифметического кодирования, сжимающая файлы, рассматривая байты как символы.
Содержимое файла рассматривается как марковский процесс 1-го порядка, т. е. распределение
вероятностей символов зависит от предыдущего символа. Класс CMarkovProcessDef обрабатывает
данные, сохраненные в ресурсе в специальном формате. Эти данные сгенерированы по результатам
обработки большого количества текстов, т. е. текстовые файлы, скорее всего, будут сжиматься
хорошо, а если попытаться сжать какой-нибудь бинарник, то размер «сжатого» файла будет больше
исходного. Для того, чтобы получить метод сжатия для своего типа данных, нужно заменить данные о
вероятностях символов. Кроме того, символ — это не обязательно байт несжатых данных. Например,
если есть столбец таблицы, где значения должны быть уникальными, то каждое значение — это
символ, а после того, как символ встречается, сбрасываем его вероятность в ноль. Нижняя граница и ширина интервала хранятся в целочисленных переменных dwBuf1 и dwBuf2.
Если после обработки очередного символа старшие байты границ окажутся равными
(заметим, что это не то же самое, что если старший байт ширины равен нулю), то
соответствующий байт окончательного результата будет равен этому значению, и его можно
записать в файл. Запишем его и сдвинем буферы на 1 байт. При распаковке кроме переменных, обрабатываемых так же, как при упаковке, нам
понадобится еще одна, где будет информация из файла. Для того, чтобы определить очередной символ, нужно
найти символ с наименьшим номером, такой, что S[n] * dwBuf2 >= dwBuf3, т.е. P[n] >= dwBuf3 / dwBuf2. При работе с целыми числами возникает проблема: мы представляем вероятности (дробные
числа от 0 до 1) целочисленными переменными (0x100000000 * p). Для умножения и деления на них нужны
особые процедуры: при умножении берем старшее 32-битное слово 64-битного результата, а при делении
делим число, умноженное на 2^32. Компилятор не может, умножитв DWORD на DWORD, поместить результат
в 64-битную переменную — это недостаток языка С++. Поэтому пришлось написать специальные процедуры
на ассемблере.

void CArithmCompressorDlg::OnBnClickedCompress()
<
CFileDialog dlg1(TRUE);
if (dlg1.DoModal() != IDOK) return;
CFileDialog dlg2(FALSE, «compressed», 0, OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT, «*.compressed|*.compressed|All files|*.*||»);
if (dlg2.DoModal() != IDOK) return;

CFile file1(dlg1.GetPathName(), CFile::modeRead);
CFile file2(dlg2.GetPathName(), CFile::modeCreate | CFile::modeWrite);

BYTE b;
ULONGLONG fs = file1.GetLength();

file2.Write(&fs, 8); // Запишем размер исходного файла

// m_mpd — это объект класса CMarkovProcessDef
m_mpd.ResetProcess(); // Сбросим данные о предшествующих символах

// Здесь начинается сжатие
// Начальный интервал — от 0x00000000 до 0xFFFFFFFF
DWORD dwBuf1 = 0; // Нижняя граница
DWORD dwBuf2 = 0xFFFFFFFF; // Ширина
DWORD dww; // Временная переменная

Замените эту функцию на свою реализацию и получите метод сжатия для вашего типа данных.
*/
dwBuf1 += dww;
if (b Если старший байт буфера определен
<
file2.Write(((LPBYTE)&dwBuf1)+3, 1); // Записываем его
dwBuf1 = dwBuf1 И сдвигаем буфер
dwBuf2 = dwBuf2 PushSymbol(b, 0) перемещает внутренний указатель на распределение для следующего символа
*/
m_mpd.PushSymbol(b, 0);
>
file2.Write(((LPBYTE)&dwBuf1)+3, 1); // Записываем последний байт
// Вот и всё
// Закрываем файлы
file1.Close();
file2.Close();
>

void CArithmCompressorDlg::OnBnClickedDecompress()
<
CFileDialog dlg1(TRUE, «compressed», 0, 0, «*.compressed|*.compressed|All files|*.*||»);
if (dlg1.DoModal() != IDOK) return;
CFileDialog dlg2(FALSE);
if (dlg2.DoModal() != IDOK) return;

CFile file1(dlg1.GetPathName(), CFile::modeRead);
CFile file2(dlg2.GetPathName(), CFile::modeCreate | CFile::modeWrite);

if (file1.Read(&fs, 8) != 8) return; // Читаем длину извлекаемого файла

DWORD dwBuf1 = 0, dwBuf2 = 0xFFFFFFFF, dwBuf3, dww;

// Читаем первые 4 байта
// Нужно поместить байты в переменную не в том порядке, в каком они в файле,
// поэтому читаем их по отдельности
for (int j = 3; j >= 0; j—) if (file1.Read(((LPBYTE)&dwBuf3)+j, 1) == 0) ((LPBYTE)&dwBuf3)[j] = 0xFF;

// Поиск методом половинного деления
do
<
m = (l+h)/2;
if (h Вычисляем новый интервал
if (m > 0) dww = MulHigh(m_mpd.GetDistribution(m-1), dwBuf2); else dww = 0;
dwBuf1 += dww;
dwBuf3 -= dww;
if (m Пишем символ
m_mpd.PushSymbol(m, 0);

DWORD CArithmCompressorDlg::MulHigh(DWORD dw1, DWORD dw2)
<
/*
Эта функция возвращает старшее двойное слово
произведения данных двойных слов
*/
DWORD r;
_asm
<
mov eax, dw1;
mul dw2;
mov r, edx;
>
return r;
>


DWORD CArithmCompressorDlg::DivLarge(DWORD hi, DWORD lo, DWORD dw)
<
/*
Эта функция делит 64-битное беззнаковое целое (hi;lo)
на 32-битное
*/
DWORD r;
_asm
<
mov eax, lo;
mov edx, hi;
div dw;
mov r, eax;
>
return r;
>

Сжатие информации

Данный материал представлен в виде лекции. Дано определение, назначение сжатия информации, а так же виды и алгоритмы. Приведены примеры.

Содержимое разработки

Лекция №4. Сжатие информации

Принципы сжатия информации

Цель сжатия данных — обеспечить компактное представление данных, вырабатываемых источником, для их более экономного сохранения и передачи по каналам связи.

Пусть у нас имеется файл размером 1 (один) мегабайт. Нам необходимо получить из него файл меньшего размера. Ничего сложного — запускаем архиватор, к примеру, WinZip, и получаем в результате, допустим, файл размером 600 килобайт. Куда же делись остальные 424 килобайта?

Сжатие информации является одним из способов ее кодирования. Вообще коды делятся на три большие группы — коды сжатия (эффективные коды), помехоустойчивые коды и криптографические коды. Коды, предназначенные для сжатия информации, делятся, в свою очередь, на коды без потерь и коды с потерями. Кодирование без потерь подразумевает абсолютно точное восстановление данных после декодирования и может применяться для сжатия любой информации. Кодирование с потерями имеет обычно гораздо более высокую степень сжатия, чем кодирование без потерь, но допускает некоторые отклонения декодированных данных от исходных.

Все методы сжатия информации можно условно разделить на два больших непересекающихся класса: сжатие с потерей инфор­мации и сжатие без потери информации.

Сжатие без потери информации.

Эти методы сжатия нас инте­ресуют в первую очередь, поскольку именно их применяют при передаче текстовых документов и программ, при выдаче выпол­ненной работы заказчику или при создании резервных копий информации, хранящейся на копьютере.

Методы сжатия этого класса не могут допустить утрату информа­ции, поэтому они основаны только на устранении ее избыточности, а информация имеет избыточность почти всегда (правда, если до этого кто-то ее уже не уплотнил). Если бы избыточности не было, нечего было бы и сжимать.

Вот простой пример. В русском языке 33 буквы, десять цифр и еще примерно полтора десятка знаков препинания и прочих спе­циальных символов. Для текста, который записан только про­писными русскими буквами (как в телеграммах и радиограммах) вполне хватило бы шестидесяти разных значений. Тем не менее, каждый символ обычно кодируется байтом, который содержит 8 битов и может выражать 256 различных кодов. Это первое осно­вание для избыточности. Для нашего «телеграфного» текста вполне хватило бы шести битов на символ.

Вот другой пример. В международной кодировке символов ASCII для кодирования любого символа отводится одинаковое количество битов (8), в то время как всем давно и хорошо извест­но, что наиболее часто встречающиеся символы имеет смысл кодировать меньшим количеством знаков. Так, например, в «азбуке Морзе» буквы «Е» и «Т», которые встречаются часто, кодируются одним знаком (соответственно это точка и тире). А такие редкие буквы, как «Ю» (• • — -) и «Ц» (- • — •), кодиру­ются четырьмя знаками. Неэффективная кодировка — второе основание для избыточности. Программы, выполняющие сжа­тие информации, могут вводить свою кодировку (разную для разных файлов) и приписывать к сжатому файлу некую таблицу (словарь), из которой распаковывающая программа узнает, как в данном файле закодированы те или иные символы или их груп­пы. Алгоритмы, основанные на перекодировании информации, называют алгоритмами Хафмана.

Наличие повторяющихся фрагментов — третье основание для избыточности. В текстах это встречается редко, но в таблицах и в графике повторение кодов — обычное явление. Так, например, если число 0 повторяется двадцать раз подряд, то нет смысла ставить двадцать нулевых байтов. Вместо них ставят один ноль и коэффициент 20. Такие алгоритмы, основанные на выявлении повторов, называют методами RLE (Run Length Encoding).

Большими повторяющимися последовательностями одинаковых байтов особенно отличаются графические иллюстрации, но не фотографические (там много шумов и соседние точки сущест­венно различаются по параметрам), а такие, которые художники рисуют «гладким» цветом, как в мультипликационных фильмах.

Сжатие с потерей информации.

Сжатие с потерей информации означает, что после распаковки уплотненного архива мы полу­чим документ, который несколько отличается от того, который был в самом начале. Понятно, что чем больше степень сжатия, тем больше величина потери и наоборот.

Разумеется, такие алгоритмы неприменимы для текстовых документов, таблиц баз данных и особенно для программ. Незна­чительные искажения в простом неформатированном тексте еще как-то можно пережить, но искажение хотя бы одного бита в программе сделает ее абсолютно неработоспособной.

В то же время, существуют материалы, в которых стоит пожерт­вовать несколькими процентами информации, чтобы получить сжатие в десятки раз. К ним относятся фотографические иллюстрации, видеоматериалы и музыкальные композиции. Потеря информации при сжатии и последующей распаковке в таких материалах воспринимается как появление некоторого дополнительного «шума». Но поскольку при создании этих мате­риалов определенный «шум» все равно присутствует, его неболь­шое увеличение не всегда выглядит критичным, а выигрыш в раз­мерах файлов дает огромный (в 10-15 раз на музыке, в 20-30 раз на фото- и видеоматериалах).

К алгоритмам сжатия с потерей информации относятся такие известные алгоритмы как JPEG и MPEG. Алгоритм JPEG исполь­зуется при сжатии фотоизображений. Графические файлы, сжа­тые этим методом, имеют расширение JPG. Алгоритмы MPEG используют при сжатии видео и музыки. Эти файлы могут иметь различные расширения, в зависимости от конкретной программы, но наиболее известными являются .MPG для видео и .МРЗ для музыки.

Алгоритмы сжатия с потерей информации применяют только для потребительских задач. Это значит, например, что если фотография передается для просмотра, а музыка для воспро­изведения, то подобные алгоритмы применять можно. Если же они передаются для дальнейшей обработки, например для редак­тирования, то никакая потеря информации в исходном мате­риале недопустима.

Илон Маск рекомендует:  Что такое код ifx_free_blob

Величиной допустимой потери при сжатии обычно можно управ­лять. Это позволяет экспериментовать и добиваться оптималь­ного соотношения размер/качество. На фотографических иллюст­рациях, предназначенных для воспроизведения на экране, потеря 5% информации обычно некритична, а в некоторых случаях можно допустить и 20-25%.

Алгоритмы сжатия без потери информации

Для дальнейших рассуждений будет удобно представить наш исходный файл с текстом как источник символов, которые по одному появляются на его выходе. Мы не знаем заранее, какой символ будет следующим, но мы знаем, что с вероятностью p1 появится буква «а», с вероятностью p2 -буква «б» и т.д.

В простейшем случае мы будем считать все символы текста независимыми друг от друга, т.е. вероятность появления очередного символа не зависит от значения предыдущего символа. Конечно, для осмысленного текста это не так, но сейчас мы рассматриваем очень упрощенную ситуацию. В этом случае справедливо утверждение «символ несет в себе тем больше информации, чем меньше вероятность его появления».

Давайте представим себе текст, алфавит которого состоит всего из 16 букв: А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н, О, П, Р. Каждый из этих знаков можно закодировать с помощью всего 4 бит: от 0000 до 1111. Теперь представим себе, что вероятности появления этих символов распределены следующим образом:

Сумма этих вероятностей составляет, естественно, единицу. Разобьем эти символы на две группы таким образом, чтобы суммарная вероятность символов каждой группы составляла

0.5 (рис). В нашем примере это будут группы символов А-В и Г-Р. Кружочки на рисунке, обозначающие группы символов, называются вершинами или узлами (nodes), а сама конструкция из этих узлов — двоичным деревом (B-tree). Присвоим каждому узлу свой код, обозначив один узел цифрой 0, а другой — цифрой 1.

Снова разобьем первую группу (А-В) на две подгруппы таким образом, чтобы их суммарные вероятности были как можно ближе друг к другу. Добавим к коду первой подгруппы цифру 0, а к коду второй — цифру 1.

Будем повторять эту операцию до тех пор, пока на каждой вершине нашего «дерева» не останется по одному символу. Полное дерево для нашего алфавита будет иметь 31 узел.

Коды символов (крайние правые узлы дерева) имеют коды неодинаковой длины. Так, буква А, имеющая для нашего воображаемого текста вероятность p=0.2, кодируется всего двумя битами, а буква Р (на рисунке не показана), имеющая вероятность p=0.013, кодируется аж шестибитовой комбинацией.

Итак, принцип очевиден — часто встречающиеся символы кодируются меньшим числом бит, редко встречающиеся — большим. В результате среднестатистическое количество бит на символ будет равно

где ni — количество бит, кодирующих i-й символ, pi — вероятность появления i-го символа.


Алгоритм Хаффмана изящно реализует общую идею статистического кодирования с использованием префиксных множеств и работает следующим образом:

1. Выписываем в ряд все символы алфавита в порядке возрастания или убывания вероятности их появления в тексте.

2. Последовательно объединяем два символа с наименьшими вероятностями появления в новый составной символ, вероятность появления которого полагаем равной сумме вероятностей составляющих его символов. В конце концов построим дерево, каждый узел которого имеет суммарную вероятность всех узлов, находящихся ниже него.

3. Прослеживаем путь к каждому листу дерева, помечая направление к каждому узлу (например, направо — 1, налево — 0) . Полученная последовательность дает кодовое слово, соответствующее каждому символу (рис.).

Построим кодовое дерево для сообщения со следующим алфавитом:

Самой большой сложностью с кодами, как следует из предыдущего обсуждения, является необходимость иметь таблицы вероятностей для каждого типа сжимаемых данных. Это не представляет проблемы, если известно, что сжимается английский или русский текст; мы просто предоставляем кодеру и декодеру подходящее для английского или русского текста кодовое дерево. В общем же случае, когда вероятность символов для входных данных неизвестна, статические коды Хаффмана работают неэффективно.

Решением этой проблемы является статистический анализ кодируемых данных, выполняемый в ходе первого прохода по данным, и составление на его основе кодового дерева. Собственно кодирование при этом выполняется вторым проходом.

Еще один недостаток кодов — это то, что минимальная длина кодового слова для них не может быть меньше единицы, тогда как энтропия сообщения вполне может составлять и 0,1, и 0,01 бит/букву. В этом случае код становится существенно избыточным. Проблема решается применением алгоритма к блокам символов, но тогда усложняется процедура кодирования/декодирования и значительно расширяется кодовое дерево, которое нужно в конечном итоге сохранять вместе с кодом.

Данные коды никак не учитывают взаимосвязей между символами, которые присутствуют практически в любом тексте. Например, если в тексте на английском языке нам встречается буква q, то мы с уверенностью сможем сказать, что после нее будет идти буква u.

Групповое кодирование — Run Length Encoding (RLE) — один из самых старых и самых простых алгоритмов архивации. Сжатие в RLE происходит за счет замены цепочек одинаковых байт на пары «счетчик, значение». («красный, красный, . красный» записывается как «N красных»).

Одна из реализаций алгоритма такова: ищут наименнее часто встречающийся байт, называют его префиксом и делают замены цепочек одинаковых символов на тройки «префикс, счетчик, значение». Если же этот байт встретичается в исходном файле один или два раза подряд, то его заменяют на пару «префикс, 1» или «префикс, 2». Остается одна неиспользованная пара «префикс, 0», которую можно использовать как признак конца упакованных данных.

При кодировании exe-файлов можно искать и упаковывать последовательности вида AxAyAzAwAt. которые часто встречаются в ресурсах (строки в кодировке Unicode)

К положительным сторонам алгоритма, можно отнести то, что он не требует дополнительной памяти при работе, и быстро выполняется. Алгоритм применяется в форматах РСХ, TIFF, ВМР. Интересная особенность группового кодирования в PCX заключается в том, что степень архивации для некоторых изображений может быть существенно повышена всего лишь за счет изменения порядка цветов в палитре изображения.

LZW-код (Lempel-Ziv & Welch) является на сегодняшний день одним из самых распространенных кодов сжатия без потерь. Именно с помощью LZW-кода осуществляется сжатие в таких графических форматах, как TIFF и GIF, с помощью модификаций LZW осуществляют свои функции очень многие универсальные архиваторы. Работа алгоритма основана на поиске во входном файле повторяющихся последовательностей символов, которые кодируются комбинациями длиной от 8 до 12 бит. Таким образом, наибольшую эффективность данный алгоритм имеет на текстовых файлах и на графических файлах, в которых имеются большие одноцветные участки или повторяющиеся последовательности пикселов.

Отсутствие потерь информации при LZW-кодировании обусловило широкое распространение основанного на нем формата TIFF. Этот формат не накладывает каких-либо ограничений на размер и глубину цвета изображения и широко распространен, например, в полиграфии. Другой основанный на LZW формат — GIF — более примитивен — он позволяет хранить изображения с глубиной цвета не более 8 бит/пиксел. В начале GIF — файла находится палитра — таблица, устанавливающая соответствие между индексом цвета — числом в диапазоне от 0 до 255 и истинным, 24-битным значением цвета.

Алгоритмы сжатия с потерей информации

Алгоритм JPEG был разработан группой фирм под названием Joint Photographic Experts Group. Целью проекта являлось создание высокоэффективного стандарта сжатия как черно-белых, так и цветных изображений, эта цель и была достигнута разработчиками. В настоящее время JPEG находит широчайшее применение там, где требуется высокая степень сжатия — например, в Internet.

В отличие от LZW-алгоритма JPEG-кодирование является кодированием с потерями. Сам алгоритм кодирования базируется на очень сложной математике, но в общих чертах его можно описать так: изображение разбивается на квадраты 8*8 пикселов, а затем каждый квадрат преобразуется в последовательную цепочку из 64 пикселов. Далее каждая такая цепочка подвергается так называемому DCT-преобразованию, являющемуся одной из разновидностей дискретного преобразования Фурье. Оно заключается в том, что входную последовательность пикселов можно представить в виде суммы синусоидальных и косинусоидальных составляющих с кратными частотами (так называемых гармоник). В этом случае нам необходимо знать лишь амплитуды этих составляющих для того, чтобы восстановить входную последовательность с достаточной степенью точности. Чем большее количество гармонических составляющих нам известно, тем меньше будет расхождение между оригиналом и сжатым изображением. Большинство JPEG-кодеров позволяют регулировать степень сжатия. Достигается это очень простым путем: чем выше степень сжатия установлена, тем меньшим количеством гармоник будет представлен каждый 64-пиксельный блок.

Безусловно, сильной стороной данного вида кодирования является большой коэффициент сжатия при сохранении исходной цветовой глубины. Именно это свойство обусловило его широкое применение в Internet, где уменьшение размера файлов имеет первостепенное значение, в мультимедийных энциклопедиях, где требуется хранение возможно большего количества графики в ограниченном объеме.

Отрицательным свойством этого формата является неустранимое никакими средствами, внутренне ему присущее ухудшение качества изображения. Именно этот печальный факт не позволяет применять его в полиграфии, где качество ставится во главу угла.

Однако формат JPEG не является пределом совершенства в стремлении уменьшить размер конечного файла. В последнее время ведутся интенсивные исследования в области так называемого вейвлет-преобразования (или всплеск-преобразования). Основанные на сложнейших математических принципах вейвлет-кодеры позволяют получить большее сжатие, чем JPEG, при меньших потерях информации. Несмотря на сложность математики вейвлет-преобразования, в программной реализации оно проще, чем JPEG. Хотя алгоритмы вейвлет-сжатия пока находятся в начальной стадии развития, им уготовано большое будущее.

Фрактальное сжатие изображений — это алгоритм сжатия изображений c потерями, основанный на применении систем итерируемых функций (IFS, как правило являющимися аффинными преобразованиями) к изображениям. Данный алгоритм известен тем, что в некоторых случаях позволяет получить очень высокие коэффициенты сжатия (лучшие примеры — до 1000 раз при приемлемом визуальном качестве) для реальных фотографий природных объектов, что недоступно для других алгоритмов сжатия изображений в принципе. Из-за сложной ситуации с патентованием широкого распространения алгоритм не получил.

Фрактальная архивация основана на том, что с помощью коэффициентов системы итерируемых функций изображение представляется в более компактной форме. Прежде чем рассматривать процесс архивации, разберем, как IFS строит изображение.

Строго говоря, IFS — это набор трехмерных аффинных преобразований, переводящих одно изображение в другое. Преобразованию подвергаются точки в трехмерном пространстве (x координата, у координата, яркость).

Основа метода фрактального кодирования — это обнаружение самоподобных участков в изображении. Впервые возможность применения теории систем итерируемых функций (IFS) к проблеме сжатия изображения была исследована Майклом Барнсли и Аланом Слоуном. Они запатентовали свою идею в 1990 и 1991 гг. Джеквин (Jacquin) представил метод фрактального кодирования, в котором используются системы доменных и ранговых блоков изображения (domain and range subimage blocks), блоков квадратной формы, покрывающих все изображение. Этот подход стал основой для большинства методов фрактального кодирования, применяемых сегодня. Он был усовершенствован Ювалом Фишером (Yuval Fisher) и рядом других исследователей.

В соответствии с данным методом изображение разбивается на множество неперекрывающихся ранговых подизображений (range subimages) и определяется множество перекрывающихся доменных подизображений (domain subimages). Для каждого рангового блока алгоритм кодирования находит наиболее подходящий доменный блок и аффинное преобразование, которое переводит этот доменный блок в данный ранговый блок. Структура изображения отображается в систему ранговых блоков, доменных блоков и преобразований.

Идея заключается в следующем: предположим, что исходное изображение является неподвижной точкой некоего сжимающего отображения. Тогда можно вместо самого изображения запомнить каким-либо образом это отображение, а для восстановления достаточно многократно применить это отображение к любому стартовому изображению.

По теореме Банаха, такие итерации всегда приводят к неподвижной точке, то есть к исходному изображению. На практике вся трудность заключается в отыскании по изображению наиболее подходящего сжимающего отображения и в компактном его хранении. Как правило, алгоритмы поиска отображения (то есть алгоритмы сжатия) в значительной степени переборные и требуют больших вычислительных затрат. В то же время, алгоритмы восстановления достаточно эффективны и быстры.

Вкратце метод, предложенный Барнсли, можно описать следующим образом. Изображение кодируется несколькими простыми преобразованиями (в нашем случае аффинными), то есть определяется коэффициентами этих преобразований (в нашем случае A, B, C, D, E, F).

Например, изображение кривой Коха можно закодировать четырмя аффинными преобразованиями, мы однозначно определим его с помощью всего 24-х коэффициентов.

Далее, поставив чёрную точку в любой точке картинки, мы будем применять наши преобразования в случайном порядке некоторое (достаточно большое) число раз (этот метод ещё называют фрактальный пинг-понг).

В результате точка обязательно перейдёт куда-то внутрь чёрной области на исходном изображении. Проделав такую операцию много раз, мы заполним все чёрное пространство, тем самым восстановив картинку.

Наиболее известны два изображения, полученных с помощью IFS: треугольник Серпинского и папоротник Барнсли. Первое задается тремя, а второе — пятью аффинными преобразованиями (или, в нашей терминологии, линзами). Каждое преобразование задается буквально считанными байтами, в то время как изображение, построенное с их помощью, может занимать и несколько мегабайт.

Становится понятно, как работает архиватор, и почему ему требуется так много времени. Фактически, фрактальная компрессия — это поиск самоподобных областей в изображении и определение для них параметров аффинных преобразований.

В худшем случае, если не будет применяться оптимизирующий алгоритм, потребуется перебор и сравнение всех возможных фрагментов изображения разного размера. Даже для небольших изображений при учете дискретности мы получим астрономическое число перебираемых вариантов. Даже резкое сужение классов преобразований, например, за счет масштабирования только в определенное число раз, не позволит добиться приемлемого времени. Кроме того, при этом теряется качество изображения. Подавляющее большинство исследований в области фрактальной компрессии сейчас направлены на уменьшение времени архивации, необходимого для получения качественного изображения.


Для фрактального алгоритма компрессии, как и для других алгоритмов сжатия с потерями, очень важны механизмы, с помощью которых можно будет регулировать степень сжатия и степень потерь. К настоящему времени разработан достаточно большой набор таких методов. Во-первых, можно ограничить количество преобразований, заведомо обеспечив степень сжатия не ниже фиксированной величины. Во-вторых, можно потребовать, чтобы в ситуации, когда разница между обрабатываемым фрагментом и наилучшим его приближением будет выше определенного порогового значения, этот фрагмент дробился обязательно (для него обязательно заводится несколько линз). В-третьих, можно запретить дробить фрагменты размером меньше, допустим, четырех точек. Изменяя пороговые значения и приоритет этих условий, можно очень гибко управлять коэффициентом компрессии изображения: от побитного соответствия, до любой степени сжатия.

Сравнение с JPEG

Сегодня наиболее распространенным алгоритмом архивации графики является JPEG. Сравним его с фрактальной компрессией.

Во-первых, заметим, что и тот, и другой алгоритм оперируют 8-битными (в градациях серого) и 24-битными полноцветными изображениями. Оба являются алгоритмами сжатия с потерями и обеспечивают близкие коэффициенты архивации. И у фрактального алгоритма, и у JPEG существует возможность увеличить степень сжатия за счет увеличения потерь. Кроме того, оба алгоритма очень хорошо распараллеливаются.

Различия начинаются, если мы рассмотрим время, необходимое алгоритмам для архивации/разархивации. Так, фрактальный алгоритм сжимает в сотни и даже в тысячи раз дольше, чем JPEG. Распаковка изображения, наоборот, произойдет в 5-10 раз быстрее. Поэтому, если изображение будет сжато только один раз, а передано по сети и распаковано множество раз, то выгодней использовать фрактальный алгоритм.

JPEG использует разложение изображения по косинусоидальным функциям, поэтому потери в нем (даже при заданных минимальных потерях) проявляются в волнах и ореолах на границе резких переходов цветов. Именно за этот эффект его не любят использовать при сжатии изображений, которые готовят для качественной печати: там этот эффект может стать очень заметен.

Фрактальный алгоритм избавлен от этого недостатка. Более того, при печати изображения каждый раз приходится выполнять операцию масштабирования, поскольку растр (или линиатура) печатающего устройства не совпадает с растром изображения. При преобразовании также может возникнуть несколько неприятных эффектов, с которыми можно бороться либо масштабируя изображение программно (для дешевых устройств печати типа обычных лазерных и струйных принтеров), либо снабжая устройство печати своим процессором, винчестером и набором программ обработки изображений (для дорогих фотонаборных автоматов). Как можно догадаться, при использовании фрактального алгоритма таких проблем практически не возникает.

Вытеснение JPEG фрактальным алгоритмом в повсеместном использовании произойдет еще не скоро (хотя бы в силу низкой скорости архивации последнего), однако в области приложений мультимедиа, в компьютерных играх его использование вполне оправдано.

Метод RLE, сжатие и распаковка текстовых файлов

Здравствуйте, подскажите пожалуйста, у меня такое вот задание по курсовой и я не совсем понимаю его. Самое задание —
Тема: Разработка программы для сжатия и распаковки текстовых файлов методом RLE.
Описание: Идея метода состоит в том, что последовательность одинаковых байт заменяются на пары «счетчик, значение». Для большей эффективности можно ограничиться рассмотрением одной половины таблицы ASCII — кодов (от 0 до 127). Тогда старший бит в байте равный 1 будет признаком счетчика и следующий за ним байт будет восприниматься как повторяемый символ. В противном случае очередной байт воспринимается как одиночный символ. Программа должна запускаться с командной строки с тремя параметрами: режим работы (сжатие распаковка); имя входного (текстового, двоичного) файла; имя выходного (двоичного или текстового) файла

Я когда начал делать, написал такую вот функцию: в векторе fileArrIn находятся элементы считанный из файла. И когда в выходной файл (out.txt) записываются сжатые символы, количество повторений одного символа, это соответствующий символ из таблицы ASCII. А если повторений больше либо равно 127 то символ 0-ой подставляю.

10.03.2020, 13:09

Разработайте приложение rle.exe, выполняющее RLE-компрессию бинарных файлов
Разработайте приложение rle.exe, выполняющее RLE-компрессию бинарных файлов с сильно разреженным.

Узнать, выгодно ли применять RLE-сжатие для заданной строки
Макс изучает Run-Length Encoding — простой алгоритм сжатия для строк, в которых встречаются много.

Написать программу на основе алгоритма RLE (сжатие/восстановление массива)
Массив из 0 и 1 целых чисел. Массив надо сжать, а затем восстановить массива. Надо написать.

Метод RLE
Написать программу сжатия полутонового bmp* файла по методу RLE

распаковка файлов
Всем привет )) Есть спецификация упакованного файла (во вложении). Каким типам данных можно.

Уроки 4 — 5
Сжатие данных без потерь
(§3. Сжатие данных)

Содержание урока

Основные понятия

Основные понятия

Для того чтобы сэкономить место на внешних носителях (жёстких дисках, флэш-дисках) и ускорить передачу данных по компьютерным сетям, нужно сжать данные — уменьшить информационный объём, сократить длину двоичного кода. Это можно сделать, устранив избыточность использованного кода.

Например, пусть текстовый файл объёмом 10 Кбайт содержит всего четырех различных символа: латинские буквы «А», «В», «С» и пробел. Вы знаете, что для кодирования одного из четырёх возможных вариантов достаточно 2 битов, поэтому использовать для его передачи обычное 8-битное кодирование символов невыгодно. Можно присвоить каждому из четырёх символов двухбитные коды, например, так:

А — 00, В — 01, С — 10, пробел — 11.

Тогда последовательность «АВА САВАВА», занимающая 10 байтов в однобайтной кодировке, может быть представлена как цепочка из 20 битов:

Таким образом, нам удалось уменьшить информационный объём текста в 4 раза, и передаваться он будет в 4 раза быстрее. Однако непонятно, как раскодировать это сообщение, ведь получатель не знает, какой код был использован. Выход состоит в том, чтобы включить в сообщение служебную информацию — заголовок, в котором каждому коду будет сопоставлен ASCII-код символа. Условимся, что первый байт заголовка — это количество используемых символов N, а следующие N байтов — это ASCII-коды этих символов.

В данном случае заголовок занимает 5 байтов и выглядит так:

Файл, занимающий 10 Кбайт в 8-битной кодировке, содержит 10 240 символов. В сжатом виде каждый символ кодируется двумя битами, кроме того, есть 5-байтный заголовок. Поэтому сжатый файл будет иметь объём

5 + 10240 • 2/8 байтов = 2565 байтов.

Коэффициент сжатия — это отношение размеров исходного и сжатого файлов.

В данном случае удалось сжать файл почти в 4 раза, коэффициент сжатия равен

k = 10 240/2565 ≈ 4.

Если принимающая сторона «знает» формат файла (заголовок + закодированные данные), она сможет восстановить в точности его исходный вид. Такое сжатие называют сжатием без потерь. Оно используется для упаковки текстов, программ, данных, которые ни в коем случае нельзя искажать.

Сжатие без потерь — это такое уменьшение объёма закодированных данных, при котором можно восстановить их исходный вид из кода без искажений.

За счёт чего удалось сжать файл? Только за счёт того, что в файле была некоторая закономерность, избыточность — использовались только 4 символа вместо полного набора.

Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL