Обмен информацией по tcpip протоколу


Содержание

Протоколы обмена маршрутной информацией стека TCP/IP

Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:

  • дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
  • алгоритм состояния связей (Link State Algorithms, LSA).

В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами. Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.

Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией — вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.

Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.

Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.

Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.

Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.

Дистанционно-векторный протокол RIP

Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.

В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы — идентификаторы. Протокол RIP широко использует понятие «вектор расстояний». Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.

Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл — «связи нет». Таким значением в протоколе RIP является число 16.

На рисунке 8.1 приведен пример сети, состоящей из шести маршрутизаторов, имеющих идентификаторы от 1 до 6, и из шести сетей от A до F, образованных прямыми связями типа «точка-точка».

Рис. 8.1. Обмен маршрутной информацией по протоколу RIP

На рисунке приведена начальная информация, содержащаяся в топологической базе маршрутизатора 2, а также информация в этой же базе после двух итераций обмена маршрутными пакетами протокола RIP. После определенного числа итераций маршрутизатор 2 будет знать о расстояниях до всех сетей интерсети, причем у него может быть несколько альтернативных вариантов отправки пакета к сети назначения. Пусть в нашем примере сетью назначения является сеть D.

При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).

Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.

При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками — увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.

На рисунке 8.2 показан случай неустойчивой работы сети по протоколу RIP при изменении конфигурации — отказе линии связи маршрутизатора M1 с сетью 1. При работоспособном состоянии этой связи в таблице маршрутов каждого маршрутизатора есть запись о сети с номером 1 и соответствующим расстоянием до нее.

Рис. 8.2. Пример неустойчивой работы сети при использовании протокола RIP

При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.

Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.

Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.

Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet

Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы — сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.

Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Общая схема архитектуры сети Internet показана на рисунке 8.3. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.

Рис. 8.3. Архитектура сети Internet

Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети — протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.

Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.

Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения — количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.

При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.

Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.

В протоколе EGP определены три основные функции:

  • установление соседских отношений,
  • подтверждение достижимости соседа,
  • обновление маршрутной информации.

Каждая функция работает на основе обмена сообщениями запрос-ответ.

Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет — то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.

После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.

Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing update). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.

Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата (рисунок 8.4).

Поля Тип и Код совместно определяют тип сообщения, а поле Статус — информацию, зависящую от типа сообщения. Поле Номер автономной системы — это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.

Рис. 8.4. Формат сообщения протокола EGP

Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза (рисунок 8.5).

Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера, приведенного на рисунке 8.5, внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).

Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.

Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.

Рис. 8.5. Пример автономной системы

Протокол состояния связей OSPF

Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.

Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.

Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются «соседями». Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.

Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement — объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.

Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа «точка-точка» между маршрутизаторами, к которым не подключены рабочие станции.

Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.

Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии «точка-точка» имели IP-адрес, что приводит к дополнительным затратам IP-адресов.

В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.

Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.

Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия «маршрут по умолчанию», используемого во многих сетях.

Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.

В протоколе OSPF подсети делятся на три категории:

  • «хост-сеть», представляющая собой подсеть из одного адреса,
  • «тупиковая сеть», которая представляет собой подсеть, подключенную только к одному маршрутизатору,
  • «транзитная сеть», которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.

Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях. Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.

Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие «выделенного» маршрутизатора, который выполняет две функции.

Во-первых, выделенный маршрутизатор и его резервный «напарник» являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.

Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.

Для начала работы маршрутизатора OSPF нужен минимум информации — IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.

Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.

Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access). Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.

Интерфейсы «точка-точка», подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.

В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.

Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet’у назначается значение 10, а линии 56 Кб/с — число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.

В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).

HELLO — это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети. Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.

Пример маршрутизации по алгоритму OSPF

Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора — Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.

Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу — сначала маршрутизаторы должны синхронизировать свои маршрутные базы (рисунок 8.6).

Рис. 8.6. Гипотетическая сеть с OSPF маршрутизаторами

На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.

Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.

С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.

Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей — базами Фреда, Роба и Джеффа — индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети. Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.

Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна — линию 56 Кб/c. Робин сначала обнаруживает двух соседей — Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.

После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.

Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.

Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик

В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):

(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)

В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):

(2) F = < [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) >x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,

где 20 — размер заголовка IP-пакета,

24 — заголовок пакета OSPF,

20 — размер заголовка сообщения HELLO,

4 — данные на каждого соседа.

Интенсивность посылки сообщений HELLO — каждые 10 секунд, объявлений о состоянии связей — каждые полчаса. По связям «точка-точка» или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):

(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с

(4) OSPF: <[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]> x 8 = 1 170 б/с

Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.

Использование других протоколов маршрутизации

Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet’у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.

Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.

В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).

В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.

Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.

Область OSPF — это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия «область» служит двум целям — управлению информацией и определению доменов маршрутизации.

Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay (рисунок 8.7). Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка. Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.

Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами. В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.

Рис. 8.7. Большая сеть с топологией звезда

В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR — это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF. Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме — в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.

Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.

Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию. Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.

Стек протоколов TCP/IP: структура, уровни, настройка. Интернет-протоколы

В этой статье будут рассказаны основы модели TCP/IP. Для лучшего понимания описаны основные протоколы и службы. Главное — не торопиться и стараться понимать каждую вещь поэтапно. Все они взаимосвязаны и без понимания одной, трудно будет понять другую. Здесь скомпонована весьма поверхностная информация, так что эту статью смело можно назвать «стеком протоколов TCP/IP для чайников». Однако, многие вещи здесь не так трудны для понимания, как может показаться на первый взгляд.

TCP/IP

Стек TCP/IP — сетевая модель передачи данных в сети, она определяет порядок взаимодействия устройств. Данные поступают на канальный уровень и обрабатываются поочередно каждым уровнем выше. Стек представлен в виде абстракции, которая объясняет принципы обработки и приема данных.

Стек протоколов сети TCP/IP имеет 4 уровня:

  1. Канальный (Link).
  2. Сетевой (Internet).
  3. Транспортный (Transport).
  4. Прикладной (Application).

Прикладной уровень

Прикладной уровень обеспечивает возможность взаимодействия между приложением и другими уровнями стека протоколов, анализирует и преобразовывает поступающую информацию в формат, подходящий для программного обеспечения. Является ближайшим к пользователю и взаимодействует с ним напрямую.

Самые распространенные протоколы:

Каждый протокол определяет собственный порядок и принципы работы с данными.

HTTP (HyperText Transfer Protocol) предназначен для передачи данных. По нему отправляются, например, документы в формате HTML, которые служат основой веб-страницы. Упрощенно схема работы представляется как «клиент – сервер». Клиент отправляет запрос, сервер его принимает, должным образом обрабатывает и возвращает конечный результат.

FTP (File Transfer Protocol) служит стандартом передачи файлов в сети. Клиент посылает запрос на некий файл, сервер ищет этот файл в своей базе и при успешном обнаружении отправляет его как ответ.

SMTP (Simple Mail Transfer Protocol) используется для передачи электронной почты. SMTP-операция включает в себя три последовательных шага:

  1. Определение адреса отправителя. Это необходимо для возвращения писем.
  2. Определение получателя. Этот шаг может повторяться некоторое количество раз при указании нескольких адресатов.
  3. Определение содержимого сообщения и отправка. В качестве служебной информации передаются данные о типе сообщения. Если сервер подтверждает готовность принять пакет, то совершается сама транзакция.

Заголовок (Header)

В заголовке содержатся служебные данные. Важно понимать, что они предназначаются только для конкретного уровня. Это значит, что как только пакет отправится к получателю, то будет обработан там по такой же модели, но в обратном порядке. Вложенный заголовок будет нести специальную информацию, которая может быть обработана только определенным образом.

Например, заголовок, вложенный на транспортном уровне, на другой стороне может быть обработан только транспортным уровнем. Другие просто его проигнорируют.

Транспортный уровень

На транспортном уровне полученная информация обрабатывается как единый блок, вне зависимости от содержимого. Полученные сообщения делятся на сегменты, к ним добавляется заголовок, и все это отправляется ниже.

Протоколы передачи данных:

TCP (Transmission Control Protocol) — самый распространенный протокол. Он отвечает за гарантированную передачу данных. При отправке пакетов контролируется их контрольная сумма, процесс транзакции. Это значит, что информация дойдет «в целости и сохранности» независимо от условий.

UDP (User Datagram Protocol) — второй по популярности протокол. Он также отвечает за передачу данных. Отличительное свойство кроется в его простоте. Пакеты просто отправляются, не создавая особенной связи.

TCP или UDP?

У каждого из этих протоколов есть своя область применения. Она логически обусловлена особенностями работы.

Основное преимущество UDP заключается в скорости передачи. TCP является сложным протоколом с множеством проверок, в то время как UDP представляется более упрощенным, а значит, и более быстрым.

Недостаток кроется в простоте. Ввиду отсутствия проверок не гарантируется целостность данных. Таким образом, информация просто отправляется, а все проверки и подобные манипуляции остаются за приложением.

UDP используется, например, для просмотра видео. Для видеофайла не критична потеря небольшого количества сегментов, в то время как скорость загрузки – важнейший фактор.

Однако если необходимо отправить пароли или реквизиты банковской карты, то необходимость использования TCP очевидна. Потеря даже самой мизерной части данных может повлечь за собой катастрофические последствия. Скорость в этом случае не так важна, как безопасность.

Сетевой уровень

Сетевой уровень из полученной информации образует пакеты и добавляет заголовок. Наиболее важной частью данных являются IP и MAC-адреса отправителей и получателей.

IP-адрес (Internet Protocol address) – логический адрес устройства. Содержит информацию о местоположении устройства в сети. Пример записи: [192.168.33.4].

MAC-адрес (Media Access Control address) – физический адрес устройства. Используется для идентификации. Присваивается сетевому оборудованию на этапе изготовления. Представлен как шестибайтный номер. Например: [08-00-27-AB-0E-25].

Сетевой уровень отвечает за:

  • Определение маршрутов доставки.
  • Передачу пакетов между сетями.
  • Присвоение уникальных адресов.

Маршрутизаторы — устройства сетевого уровня. Они прокладывают путь между компьютером и сервером на основе полученных данных.

Самый популярный протокол этого уровня – IP.

IP (Internet Protocol) — интернет-протокол, предназначенный для адресации в сети. Используется для построения маршрутов, по которым происходит обмен пакетами. Не обладает никакими средствами проверки и подтверждения целостности. Для обеспечения гарантий доставки используется TCP, который использует IP в качестве транспортного протокола. Понимание принципов этой транзакции во многом объясняет основу того, как работает стек протоколов TCP/IP.

Виды IP-адресов

В сетях используются два вида IP-адресов:

Публичные (Public) используются в Интернете. Главное правило – абсолютная уникальность. Пример их использования – маршрутизаторы, каждый из которых имеет свой IP-адрес для взаимодействия с сетью Интернет. Такой адрес называется публичным.

Приватные (Private) не используются в Интернете. В глобальной сети такие адреса не являются уникальными. Пример – локальная сеть. Каждому устройству присваивается уникальный в пределах данной сети IP-адрес.

Взаимодействие с сетью Интернет ведется через маршрутизатор, который, как уже было сказано выше, имеет свой публичный IP-адрес. Таким образом, все компьютеры, подключенные к маршрутизатору, представляются в сети Интернет от имени одного публичного IP-адреса.

Самая распространенная версия интернет-протокола. Предшествует IPv6. Формат записи — четыре восьмибитных числа, разделенные точками. Через знак дроби указывается маска подсети. Длина адреса — 32 бита. В подавляющем большинстве случаев, когда речь идет об IP-адресе, имеется в виду именно IPv4.

Формат записи: [192.168.7.2/24].

Эта версия предназначается для решения проблем предыдущей версией. Длина адреса — 128 бит.

Основная проблема, которую решает IPv6 – это исчерпание адресов IPv4. Предпосылки начали проявляться уже в начале 80-х годов. Несмотря на то, что эта проблема вступила в острую стадию уже в 2007-2009 годах, внедрение IPv6 очень медленно «набирает обороты».

Главное преимущество IPv6 – более быстрое интернет-соединение. Это происходит из-за того, что для этой версии протокола не требуется трансляции адресов. Выполняется простая маршрутизация. Это является менее затратным и, следовательно, доступ к интернет-ресурсам предоставляется быстрее, чем в IPv4.

Пример записи: [4003:0af3:06s8:11f3:8b4e:09d8:623b:d34f].

Существует три типа IPv6-адресов:

Unicast – тип одноадресных IPv6. При отправке пакет достигает только интерфейса, расположенного на соответствующем адресе.

Anycast относится к групповым IPv6-адресам. Отправленный пакет попадет в ближайший сетевой интерфейс. Используется только маршрутизаторами.

Multicast являются многоадресными. Это значит, что отправленный пакет достигнет всех интерфейсов, находящихся группе мультивещания. В отличие от broadcast, который является «вещанием для всех», multicast вещает лишь определенной группе.

Маска подсети

Маска подсети выявляет из IP-адреса подсеть и номер хоста.

Например, IP-адрес [192.168.38.2] имеет маску [255.255.255.0]. В таком случае формат записи будет выглядеть так [192.168.38.2/24]. Число «24» – это количество бит в маске. Восемь бит равняется одному октету, который также может называться байтом.

Если подробнее, то маску подсети [255.255.255.0] можно представить в двоичной системе счисления таким образом: [11111111.11111111.11111111.00000000]. В ней имеется четыре октета, и запись состоит из «1» и «0». Если сложить количество единиц, то получим в сумме «24». К счастью, считать по единице не обязательно, ведь в одном октете – 8 значений. Видим, что три из них заполнены единицами, складываем [8+8+8+0] и получаем «24».

Если говорить именно о маске подсети, то в двоичном представлении она имеет в одном октете либо единицы, либо нули. При этом последовательность такова, что сначала идут байты с единицами, а только потом с нулями.

Рассмотрим небольшой пример. Есть IP-адрес [192.168.46.2] и маска подсети [255.255.255.0]. Считаем и записываем: [192.168.46.2/24]. Теперь сопоставляем маску с IP-адресом. Те октеты маски, в которых все значения равны единице (255) оставляют соответствующие им октеты в IP-адресе без изменения. Если же в значении нули (0), то октеты в IP-адресе также становятся нулями. Таким образом, в значении адреса подсети получаем [192.168.46.0].

Подсеть и хост

Подсеть отвечает за логическое разделение. По сути, это устройства, использующие одну локальную сеть. Определяется диапазоном IP-адресов.

Хост – это адрес сетевого интерфейса (сетевой карты). Определяется из IP-адреса с помощью маски. Например: [192.168.15.2/24]. Так как первые три октета — подсеть, то остается [0.0.0.2]. Это и есть номер хоста.

Диапазон адресов хоста – от 0 до 255. Хост под номером «0» является, собственно, адресом самой подсети. А хост под номером «255» является широковещательным.

Адресация

Для адресации в стеке протоколов TCP/IP используются три типа адресов:

Локальными называются MAC-адреса. Они используются для адресации в таких технологиях локальной сети как, например, Ethernet. В контексте TCP/IP слово «локальные» означает, что они действуют лишь в пределах подсети.

Сетевым адресом в стеке протоколов TCP/IP является IP-адрес. При отправке файла из его заголовка считывается адрес получателя. С его помощью маршрутизатор узнает номер хоста и подсеть и, основываясь на этой информации, прокладывает маршрут к конечному узлу.

Доменные имена – это удобочитаемые адреса веб-сайтов в Интернете. Веб-сервера в сети Интернет доступны по публичному IP-адресу. Он успешно обрабатывается компьютерами, однако для людей представляется слишком неудобным. Для того чтобы избежать подобных сложностей, используются доменные имена, которые состоят из областей, называемых «доменами». Они располагаются в порядке строгой иерархии, от верхнего уровня к нижнему.

Домен первого уровня представляет конкретную информацию. Общие (.org, .net) не ограничены какими-либо строгими границами. Обратная ситуация — с локальными (.us, .ru). Они, как правило, привязаны территориально.

Домены низших уровней – это все остальное. Он может быть любого размера и содержать любое количество значений.

Например, «www.test.quiz.sg» – корректное доменное имя, где «sg» — локальный домен первого (верхнего) уровня, «quiz.sg» — домен второго уровня, «test.quiz.sg» — домен третьего уровня. Доменные имена также могут называться DNS-именами.

DNS (Domain Name System) устанавливает соответствие между доменными именами и публичным IP-адресом. При наборе доменного имени в строке браузера DNS обнаружит соответствующий IP-адрес и сообщит устройству. Устройство обработает этот машинный код и вернет его в виде веб-страницы.

Канальный уровень

На канальном уровне определяется взаимосвязь между устройством и физической средой передачи, добавляется заголовок. Отвечает за кодировку данных и подготовку фреймов для передачи по физической среде. На этом уровне работают сетевые коммутаторы.

Самые распространенные протоколы:

Ethernet – наиболее распространенная технология проводных локальных сетей.

WLAN – локальная сеть на основе беспроводных технологий. Взаимодействие устройств происходит без физических кабельных соединений. Пример самого распространенного метода – Wi-Fi.

Настройка TCP/IP для использования статического IPv4-адреса

Статический IPv4-адрес назначается напрямую в настройках устройства или автоматически при подключении к сети и является постоянным.

Для настройки стека протоколов TCP/IP на использование постоянного IPv4-адреса необходимо ввести в консоль команду ipconfig/all и найти следующие данные.

Далее нужно зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано на картинке. Найденные ранее данные ввести в соответствующие поля.

Настройка TCP/IP для использования динамического IPv4-адреса

Динамический IPv4-адрес используется какое-то время, сдается в аренду, после чего меняется. Присваивается устройству автоматически при подключении к сети.

Чтобы настроить стек протоколов TCP/IP на использование непостоянного IP-адреса необходимо зайти в свойства нужного соединения, открыть свойства IPv4 и поставить отметки так, как указано.

Способы передачи данных

Данные передаются через физическую среду тремя способами:

Simplex – это односторонняя связь. Передача ведется только одним устройством, в то время как другое только принимает сигнал. Можно сказать, что информация транслируется только в одном направлении.

Примеры симплексной связи:

  • Телевещание.
  • Сигнал от спутников GPS.

Half-duplex – это двусторонняя связь. Однако только один узел может передавать сигнал в определенный момент времени. При такой связи два устройства не могут одновременно использовать один канал. Полноценная двусторонняя связь может быть невозможна физически или приводить к коллизиям. Говорится, что они конфликтуют за среду передачи. Этот режим применяется при использовании коаксиального кабеля.

Пример полудуплексной связи — общение по рации на одной частоте.

Full Duplex – полноценная двусторонняя связь. Устройства могут одновременно транслировать сигнал и производить прием. Они не конфликтуют за среду передачи. Этот режим применяется при использовании технологии Fast Ethernet и соединении с помощью витой пары.

Пример дуплексной связи — общение по телефону через мобильную сеть.

TCP/IP vs OSI

Модель OSI определяет принципы передачи данных. Уровни стека протоколов TCP/IP прямо соответствуют этой модели. В отличие от четырехуровневого TCP/IP имеет 7 уровней:

  1. Физический (Physical).
  2. Канальный (Data Link).
  3. Сетевой (Network).
  4. Транспортный (Transport).
  5. Сеансовый (Session).
  6. Представительский (Presentation).
  7. Прикладной (Application).

В данный момент не стоит сильно углубляться в эту модель, но необходимо хотя бы поверхностное понимание.

Прикладной уровень в модели TCP/IP соответствует трем верхним уровням OSI. Все они работают с приложениями, поэтому можно отчетливо проследить логику такого объединения. Такая обобщенная структура стека протоколов TCP/IP способствует облегченному пониманию абстракции.

Транспортный уровень остается без изменений. Выполняет одинаковые функции.

Сетевой уровень также не изменен. Выполняет ровно те же задачи.

Канальный уровень в TCP/IP соответствует двум последним уровням OSI. Канальный уровень устанавливает протоколы передачи данных через физическую среду.

Физический представляет собой собственно физическую связь — провода, кабели, электрические сигналы, коннекторы и т.п. В стеке протоколов TCP/IP было решено объединить эти два уровня в один, так как они оба работают с физической средой.

Протоколы сетевого взаимодействия TCP/IP

Содержание


Литература


  1. Протоколы информационно-вычислительных сетей. Под. ред. Мизина И.А. и Кулешова А.П. М.: Радио и связь, 1990, 504 с.
  2. Halsall F. Data communications, computer networks and open systems. Addison-Wesley publishing company, 1992, 772 pp.
  3. Santifaller M. TCP/IP and ONC/NFS: internetworking in a UNIX environment. Addison-Wesley (Deutschland) GmbH, 1994, 288 pp.

Введение

Протоколы сетевого взаимодействия TCP/IP являются результатом эволюционного развития протоколов глобальной вычислительной сети ARPANET.

Работы по созданию сети ARPANET были начаты рядом университетов США и фирмой BBN в 1968 г. В 1971 г. сеть была введена в регулярную эксплуатацию и обеспечивала для всех своих узлов три основные услуги:

  • интерактивный вход пользователя на удаленный узел;
  • передача файлов между узлами сети;
  • электронная почта.

Все эти средства базировались на транспортных услугах предоставляемых программой управления сети NCP (Network Control Program), реализующей свой внутренний набор протоколов.

Накопленный к 1974 г. опыт эксплуатации сети ARPANET выявил многие недостатки протоколов NCP и позволил определить основные требования к новому набору протоколов, получившему название TCP/IP:

  • независимость от среды передачи сообщений;
  • возможность подключения к сети ЭВМ любой архитектуры;
  • единый способ организации соединения между узлами в сети;
  • стандартизация прикладных протоколов.

Широко используемая ныне версия 4 протоколов TCP/IP была стандартизирована в 1981 г. в виде документов, называемых RFC (Request For Comment). Полный переход сети ARPANET на новые протоколы был завершен в 1982 г. Эта сеть сыграла роль «зародыша» всемирной сети Internet, построенной на базе протоколов TCP/IP.

Реализация протоколов TCP/IP оказалась наиболее удачной в версиях BSD4.2 и BSD4.3 операционной системы UNIX. Эта реализация является эталоном (станартом «de facto») для всех последующих.

Примечание. Первичным сервером хранения всех RFC является узел nisc.sri.com (доступ через анонимный FTP).

1. Соотношение между OSI/ISO и TCP/IP

В 1984 г. международная стандартизирующая организация ISO предложила модель взаимодействия открытых систем OSI (Open System Interconnection), являющуюся удобным средством описания стеков протоколов.

На рис. 1.1 представлено соотношение четырехуровневой архитектуры протоколов TCP/IP и семиуровневой архитектуры OSI.

Объединение канального и физического уровней модели OSI в единый сетевой уровень TCP/IP было обусловлено требованием независимости от используемой среды передачи данных. Дело в том, что функции протоколов канального и физического уровней реализуются в настоящее время , как правило, едиными техническими средствами (сетевыми контроллерами).

Согласно терминологии TCP/IP элементы сетевого уровня называются подсетями (subnetworks). Идеология TCP/IP допускает, чтобы в качестве «подсетей» выступали реальные сети с их собственными стеками протоколов, узлами, шлюзами и т.п.

Внимание. Далее в данном учебном пособии для обозначения уровней стека протоколов используется терминология TCP/IP, а не OSI/ISO (если это не оговорено особо).

Внимание. В данном учебном пособии термин «шлюз» используется как обобщающий для понятий «маршрутизатор» (router), «мост» (bridge) и, собственно, «шлюз» (gateway).

2. Архитектура протоколов TCP/IP

На рис. 2.1 представлена архитектура основных протоколов TCP/IP, используемых на трех нижних уровнях стека.

Краеугольным камнем всей архитектуры является межсетевой протокол IP ( Internet Protocol ). С его помощью реализуется адресация узлов сети и доставка данных. Межсетевой протокол управляющих сообщений ICMP ( Internet Control Message Protocol ) предназначен для передачи диагностической информации и сообщений об ошибках в работе сети.

Примечание. Протокол ICMP отнесен к межсетевому уровню условно, т.к., с одной стороны, он пользуется возможностями протокола IP для транспортировки собственных данных, но, с другой стороны, сам для транспортировки данных пользователя не применяется.

Двумя основными протоколами транспортного уровня являются надежный протокол управления передачей данных TCP ( Transmission Control Protocol ) и быстрый протокол дэйтаграмм пользователя UDP ( User Datagram Protocol ). TCP реализует сетевое взаимодействие в режиме с установлением логического (виртуального) соединения, а UDP — без оного.

Функции каждого протокола реализуются компонентой программного обеспечения (обычно входящей в состав операционной системы), которую будем называть модулем . Взаимодействие модулей соседних уровней осуществляется через стандартизированный интерфейс, имеющий, как правило, процедурный характер.

Внимание. На каждом уровне стека протоколов TCP/IP обмен данными ведется блоками данных конечной длины. К сожалению, отсутствует устоявшаяся терминология в обозначении этих блоков. В данном учебном пособии названия блоков данных зависят от уровня стека протоколов, как это показано ниже.

3. Межсетевой протокол IP

Межсетевой протокол IP специфицирован в RFC 791. Его основные характеристики перечислены ниже:

  • реализует обмен информации пакетами, которые будем называть IP-сегментами (максимальный размер IP-сегмента — 65535 байт);
  • является протоколом взаимодействия без установления логического соединения;
  • для адресации узлов сети используется адрес длиной 4 байта;
  • обеспечивает в случае необходимости фрагментацию IP-сегментов;
  • IP-сегменты имеют конечное время жизни в сети;
  • не гарантирует надежность доставки IP-сегментов адресату;
  • не имеет средств управления интенсивностью передачи IP-сегментов посылающей стороной (flow control);
  • не гарантирует правильную последовательность IP-сегментов на принимающей стороне.

3.1. Заголовок IP-сегмента

На рис. 3.1 приведен формат заголовка IP-сегмента.

4-хбитовое поле, содержащее номер версии протокола IP (номер текущей версии равен 4);

4-хбитовое поле, содержащее длину заголовка IP-сегмента в 32-битных словах. Минимальная (и типичная) длина заголовка — пять слов.

байт, содержащий набор критериев, определяющих тип обслуживания IP-сегментов. Детальное описание отдельных битов дано ниже:

  • биты 0. 2 — приоритет (precedence — предпочтение) данного IP-сегмента;
  • бит 3 — требование ко времени задержки (delay) передачи IP-сегмента (0 — нормальная, 1 — низкая задержка);
  • бит 4 — требование к пропускной способности (throughput) маршрута, по которому должен отправляться IP-сегмент (0 — низкая, 1 — высокая пропускная способность);
  • бит 5 — требование к надежности (reliability) передачи IP-сегмента (0 -нормальная, 1 — высокая надежность);
  • биты 6. 7 — зарезервированы.

На практике в большинстве реализаций протокола IP данное поле почти всегда равно 0, в UNIX-реализациях это поле не используется вовсе.

двухбайтовое поле, содержащее длину (в байтах) всего IP-сегмента, включая длину заголовка. Максимальная длина IP-сегмента (включая заголовок) — 65535 байт. Спецификация IP протокола устанавливает, что что любой узел сети должен быть способен обрабатывать IP-сегменты длиной, по крайней мере, не менее 576 байт (что соответствует 512 байтам данных при возможной длине заголовка до 64 байт). На практике же узлы сети могут обрабатывать IP-сегменты много длинее, чем 576 байт (как правило, допустимая длина IP-сегмента связана с максимальной длиной кадра нижележащего сетевого уровня).

двухбайтовое поле, содержащее уникальный идентификатор IP-сегмента, присваиваемый ему посылающим узлом. Это поле используется для распознавания фрагментов одного IP-сегмента (в ситуациях, когда в ходе перемещения по глобальной сети единый IP-сегмент был разбит на несколько фрагментов по причине его недопустимо большой длины).

биты, используемые при обработке фрагментированных IP-сегментов.

Если бит DF (Don’t Fragment) установлен в 1, то это означает, что IP-сегмент не может быть разбит на фрагменты ни при каких условиях (даже, если он не может быть передан без этого далее к адресату и должен быть уничтожен).

Бит MF (More Fragments) указывает, является (MF=0) или нет (MF=1) данный IP-«подсегмент» последним в цепочке IP-«подсегментов», в которую был преобразован (фрагментирован) исходный IP-сегмент.

Алгоритм фрагментации описан ниже в разделе «Фрагментация IP-сегментов».

13-битное поле, используемое только в IP-сегменте, являющемся фрагментом (IP-фрагментом) другого (исходного) IP-сегмента. Это поле содержит смещение данных, содержащихся в IP-фрагменте, по отношению к началу данных исходного IP-сегмента. Смещение измеряется в восьмибайтных единицах, поэтому 13 битов достаточно для представления смещения в IP-сегменте максимальной возможной длины (8 * 2^13 — 1 = 65535).

однобайтовое поле, заполняемое создающим IP-сегмент узлом сети количеством единиц времени жизни IP-сегмента в сети. RFC 791 специфицирует в качестве этих единиц секунды и требует, чтобы каждый транзитный узел сети, через который проходит IP-сегмент, уменьшал содержимое этого поля по крайней мере на 1 (даже при условии, что обработка сегмента на самом деле заняла меньше одной секунды). Таким образом, на практике, время жизни ( TTL — Time To Live) — это максимальное количество узлов, которое может пройти до своего уничтожения IP-сегмент.

Каждый IP-модуль на любом узле сети обязан уничтожать IP-сегменты, для которых поле «время жизни» стало равным нулю. Этим предотвращается появление в сети IP-сегментов, «блуждающих» по ней бесконечное время. При этом узлу-источнику уничтоженного IP-сегмента посылается ICMP-сегмент, извещающий об этом событии.

В UNIX-реализациях, как правило, это поле заполняется источником IP-сегмента числом из диапазона 15. 30.

поле размером в байт, содержащее идентификатор протокола более высокого (обычно, транспортного) уровня, для которого предназначены данные IP-сегмента. Ниже приведены идентификаторы для ряда протоколов.

Контрольная сумма заголовка

двухбайтовое поле, содержащее контрольную сумму заголовка IP-сегмента (обращаем внимание, что для данных IP-сегмента контрольная сумма не подсчитывается; контролировать данные — задача протоколов транспортного уровня).

Поскольку заголовок IP-сегмента содержит поле «время жизни», изменяющее свое значение в каждом узле, через который следует IP-сегмент, то для вычисления контрольной суммы должен использоваться эффективный (а, следовательно, простой алгоритм). Во всех протоколах, входящих в архитектуру TCP/IP, используется так называемая Internet-контрольная сумма, которая представляет собой дополнение 16-битной суммы всех 16-битных слов контролируемой информации.

Адрес источника и адрес приемника

четырехбайтовые IP-адреса узлов сети. Подробно структура IP-адреса описана ниже в «IP-адрес».

Дополнительные данные заголовка

последовательность полей произвольной длины, описывающих необязательные данные заголовка. Такие данные используются для специальных целей (управление сетью, секретность и т.п.) и кратко описаны ниже в «Дополнительные данные IP-заголовка».

не имеющие смысла данные, включаемые в заголовок только для выравнивания его длины до границы четырехбайтового слова.

3.2. IP-адрес

IP-адрес представляет собой четырехбайтовое число, старшие (крайние левые) биты которого определяют класс IP-адреса. Для классов A , B и C четыре байта адреса делятся между идентификатором (номером) сети и идентификатором (номером) узла в сети как это показано на рис. 3.2.

Сети классов A, B и C абсолютно равноправны и отличаются лишь допустимым количеством узлов в них. Идентификаторы узлов, состоящие из одних нулевых или единичных битов имеют специальный смысл:

  • IP-адрес с нулевым идентификатором узла используется для обозначения сети в целом;
  • IP-адрес с идентификатор узла в виде единичных битов является широковещательным (broadcast) адресом.

IP-адреса принято записывать в так называемой «точечной нотации» — в виде последовательности разделенных точками четырех десятичных (или шестнадцатиричных с префиксом 0x) чисел, представляющих значения отдельных байтов.

Каждый узел в сети имеет, по крайней мере, один уникальный IP-адрес.

Кроме классов A, B и C существуют еще два класса IP-адресов — D и E (см. рис. 3.3).

Класс D используется для организации многопунктового ( multicast ) режима посылки сообщений: IP-сегмент, посылаемый по по IP-адресу класса D, доставляется всем узлам сети, имеющим указанный идентификатор группы узлов. Описание данного режима дано в RFC 1112.

Примечание. Не все современные реализации протоколов TCP/IP поддерживают многопунктовое вещание.

Для обеспечения гибкости при создании и администрировании сетей различного размера в 1985 г. было введено понятие «подсеть» (RFC 950), позволяющее использовать один и тот же IP-адрес классов A,B или C для разных подсетей.

Такая возможность обеспечивается специальной битовой маской (netmask) , ассоциированной с IP-адресом и определяющей распределение битов IP-адреса между идентификатором подсети и идентификатором узла.

Пусть, например, IP-адрес класса C 194.85.36.0 планируется использовать для организации четырех подсетей. Это потребует выделения двух битов из части IP-адреса, относящейся к идентификатору узла. Такое «перепланирование» структуры IP-адреса реализуется сетевой маской 255.255.255.192, где десятичное 192 — это двоичное 11000000.

Эта сетевая маска формирует IP-адрес не из двух, а из трех комронент:

  • идентификатор сети (24 бита);
  • идентификатор подсети (2 бита);
  • идентификатор узла (6 бит).

Каждая из четырех образованных подсетей может иметь до 62 узлов с идентификаторами от 1 до 62, идентификатор узла с номером 63 является широковещательным идентификатором для подсети.

Примечание. Для идентификатора подсети можно выделять только старшие (самые левые) биты из части IP-адреса, отводимой под идентификатор узла.

Примечание. Возможность разбиения сетей на подсети обусловливается, в первую очередь, средствами маршрутизации IP-сегментов, а не средствами IP-модулей, формирующих и обрабатывающих IP-сегменты.

Примечание. Некоторые современные реализации протоколов маршрутизации для TCP/IP позволяют выделять «подподсети» в подсетях.

3.3. Фрагментация IP-сегментов

Для того, чтобы существовала возможность передачи IP-сегментов через сети различного типа, межсетевой протокол обеспечивает адаптацию их размера к требованиям каждой сети. Это дает возможность, например, IP-сегментам, порожденным в сети на базе Ethernet (максимальный размер кадра — 1526 байт), беспрепятственно перемещаться до адресата по сети на базе X.25 (максимальный размер кадра — 128 байт). Изменение размера IP-сегмента в процессе перемещения по сети может быть связано и с соображениями эффективности передачи.

Изменение размера IP-сегмента реализуется механизмом, называемым фрагментацией. IP-модуль на любом узле сети должен иметь возможность:

  1. разбивать полученный им IP-сегмент на IP-фрагменты необходимого размера перед их передачей через конкретную сеть;
  2. восстанавливать исходный IP-сегмент из получаемых им IP-фрагментов.

Каждый IP-фрагмент представляет собой полноценный IP-сегмент со своим собственным IP-заголовком. Однако заголовки всех IP-фрагментов содержат одинаковый идентификатор, совпадающий с идентификатором исходного IP-сегмента. Это позволяет распознавать все IP-фрагменты, относящиеся к одному исходному IP-сегменту.

IP-фрагменты в своих заголовках содержат поле «Смещение фрагмента», описывающее смещение данных IP-фрагмента в данных исходного IP-сегмента. Это поле позволяет корректно восстановить данные исходного IP-сегмента в принимающем IP-фрагменты узле даже в ситуации, когда IP-фрагменты приходят в порядке, от порядка их посылки (такое вполне возможно, т.к. IP-фрагменты могут следовать от источника к адресату по разным маршрутам).

Рассмотрим процесс фрагментации более подробно на следующем примере. IP-модуль на некотором узле получил IP-сегмент с идентификатором 9876 и данными длиной 300 байт (при этом бит запрета фрагментации DF установлен в 0). Этот IP-сегмент должен быть передан дальше к адресату через сеть, максимальный размер кадра которой равен 128 байтам.

Рис. 3.4 схематично представляет разбиение исходного IP-сегмента на 3 IP-фрагмента.

IP-фрагмент 1 содержит в своем заголовке следующую информацию:

  1. идентификатор — 9876;
  2. длина заголовка — 5 (четырехбайтных слов);
  3. длина сегмента — 124 (байт);
  4. бит MF — 1;
  5. смещение фрагмента — 0 (восьмибайтных единиц).

IP-фрагмент 2 содержит в своем заголовке следующую информацию:

  1. идентификатор — 9876;
  2. длина заголовка — 5 (четырехбайтных слов);
  3. длина сегмента — 124 (байт);
  4. бит MF — 1;
  5. смещение фрагмента — 13 (восьмибайтных единиц).

IP-фрагмент 3 содержит в своем заголовке следующую информацию:

  1. идентификатор — 9876;
  2. длина заголовка — 5 (четырехбайтных слов);
  3. длина сегмента — 112 (байт);
  4. бит MF — 0;
  5. смещение фрагмента — 26 (восьмибайтных единиц).

Заметим, что т.к. смещение фрагмента измеряется в восьмибайтных единицах, то длина данных в каждом IP-фрагменте (кроме последнего в цепочке) обязательно должна быть кратна 8. Вот почему в нашем примере это 104 байта (13 восьмибайтных единиц), а не 108, как допускает максимальная длина кадра в 128 байт (128 — 20 = 108, где 20 — длина заголовка).

IP-модуль на принимающем IP-фрагменты узле в ситуации, когда он должен транслировать IP-сегмент далее по сети, имеет три варианта действий с фрагментами:

  1. переслать IP-фрагменты далее неизменными;
  2. разбить (если в этом есть необходимость) полученные IP-фрагменты на более короткие IP-фрагменты;
  3. восстановить исходный IP-сегмент из фрагментов.

В работе с IP-фрагментами на принимающей стороне используется специальный таймер, который с приходом первого фрагмента IP-сегмента устанавливается в исходное состояние (для UNIX-реализаций это, обычно, 30 сек) и начинает обратный счет. До момента обнуления таймера должны прийти все IP-фрагменты, относящиеся к этому сегменту. Если этого не произойдет, то все частично полученные данные IP-сегмента сбрасываются, а сам IP-сегмент считается утерянным.

3.4. Дополнительные данные IP-заголовка

Ниже кратко описываются дополнительные данные, которые могут включаться в IP-заголовок в случае необходимости.

список IP-адресов узлов сети, через которые должен следовать до адресата IP-сегмент. Предписываемый маршрут может быть «строгим» или «мягким». В первом случае IP-сегмент должен следовать строго только по указанным в списке узлам сети, во втором — допустимо прохождение через любые промежуточные узлы, не указанные в списке.

список IP-адресов узлов сети, которые посетил IP-сегмент по пути к адресату. Каждый транзитный узел, через который следует IP-сегмент, помещает в этот список свой IP-адрес.

Временные метки (time stamp)

список моментов времени прохождения IP-сегмента через узлы сети, составляющие маршрут.

указание на обработку IP-сегмента в соответствии с требованиями безопасности (RFC 1038). Эта возможность имеется только в нескольких (военных) реализациях TCP/IP.

указание на завершение дополнительных данных IP-заголовка.

Каждый элемент дополнительных данных представляет собой

  • либо однобайтовый идентификатор дополнительных данных (например, «флаг окончания»);
  • либо комбинацию однобайтового идентификатора, поля длины и данных (например, «предписываемый маршрут»).

Для дополнительных данных, пополняемых в ходе продвижения IP-сегмента по сети (например, «пройденный маршрут»), источник IP-сегмента должен зарезервировать место необходимого объема в IP-заголовке. Такой подход обеспечивает упрощение (а, следовательно, и ускорение) обработки IP-сегмента в узлах маршрута.

RFC 1063 (1988 г.) предлагает механизм определения оптимального размера IP-сегмента, при посылке его к определенному адресату. Этот механизм использует дополнительные данные IP-заголовка, называемые probe MTU (probe Maximum Transfer Unit — тестовый максимальный блок передачи). Каждый узел в маршруте IP-сегмента, содержащего такие дополнительные данные, сравнивает MTU следующей по маршруту сети с MTU, содержащемся в заголовке, и заменяет в нем старое значение на новое, если новое оказывается меньше. Конечный адресат IP-сегмента возвращает определенное таким образом значение источнику IP-сегмента. Использование в дальнейших посылках найденного размера IP-сегментов, позволяет избежать их фрагментации. Этот механизм широкого распространения еще не получил.

Примечание. Понятие MTU подробно рассматривается в «Протоколы сетевого уровня» .

4. Протокол управления передачей TCP

Протокол управления передачей TCP (Transmission Control Protocol) является протоколом транспортного уровня и базируется на возможностях, предоставляемых межсетевым протоколом IP. Основная задача TCP — обеспечение надежной передачи данных в сети. Его транспортный адрес в заголовке IP-сегмента равен 6. Описание протокола TCP дано в RFC 793.

Его основные характеристики перечислены ниже:

  • реализует взаимодействие в режиме с установлением логического (виртуального) соединения;
  • обеспечивает двунаправленную дуплексную связь;
  • организует потоковый (с точки зрения пользователя) тип передачи данных;
  • дает возможность пересылки части данных, как «экстренных»;
  • для идентификации партнеров по взаимодействию на транспортном уровне использует 16-битовые «номера портов»;
  • реализует принцип «скользящего окна» (sliding window) для повышения скорости передачи;
  • поддерживает ряд механизмов для обеспечения надежной передачи данных.

Несмотря на то, что для пользователя передача данных с использованием протокола TCP выглядит как потоковая, на самом же деле обмен между партнерами осуществляется посредством пакетов данных, которые мы будем называть «TCP-пакетами».

4.1. Заголовок TCP-пакета

На рис. 4.1 приведен формат заголовка TCP-пакета.

Порт источника и порт приемника

16-битовые поля, содержащие номера портов, соответственно, источника и адресата TCP-пакета. Подробное описание понятия «номер порта» дано в «Номер порта».

Номер в последовательности (sequence number)

32-битовое поле, содержимое которого определяет (косвенно) положение данных TCP-пакета внутри исходящего потока данных, существующего в рамках текущего логического соединения.

В момент установления логического соединения каждый из двух партнеров генерирует свой начальный «номер в последовательности», основное требование к которому — не повторяться в промежутке времени, в течение которого TCP-пакет может находиться в сети (по сути, это время жизни IP-сегмента). Партнеры обмениваются этими начальными номерами и подтверждают их получение. Во время отправления TCP-пакетов с данными поле «номер в последовательности» содержит сумму начального номера и количества байт ранее переданных данных.

Номер подтверждения (acknowledgement number)

32-битовое поле, содержимое которого определяет (косвенно) количество принятых данных из входящего потока к TCP-модулю, формирующему TCP-пакет.

четырехбитовое поле, содержащее длину заголовка TCP-пакета в 32-битовых словах и используемое для определения начала расположения данных в TCP-пакете.

бит, установленное в 1 значение которого означает, что TCP-пакет содержит важные (urgent) данные. Подробно о данных этого типа сказано в «Важные данные».

бит, установленное в 1 значение которого означает, что TCP-пакет содержит в поле «номер подтверждения» верные данные.

бит, установленное в 1 значение которого означает, что данные содержащиеся в TCP-пакете должны быть немедленно переданы прикладной программе, для которой они адресованы. Подтверждение для TCP-пакета, содержащего единичное значение во флаге PSH, означает, что и все предыдущие TCP-пакеты достигли адресата.

бит, установливаемый в 1 в TCP-пакете, отправляемом в ответ на получение неверного TCP-пакета. Также может означать запрос на переустановление логического соединения.

бит, установленное в 1 значение которого означает, что TCP-пакет представляет собой запрос на установление логического соединения. Получение пакета с установленым флагом SYN должно быть подтверждено принимающей стороной.

бит, установленное в 1 значение которого означает, что TCP-пакет представляет собой запрос на закрытие логического соединения и является признаком конца потока данных, передаваемых в этом направлении. Получение пакета с установленым флагом FIN должно быть подтверждено принимающей стороной.

16-битовое поле, содержащее количество байт информации, которое может принять в свои внутренние буфера TCP-модуль, отправляющий партнеру данный TCP-пакет. Данное поле используется принимающим поток данных TCP-модулем для управления интенсивностью этого потока: так, установив значение поля в 0, можно полностью остановить передачу данных, которая будет возобновлена только, когда размер окна примет достаточно большое значение. Максимальный размер окна зависит от реализации, в некоторых реализациях максимальный размер может устанавливаться системным администратором (типичное значение максимального размера окна — 4096 байт). Определение оптимального размера окна — одна из наиболее сложных задач реализации протокола TCP (см. «Исключение малых окон»).

16-битовое поле, содержащее Internet-контрольную сумму, подсчитанную для TCP-заголовка, данных пакета и псевдозаголовка. Псевдозаголовок включает в себя ряд полей IP-заголовка и имеет показанную на рис. 4.2 структуру.

16-битовое поле, содержащее указатель (в виде смещения) на первый байт в теле TCP-пакета, начинающий последовательность важных (urgent) данных. Данные этого типа и механизм их обработки описаны в «Важные данные».

Дополнительные данные заголовка

последовательность полей произвольной длины, описывающих необязательные данные заголовка. Протокол TCP определяет только три типа дополнительных данных заголовка:

  • конец списка полей дополнительных данных;
  • пусто (No Operation);
  • максимальный размер пакета.

Дополнительные данные последнего типа посылаются в TCP-заголовке в момент установления логического соединения для выражения готовности TCP-модулем принимать пакеты длиннее 536 байтов. В UNIX-реализациях длина пакета обычно определяется максимальной длиной IP-сегмента для сети.

4.2. Номер порта

Номера портов играют роль адресов транспортного уровня, идентифицируя на конкретных узлах сети, по сути дела, потребителей транспортных услуг, предоставляемых как протоколом TCP, так и протоколом UDP. При этом протоколы TCP и UDP имеют свои собственные адресные пространства: например, порт номер 513 для TCP не идентичен порту номер 513 для UDP.

Примечание. Своя собственная адресация на транспортном уровне стека протоколов сетевого взаимодействия необходима для обеспечения возможности функционирования на узле сети одновременно многих сетевых приложений. Наличие в TCP-заголовке номера порта позволяет TCP-модулю, получающему последовательности TCP-пакетов, формировать раздельные потоки данных к прикладным программам.

Взаимодействие прикладных программ, использующих транспортные услуги протокола TCP (или UDP), строится согласно модели «клиент-сервер» , которая подразумевает, что одна программа (сервер) всегда пассивно ожидает обращения к ней другой программы (клиента). Связь программы-клиента и сервера идентифицируется пятеркой:

  1. используемый транспортный протокол (TCP или UDP);
  2. IP-адрес сервера;
  3. номер порта сервера;
  4. IP-адрес клиента;
  5. номер порта клиента.

Для того, чтобы клиент мог обращаться к необходимому ему серверу, он должен знать номер порта, по которому сервер ожидает обращения к нему («слушает сеть»). Для прикладных программ, получивших наибольшее распространение в сетях на основе TCP/IP, номера портов фиксированы и носят название «хорошо известных номеров портов» (well-known port numbers). В UNIX-системах такие номера портов содержатся в файле /etc/services. Ниже приводятся примеры хорошо известных номеров портов для некоторых серверов (служб).

Примечание. Обратите внимание, что некоторые серверы (такие, например, как для службы portmap с номером порта 111) могут работать как по протоколу TCP, так и по протоколу UDP.

Программы-клиенты, являющиеся активной стороной во взаимодействии «клиент-сервер», могут использовать, как правило, произвольные номера портов, назначаемые динамически непосредственно перед обращением к серверу (как любые свободные на данном узле).

Примечание. Любая прикладная программа (будь то клиент или сервер) может открывать для взаимодействия любое количество портов для использования любых транспортных протоколов.

Средства разработки сетевых приложений на базе транспортных протоколов TCP и UDP описаны в «Сетевое программирование».

4.3. Принцип «скользящего окна»

Протоколы транспортного уровня, обеспечивающие надежную передачу данных, предполагают обязательное подтверждение принимающей стороной правильности полученных данных.

В «простых» протоколах сторона, отправляющая данные, отсылает пакет с данными принимающей стороне и переходит в состояние ожидания подтверждения получения правильных данных. Только после приема подтверждения становится возможной следующая посылка. Очевидно, что такой подход использует пропускную способность сети неэффективно.

В протоколе TCP используется более совершенный принцип «скользящего окна» (sliding window) , который заключается в том, что каждая сторона может отправлять партнеру максимум столько байт, сколько партнер указал в поле «размер окна» заголовка TCP-пакета, подтверждающего получение предыдущих данных.

Принцип «скользящего окна» обеспечивает «опережающую» посылку данных с «отложенным» их подтверждением. Следует отметить недостаток этого механизма: если в течение некоторого времени не будет получено «отсроченное» подтверждение ранее отправленного пакета, то отправляющий TCP-модуль будет вынужден повторить посылку всех TCP-пакетов, начиная с неподтвержденного.

Размер окна, как правило, определяется объемом свободного места в буферах принимающего TCP-модуля.

4.4. Важные данные

Протокол TCP предусматривает возможность информирования принимающей стороны взаимодействия отправляющей стороной о наличии в TCP-пакете важных данных ( urgent data ), требующих особого внимания согласно логике прикладной задачи.

Примечание. Отличие важных данных от данных основного потока заключается в том, что принимающая сторона должна, как правило, обработать их прежде ранее полученных, но еще не обработанных данных потока.

Для индикации наличия в TCP-пакете важных данных используется флаг URG TCP-заголовка, местоположение важных данных в теле TCP-пакета определяется полем «Указатель» TCP-заголовка — оно задает смещение (в стиле языка программирования C) первого байта важных данных в теле TCP-пакета. Рис. 4.3 иллюстрирует расположение важных данных в теле TCP-пакета.

Примечание. Протокол TCP предусматривает передачу важных (urgent) данных в рамках общего потока данных («in-band»). Существуют протоколы (например, ISO), поддерживающие режим передачи важных (expedited) данных вне общего потока данных («out-band»), что в общем случае быстрее.

4.5. Этапы TCP-взаимодействия

Взаимодействие партнеров с использованием протокола TCP строится в три этапа:

  • установление логического соединения;
  • обмен данными;
  • закрытие соединения.

Ниже с помощью трех рисунков дается описание каждого из этапов. Рисунки иллюстрируют последовательность обмена TCP-пакетами двумя TCP-модулями: A и B. TCP-пакеты представлены тремя полями TCP-заголовка («Номер в последовательности», «Номер подтверждения», «Флаги») и числом, характеризующим длину данных, составляющих тело TCP-пакета (заметим, что реально поля длины данных в TCP-заголовке нет). Стрелками показаны направления пересылки пакетов.

Рис. 4.4 иллюстрирует этап установления соединения, реализуемый как «трехшаговое рукопожатие» (three-way handshake). На первом шаге TCP-модуль A, играя роль клиента, посылает TCP-модулю B пакет с установленным флагом SYN и начальным значением номера в последовательности равным 1000. TCP-модуль B, будучи готов со своей стороны установить соединение, отвечает TCP-пакетом, подтверждающим правильный прием запроса (поле «Номер подтверждения» на 1 больше начального номера в последовательности для TCP-модуля A и среди флагов есть установленный в 1 флаг ACK) и информирующим о готовности установить соединение (взведен флаг SYN и установлен в 5000 начальный номер в последовательности). На третьем шаге TCP-модуль A подтверждает правильность приема TCP-пакета от B.

Примечание. Некоторые протоколы транспортного уровня (но не TCP) допускают обмен данными уже на этапе установления логического соединения.

Рис. 4.5 иллюстрирует этап двустороннего обмена данными между TCP-модулями A и B. TCP-модуль, принимающий адресованные ему данные, всегда подтверждает их прием, вычисляя значение поля «Номер подтверждения» в заголовке ответного TCP-пакета как сумму пришедшего «Номера в последовательности» и длины правильно принятых данных. Отметим, что посылка данных к партнеру и подтверждение принятых от него данных реализуются в рамках одного TCP-пакета.

Рис. 4.6 иллюстрирует закрытие соединения по инициативе TCP-модуля A, посылающего партнеру TCP-пакет с установленным флагом FIN. Прием запроса на закрытие соединения TCP-модуль B подтверждает пакетом, содержащем в своем заголовке поле «Номер подтверждения», значение которого (1052) на 1 больше значения принятого «Номера в последовательности» (1051). После этого посылка каких-либо данных TCP-модулем A становится невозможной, однако модуль B имеет данные для передачи, которые он отправляет TCP-модулю A и получает подтверждение на их прием. Затем TCP-модуль B формирует пакет с флагом FIN, после подтверждения его приема соединение считается закрытым.

Примечание. Обратите внимание на то обстоятельство, что при подтверждении TCP-пакетов, содержащих единичные флаги SYN или FIN, значение поля «Номер подтверждения» на 1 больше значения соответствующего поля «Номер в последовательности», несмотря на то, что никакие данные в подтверждаемых TCP-пакетах не передаются.

Примечание. Рассмотренный пример не включает в себя ситуации, связанные с «потерей» TCP-пакетов в сети, и их обработку, связанную с повторной передачей данных.

4.6. Таймеры


4.6.1. Таймер повторной передачи

Данный таймер взводится значением RTO ( Retransmission TimeOut — интервал до повторной передачи) в момент посылки TCP-пакета адресату. Если таймер окажется сброшенным в ноль до момента получения подтверждения пакета, то этот пакет должен быть послан вновь.

Ясно, что величина RTO не может быть фиксированной, т.к. TCP-пакеты до разных адресатов следуют по различным маршрутам через сети, скорость передачи данных в которых может различаться более чем в тысячи раз. Для вычисления «оптимального» значения RTO в каждом логическом соединении используется специальная процедура, специфицированная в RFC 793.

Согласно этой процедуре, для каждого TCP-пакета измеряется величина RTT ( Round Trip Time — интервал времени от момента посылки TCP-пакета до момента получения подтверждения на него). На основе измеренных RTT вычисляется величина SRTT ( Smoothed RTT — сглаженный RTT) по следующей формуле:

где k — сглаживающий коэффициент (например, 0.9).

Примечание. Приведенная формула обеспечивает фильтрацию нетипичных (пиковых) значений измеренной величины RTT.

«Оптимальное» значение RTO вычисляется по формуле:

U — ограничение сверху на значение RTO (например, 30 секунд);

L — ограничение снизу на значение RTO (например, 1 секунда);

p — коэффициент «запаса» (например, 2).

Если после повторной посылки TCP-пакета, опять не будет получено его подтверждение за интервал времени RTO, то попытки послать TCP-пакеты будут повторены (до 12 раз), но каждый раз с экспоненциально возрастающим значением RTO. Только после неудачи всей серии повторных посылок связь между партнерами будет считаться аварийно закрытой.

4.6.2. Таймер возобновления передачи

В ходе взаимодействия двух TCP-модулей ( A и B ) вполне возможна следующая ситуация:

  • TCP-модуль B уведомляет TCP-модуль A о невозможности приема от него данных, определяя размер окна равным 0;
  • TCP-модуль A, имея данные для передачи, переходит в состояние ожидания от TCP-модуля B пакета с ненулевым размером окна;
  • TCP-модуль B, у которого освободилось некоторое пространство в буферах, посылает модулю A TCP-пакет с ненулевым размером окна;
  • адресованный модулю A пакет «теряется» по какой-либо причине и оба TCP-модуля переходят в состояние бесконечного ожидания.

Средством выхода из такого тупикового состояния и служит таймер возобновления передачи ( persistence timer — «настойчивый» таймер). Он взводится в момент получения TCP-пакета с нулевым значением поля «Размер окна» в его заголовке (типичное начальное значение для этого таймера — 5 секунд). Если до момента обнуления таймера не будет получено разрешение на возобновление передачи данных, то ожидающий разрешения TCP-модуль отправляет партнеру пакет, содержащий всего лишь 1 байт данных. По реакции партнера, возвращающего пакет с нулевым/ненулевым значением размера окна, TCP-модуль продолжает ожидание или возобновляет посылку данных.

4.6.3. Таймер закрытия связи

Протокол TCP предусматривает следующий простой прием предотвращения появления в сети TCP-пакетов, не имеющих адресатов: после закрытия логического соединения между партнерами номера портов, использовавшихся в этом соединении, остаются еще некоторый интервал времени действительными, что дает возможность долго блуждавшим по сети TCP-пакетам добраться до места назначения (где они будут просто проигнорированы). Величина этого интервала равна удвоенному времени жизни IP-сегмента (обычно, 2*15=30 секунд).

Примечание. Пользователи ОС UNIX могут почувствовать эффект от использования этого приема, попытавшись перезапустить некоторую прикладную программу, использующую TCP, сразу же после ее завершения.

4.6.4. Таймеры поддержки соединения

Ниже описывается механизм, используемый для проверки ненарушенности логического соединения между TCP-модулями.

Каждый TCP-модуль, участвующий в логическом соединении, через фиксированный промежуток времени ( keep-alive timer ), равный обычно 45 секундам, периодически отправляет партнеру пустые (не содержащие данных) TCP-пакеты и ждет их подтверждения. Каждое полученное подтверждение говорит о ненарушенности соединения. Если же в течении определенного интервала времени ( idle timer ), равного обычно 360 секудам, не будет получено ни одного подтверждения, то логическое соединение считается оборванным.

Примечание. Очевидно, что данный механизм имеет смысл включать в работу только тогда, когда партнеры по TCP-взаимодействию приостановили по какой-либо причине обмен данных на достаточно длительный срок (более 45 секунд).

Примечание. Стандартная спецификация протокола TCP не включает в себя описанный механизм, однако он реализован во всех UNIX-системах.

4.7. Алгоритмы повышения эффективности

Ниже описываются некоторые алгоритмы, используемые для повышения эффективности взаимодействия по протоколу TCP в UNIX-реализациях и не являющиеся частью спецификации TCP.

4.7.1. Задержка подтверждения

Задержка отсылки подтверждения принятого пакета используется для сокращения числа TCP-пакетов, которыми обмениваются партнеры по взаимодействию. Поясним эффект от такой задержки следующим примером.

Пусть клиентская часть некоторого приложения (например, службы telnet) направляет серверной части некоторые данные (в случае telnet — строку символов, представляющих команду OC UNIX, которая должна быть выполнена на удаленном узле сети). Серверная часть, получив данные и обработав их, должна вернуть клиенту результат (в случае с telnet — это стандартный вывод исполненной команды).

В ситуации без задержки TCP-модуль на стороне сервера, приняв пакет с данными и разместив их в своем буфере, сразу же отвечает подтверждающим пакетом, содержащим в своем заголовке и некоторый (уменьшенный) размер окна для приема последующих данных. Спустя некоторое (обычно, очень короткое) время данные из буфера передаются серверной части прикладной программы. Освобождение места в буфере заставляет TCP-модуль отправлять партнеру на стороне клиента TCP-пакет с новым (увеличившимся) размером окна. Тем временем прикладная программа, обработав полученные данные (часто за небольшое время), передает результат TCP-модулю для отсылки его клиенту, для чего модуль формирует еще один пакет. Итого: одна транзакция потребовала от TCP-модуля на стороне сервера посылки трех TCP-пакетов.

Введение же задержки при отсылке подтверждающего TCP-пакета позволяет в ряде случаев уменьшить количество пакетов с трех до одного, содержащего сразу подтверждение, новый размер окна и результирующие данные. Экспериментальные исследования показали, что во многих случаях «оптимальным» значением задержки является 0.2 секунды.

Для того, чтобы введение задержки сказывалось минимальным образом на приложения, предъявляющие жесткие требования к пропускной способности сети, задержка устанавливается нулевой при условии, что размер окна изменяется более чем на 35% или (в абсолютном исчислении) на удвоенный максимальный размер TCP-пакета.

4.7.2. Исключение малых окон

Возможны ситуации, когда прикладная программа, использующая TCP-сервис, «выбирает» из буфера обслуживающего ее TCP-модуля пришедшие для нее данные малыми порциями. Это приводит к генерации TCP-модулем большого количества TCP-пакетов, содержащих в своих заголовках малую величину размера окна, что в свою очередь приводит к генерации на передающей данные стороне многих TCP-пакетов с «короткими» данными. Как результат — «засорение» сети короткими пакетами и снижение ее пропускной способности.

Во избежание деградации сети вследствие описанного явления используется следующий прием: TCP-пакет, информирующий посылающую данные сторону об увеличении размера окна, формируется только при выполнении одного из двух условий:

  1. свободное место в буфере принимающего данные TCP-модуля увеличилось по крайней мере на четверть размера этого буфера;
  2. свободное место увеличилось по крайней мере на максимальный размер TCP-пакета.

Кроме того TCP-модуль, отправляющий данные, должен делать это большими порциями.

4.7.3. Исключение коротких TCP-пакетов

«Засорение» сети короткими TCP-пакетами возможно и в ситуации, когда прикладная программа, отправляющая данные партнеру по взаимодействию, делает это короткими порциями (типичный пример — любая программа, использующая графическую систему X Window System).

Для борьбы с этим используется следующий прием:

  • самая первая порция данных отправляется TCP-модулем сразу же при поступлении «коротким» TCP-пакетом;
  • все последующие накапливаются в буфере TCP-модуля, пока их общий объем не составит максимального размера TCP-пакета или не будет получено подтверждение предеыдущей посылки.

Однако этот подход может сказаться на быстродействии некоторых приложений, чтобы избежать этого прикладной программе предоставляются средства для принудительного «выталкивания» буферизованных данных в необходимых случаях. Кроме того, существует возможность отключения описанного механизма.

4.7.4. Алгоритм медленного старта

Опыт эксплуатации сетей на основе TCP/IP показал, что с повышением загрузки сети (особенно, сети со шлюзом) ее пропускная способность падает (хотя, казалось бы, она должна оставаться постоянной). Исследования показали, что падение обусловлено появлением в сети большого числа TCP-пакетов, повторно посылаемых к активно используемому узлу сети (обычно это шлюз в другие сети). Дело в том, что приемный буфер TCP-модуля на шлюзе очень быстро заполняется, и TCP-модуль вынужден сбрасывать поступающие к нему пакеты.

Для предупреждения подобной ситуации необходимо согласование темпа передачи TCP-пакетов с возможностями их приема на узле-адресате. Задачу согласования решает алгоритм медленного старта, постепенно повышающий темп передачи данных от медленного до «оптимального», при котором нет повторных передач TCP-пакетов. Алгоритм использует так называемое » окно перегруженности » ( congestion window ), используемое на передающей стороне для определения максимального объема передаваемых данных вместо размера, получаемого от принимающей стороны в поле окна подтверждающего пакета.

Размер «окна перегруженности» определяется на передающей стороне путем постепенного его увеличения до момента появления повторных передач (ясно, что размер этого окна никогда не превышает размера окна на принимающей стороне). Однажды определенный размер «окна перегруженности» остается неизменным, пока вновь не появятся повторные передачи, однако периодически делаются осторожные попытки и увеличить этот размер.

Эксперименты показали, что данный алгоритм позволяет уменьшить количество повторно передаваемых TCP-пакетов на 50% и повысить пропускную способность сети на 30%.


5. Протокол дэйтаграмм пользователя UDP

Протокол дэйтаграмм пользователя UDP (User Datagram Protocol) является протоколом транспортного уровня и базируется на возможностях, предоставляемых межсетевым протоколом IP. Основная задача TCP — обеспечение «быстрой» передачи данных в сети. Его транспортный адрес в заголовке IP-сегмента равен 17. Описание протокола UDP дано в RFC 768.

Его основные характеристики перечислены ниже:

  • реализует взаимодействие в режиме без установлением логического (виртуального) соединения;
  • организует поблочный (дэйтаграммный, пакетный) тип передачи данных;
  • для идентификации партнеров по взаимодействию на транспортном уровне использует 16-битовые «номера портов»;
  • не гарантирует надежной передачи данных (возможна как потеря UDP-пакетов, так и их дублирование);
  • не имеет средств уведомления источника UDP-пакета о правильности/ошибочности в его приеме адресатом;
  • не обеспечивает правильный порядок доставки UDP-пакетов от источника к приемнику;
  • может гарантировать целостность данных в UDP-пакете за счет использования контрольной суммы;
  • очень прост (особенно, по сравнению с протоколом TCP).

Следует отметить, что, по сути дела, протокол транспортного уровня UDP играет роль интерфейса для прикладных программ к средствам протокола межсетевого уровня IP.

На рис. 5.1 приведен формат заголовка UDP-пакета.

Порт источника и порт приемника

16-битовые поля, содержащие номера портов, соответственно, источника и адресата UDP-пакета. Понятие «номер порта» обсуждается в «Протокол управления передачей TCP».

16-битовое поле, содержащее длину (в байтах) всего UDP-пакета, включая заголовок и данные.

16-битовое поле, содержащее Internet-контрольную сумму, подсчитанную для UDP-заголовка, данных пакета и псевдозаголовка. Псевдозаголовок (такой же, как для подсчета контрольной суммы в TCP-заголовке) включает в себя ряд полей IP-заголовка и имеет показанную на рис. 5.2 структуру.

Если поле «Контрольная сумма» UDP-заголовка содержит нулевое значение, это означает, что источник UDP-пакета контрольную сумму не подсчитывал, и приемник выполнять ее проверку не должен. Некоторые реализации протокола UDP (например, в SunOS — клоне ОС UNIX от Sun Microsystems) контрольную сумму не подсчитывают в принципе, полагаясь на возможности контроля целостности данных, реализованные в протоколах сетевого уровня (например, в Ethernet).

6. Межсетевой протокол управляющих сообщений ICMP

Межсетевой протокол управляющих сообщений ICMP (Internet Control Message Protocol), специфицированный в RFC 792, играет роль транспортного протокола для управляющей и диагностической информации, которой обмениваются между собой IP-, TCP- или UDP-модули скрытно от приложений. Протокол ICMP поддерживается в обязательном порядке ка ждым IP-модулем. Его транспортный адрес в IP-заголовке равен 1.

6.1. Заголовок ICMP-пакета

Поскольку протокол ICMP используется для транспортировки весьма различной информации, то фиксируется лишь общая структура заголовка ICMP-пакета, имеющего формат, показанный на рис. 6.1.

однобайтовое поле, содержащее идентификатор типа ICMP-пакета. Возможные значения этого поля приведены в таблице.

однобайтовое поле, значение которого конкретизирует назначение ICMP-пакета определенного типа.

16-битовое поле, содержащее Internet-контрольную сумму, подсчитанную для всего ICMP-пакета целиком.

четырезбайтовое поле, предназначенное для хранения разнообразной информации, специфичной для ICMP-пакетов определенного типа (например, номера в TCP-последовательности, IP-адреса и т.п.).

Здесь содержится заголовок IP-сегмента, явившегося порождения данного ICMP-пакета, и первые 8 байт данных тела этого IP-сегмента. Если ICMP-пакет есть результат проявления аномалии в TCP- или UDP-взаимодействии, то эти 8 байт будут представлять собой первые восемь байтов, соответственно, TCP- или UDP-заголовка, что дает возможность определить, в частности, номера портов (а, следовательно, и использующие их прикладные программы).

Для ICMP-пакетов некоторых типов это может содержать не начало IP-сегмента, а тестовые данные.

Источниками и обработчиками ICMP-пакетов могуть быть как IP-модули, так и TCP- и UDP-модули (но никогда прикладные программы).

Проблемы в доставке и обработке ICMP-пакетов никогда не приводят к порождению новых ICMP-пакетов, уведомляющих об этих проблемах. Сделано это с целью избежать возможных бесконечных циклов генерации ICMP-пакетов в сети.

6.2. Типы ICMP-пакетов

Здесь рассматриваются 6 типов ICMP-пакетов, реализованных во всех клонах и версиях ОС UNIX.

6.2.1. Адресат недоступен

ICMP-пакет этого типа генерируется в следующих случаях:

  1. сеть, узел сети, протокол или порт являются недоступными;
  2. в ходе продвижения по сети IP-сегмента потребовалась его фрагментация, однако в заголовке сегмента установлен флаг DF, запрещающий делать это;
  3. предписываемый маршрут, указанный в поле дополнительных данных IP-сегмента, оказался недействительным (несуществующим или неактивным).

6.2.2. Подавление источника

В ситуациях, когда некоторый узел (как правило, шлюз) не имеет достаточно места в своих буферах для размещения интенсивно поступающих к нему данных, он может послать узлам-источникам ICMP-пакет данного типа ( source quench ). Узел-источник в ответ на такое уведомление обязан уменьшить темп передачи данных.

В ранних UNIX-реализациях протоколов TCP/IP ICMP-пакеты этого типа игнорировались. В TCP-реализациях, поддерживающих алгоритм медленного старта, в ответ на это сообщение уменьшается размер «окна перегруженности». UDP-модули игнорируют это сообщение, информируя при этом обслуживаемую прикладную программу о требовании приемника уменьшить интенсивность и/или размер дэйтаграмм.

6.2.3. Перенаправление

ICMP-пакет этого типа посылается источнику данных, когда узел-шлюз обнаруживает, что источник может направлять свои данные непосредственно к следующему шлюзу маршрута. Такой ICMP-пакет содержит в себе IP-адрес этого шлюза. Этот IP-адрес должен быть включен в таблицу маршрутизации на узле-источнике данных.

6.2.4. Эхо

Для реализации эха IP-модуль на узле A отправляет узлу B ICMP-пакет типа «запрос эха», содержащий в своем теле вместо IP-заголовка тестовые данные произвольной длины. Узел B, получив такой запрос, возвращает узлу A ICMP-пакет типа «ответ на запрос эха», содержащий те же данные, что и в запросе. Эхо-посылки используются для проверки достижимости удаленных узлов сети и измерения времени прохождения данных.

6.2.5. Исчерпано время жизни

ICMP-пакет данного типа посылается источнику IP-сегмента, который должен быть сброшен по одной из двух причин:

1) исчерпано время жизни IP-сегмента;

2) исчерпано допустимое время на сборку фрагментированного IP-сегмента.

6.2.6. Неверный параметр

С помощью ICMP-пакета данного типа источник IP-сегмента информируется о том, что данный сегмент сброшен вследствие наличия ошибки в каком-либо из полей его заголовка.

7. Протоколы сетевого уровня

Ниже кратко описывается реализвция стека протоколов TCP/IP на базе ряда протоколов сетевого уровня.

7.1. Ethernet

Протокол Ethernet был разработан в начале 1970-х годов совместно фирмами Xerox, DEC и Intel. На его базе в 1982 г. был принят международный стандарт IEEE 802.3 .

Использование протокола сетевого уровня Ethernet совместно с протоколами TCP/IP регламентируется RFC 894.

Основными характеристиками протокола Ethernet являются следующие:

  • шинная логическая топология сети;
  • скорость передачи данных 10 мегабит в секунду;
  • используется для построения локальных вычислительных сетей;
  • обмен данными между узлами сети осуществляется кадрами;
  • для разделения шины между многими узлами используется механизм CSMA/CD;
  • обеспечивает широковещательную (broadcast) и многопунктовую (multicast) рассылку данных.

В качестве физической среды передачи данных Ethernet использует:

  • «толстый» коаксиальный кабель (так называемый 10base5 Ethernet);
  • «тонкий» коаксиальный кабель (10base2);
  • оптоволоконный кабель;
  • витая пара (10baseT).

В первых трех случаях физическая топология сети реально является шинной, в последнем — физическая топология сети представляет собой «звезду».

Примечание. Существуют современные версии Ethernet, обеспечивающие скорость передачи в 100 мегабит в секунду.

Примечание. Ethernet позволяет объединить в локальную сеть узлы, расположенные друг от друга на расстоянии от нескольких десятков метров (10baseT) до нескольких километров (сегменты 10base5, связанные повторителями).

Механизм CSMA/CD (Carrier Sense Multiple Acces with Collision Detection — Множественный Доступ с Контролем Носителя и Обнаружением Столкновений) подразумевает следующий алгоритм получения узлом сети доступа к шине:

  1. прослушивание шины (sense carrier) на предмет наличия в ней сигналов передачи данных другими узлами;
  2. если шина занята, то отложить передачу, если свободна — начать передачу данных;
  3. в течение первых 47 микросекунд передачи кадра данных вести проверку столкновений (collisions) в шине, связанных с возможным одновременным началом передачи данных и другими узлами сети;
  4. при обнаружении столкновения прекратить передачу данных и перейти в состояние ожидания на период времени случайной длины, а потом возобновить попытки передачи кадра.

Обмен данными по протоколу Ethernet всегда реализуется программно-аппаратно с помощью двух компонентов:

  • сетевого контроллера (чаще всего имеющего вид печатной платы, вставляемой в корпус ЭВМ), подключаемого к шине (коаксиальному кабелю, оптоволокну или витой паре медных проводов);
  • драйвера сетевого контроллера, обеспечивающего интерфейс сетевого программного обеспечения (например, IP-модуля) с контроллером.

Примечание. В ОС UNIX сетевой контроллер и его драйвер принято называть » сетевым интерфейсом «.

7.1.1. Формат кадра данных Ethernet

На рис. 7.1 представлен формат кадра данных протокола Ethernet. Для иллюстративных целей показана вложенность в кадр IP-сегмента (содержащего, в свою очередь, TCP-пакет).

64-битовое поле, содержащее фиксированную последовательность битов, используемую для синхронизации схем приема сигналов на узле-адресате.

Адрес приемника и адрес источника

48-битовые поля, содержащие Ethernet-адреса принимающего и передающего кадр узлов сети.

Каждый Ethernet-контроллер в мире имеет уникальный 6-байтовый адрес. Ethernet-адрес принято записывать в виде последовательности шести разделенных символом «двоеточие» двузначных шестнадцатиричных чисел, где каждое число представляет собой значение одного байта адреса, напрмер, f1:e2:d3:c4:b5:a6.

Примечание. Как правило, Ethernet-адрес жестко «зашит» в контроллере, однако существуют контроллеры, допускающие его изменение программным путем.

16-битовое поле, содержащее идентификатор протокола вышележащего уровня, использующего данный Ethernet-кадр. Т.е. поле определяет принадлежность содержимого тела кадра. Наличие данного поля в кадре обеспечивает возможность функционирования в одной сети на базе Ethernet одновременного нескольких различных стеков протоколов, а не только одного TCP/IP.

Примерами значений данного поля являются следующие:

содержит данные, передаваемые в кадре протоколом вышележащего уровня (на рисунке это IP-сегмент, тело которого используется для пересылки TCP-пакета).

Максимальная длина тела кадра протокола сетевого уровня обозначается как MTU (Maximum Transmission Unit) и для Ethernet составляет 1500 байтов.

32-битовое поле, содержащее CRC-контрольную сумму, подсчитанную для всего кадра.

Минимальная длина Ethernet-кадра составляет 64 байта (512 бит). Такое ограничение связано с тем, что контроль столкновений различных кадров в Ethernet-шине согласно алгоритму CSMA/CD выполняется на интервале времени в 47 микросекунд. За это время осуществляется передача 470 бит (при скорости 10 мегабит в секунду), так что 512 — это округление 470 до числа, являющегося степенью 2.

В ситуациях, когда длина данных, передаваемых в теле кадра, недостаточна для формирования кадра длиной не менее 64 байтов, драйвер Ethernet-контроллера искусственно дополняет тело пакета до необходимой длины.

Примечание. Интересно, что согласно стандарту IEEE 802.3 рассмотренное выше 16-битовое поле типа кадра на самом деле является полем длины (в байтах) тела Ethernet-кадра. Для идентификации типа содержимого тела кадра предлагается использовать специальный протокол LLC (Logic Link Control — протокол управления логической связью), занимающий промежуточное положение между Ethernet и вышележащими протоколами. Однако протокол LLC в среде UNIX (а, значит, и в большинстве других ОС) реализован не был: стандартом «de facto» остаются спецификации RFC 894. Хотя надо отметить, что выбор значений идентификаторов типа кадра (0x0800 и больше) не исключает возможности использования этого поля одновременно и для идентификации типа, и для хранения длины тела кадра (максимум 1500).

7.1.2. Протоколы трансляции адресов

Ethernet подобно другим протоколам сетевого уровня обладает собственной системой адресации узлов сети, отличной от системы адресации, принятой в TCP/IP. Это приводит к необходимости взаимной трансляции адресов «IP-адрес в Ethernet-адрес» и обратно.

В UNIX-системах такая трансляция выполняется с помощью специальной таблицы соответствий пар адресов различного типа, которая динамически создается и обновляется сетевым интерфейсом. В момент активизации сетевого интерфейса содержимое таблицы трансляции может загружаться из созданного вручную специального административного файла, однако это не является обязательным.

Для поддержания таблицы трансляции в актуальном состоянии, отражающем текущий состав узлов Ethernet-сети, используется протокол ARP (Address Resolution Protocol) , описанный в RFC 826.

Структура ARP-сегмента приведена на рис. 7.2.

Поле «Hardware» содержит идентификатор типа адреса на сетевом уровне (в нашем случае — Ethernet).

Поле «Идентификатор протокола» определяет протокол межсетевого уровня (в нашем случае — IP).

Поля длин задают длину адресов ( в нашем случае: «Длина HW-адреса» равна 6, а «Длина адреса» равна 4).

Поле «Операция» содержит идентификатор типа ARP-сегмента (запрос или ответ).

Примечание. Как видно из структуры ARP-сегмента протокол ARP может быть использован для совместной работы TCP/IP не только с протоколом Ethernet, но и с другими протоколами сетевого уровня, когда в этом есть необходимость.

Алгоритм использования протокола ARP для построения таблицы трансляции на некотором узле сети (назовем его А) выглядит следующим образом.

  1. На узле А IP-модуль передает сетевому интерфейсу сегмент для его пересылки узлу Б (в сегменте присутствует IP-адрес узла Б). Сетевой интерфейс просматривает свою таблицу трансляции адресов, пытаясь по известному IP-адресу узла Б определить его Ethernet-адрес. Если необходимая строка в таблице есть, то сетевой интерфейс формирует Ethernet-кадр и передает его в сеть.
  2. Если нужной строки в таблице нет, то сетевой интерфейс строит ARP-сегмент, содержащий IP-адрес узла Б, упаковывает его в Ethernet-кадр. Этот кадр в качестве Ethernet-адреса приемника содержит широковещательный адрес, что обеспечит получение этого кадра всеми узлами локальной сети.
  3. Все узлы локальной сети получают данный Ethernet-кадр, а в нем ARP-сегмент. IP-адрес из ARP-сегмента сравнивается с собственным IP-адресом и, если они совпадают (это должно иметь место только на узле Б), то собственный Ethernet-адрес возвращается узлу А в ответном ARP-сегменте.
  4. Получив ответный ARP-сегмент, сетевой интерфейс на узле А добавляет в таблицу трансляции новую строку, содержимое которой и будет использовано для посылки IP-сегмента к узлу Б.

Для того, чтобы таблица трансляции адресов с малым временем реакции отслеживала изменения в сети, ее строки периодически (через 1. 20 минут) принудительно очищаются.

Примечание. Очевидно, что использование протокола ARP возможно только для сетей, обеспечивающих широковещательную рассылку данных.

Задачу построения строк таблицы трансляции по известному Ethernet-адресу решает протокол RARP (Reverse ARP), описанный в RFC 903 и использующий сегмент той же структуры, что протокол ARP. Определение IP-адреса по известному Ethernet-адресу требуется в момент начальной загрузки бездисковых ЭВМ, подключенных к сети.

Примечание. Использование протоколов ARP и RARP может быть отключено системным администратором.

7.2. Протокол SLIP

Протокол SLIP (Serial Line Internet Protocol) обеспечивает соединение двух ЭВМ через последовательный интерфейс (например, V.24 ). Протокол SLIP описан в RFC 1055.

Протокол очень прост. Все SLIP-кадры начинаются со служебного символа 0xEB, называемого ESC, а заканчиваются служебным символом 0xC0, называемым END. Между этими символами располагаются передаваемые данные.

Если служебные символы встречаются в передаваемых данных, то они отсылаются приемнику в виде двухбайтовых последовательностей: и . На принимающей стороне двухбайтовые последовательности преобразуются в ESC и END.

RFC 1055 не специфицирует максимальной длины кадра (MTU), но существующие реализации протокола ориентированы на значение MTU равное 1006 байт.

Примечание. Очевидно, что скорость передачи данных по последовательному интерфейсу невелика. Для повышения эффективности протокола SLIP в RFC 1144 была предложена его модификация, учитывающая то обстоятельство, что при TCP-взаимодействии по последовательной линии большинство полей IP- и TCP-заголовков остаются неизменными на все время логического соединения. Данная модификация SLIP реально пересылает в своих кадрах только те поля IP- и TCP-заголовков, которые меняют свое значение от кадра к кадру.

7.3. Протокол PPP

Протокол PPP (Point-to-Point Protocol) также может быть использован для соединения двух ЭВМ по последовательному интерфейсу. Протокол PPP (RFC 1331) разработан позднее протокола SLIP, поэтому в нем ликвидированы некоторые недостатки протокола SLIP, в частности:

  • поддерживаются различные протоколы вышележащего уровня (а не только IP);
  • используются контрольные суммы.

Для идентификации границ PPP-кадра используется служебный символ 0x7E.

Передаче данных по протоколу PPP предшествует этап тестирования и конфигурирования соединения с помощью протокола LCP (Link Control Protocol), являющегося частью PPP. LCP используется и для завершения соединения.

Кроме того, для обмена управляющей информацией используется протокол NCP (Network Control Protocol). Каждый протокол, лежащий выше PPP, имеет свою версию протокола NCP. NCP, определенный для протокола IP, носит название IPCP (Internet Protocol Control Protocol).

Обмен информацией по TCP/IP-протоколу

Часто возникает необходимость обмениваться данными между программами на разных компьютерах.

Например, это необходимо в чатах,или в программах, которые должны реагировать одновременно на

одно и то же событие. Обмен информации между компьютерами можно реализовать большим

количеством способов. В данной статье я рассмотрю обмен даннымипо протоколу TCP/IP.

Компоненты для обмена данными по TCP/IP

Для обмена данными по протоколу TCP/IP будем использовать три Indy-компоненты:

TIdTCPServer , TIdTCPClient , TIdThreadMgrDefault. Клиентская компонента

предназначена для посылки и приёма сообщений, а серверная компонента — для

приёма сообщения и рассылки клиентским компонентам.

Программная реализация

Программа состоит из двех частей: серверная, на которой стоит серверная компонента,

можно на неё ещё поставить и клиентскую компоненту — для тестирования клиентской

части и возможности генерации сообщений с серверной программы. На клиентской части —

стоит только клиентская компонента. Эта часть предназначена только для посылки и приёма

Серверная часть

Установим на форму в программе серверной части компоненты TIdTCPServer , TIdThreadMgrDefault .

Свяжите свойство ThreadMgr компоненты TIdTCPServer с компонентой TIdThreadMgrDefault.

Для запуска сервера хватит установить свойство компоненты в True:

Для остановки сервера — в False:

Для регистрации подключенного компьютера следует определить событие OnConnect

в компоненте TIdTCPServer.

Для регистрации отключения клиента необходимо определить событие ServerDisconnect.

Обработка команд (рассылка) на серверной части осуществляется с помощью события OnExecute.

Здесь я реализовал дополнительную регистрацию компьютера с помощью команды cmRegisterComp=’REGISTER’, и дополнительно

посылку сообщения, что компьютер отключился: cmUnRegisterComp=’UNREGISTER’.

При передаче сообщения передаётся сообщения типа TCommBlock. Это тип данных мы можем изменять по необходимости.

В данном блоке я объявил переменную для идентификации ComputerName компьютера.

  • Command — команда, которая посылается с клиентского места.
  • MyUserName — имя пользователя, который посылает сообщение.
  • Msg — Текст сообщения.
  • ReceiverName — название компьютера-получателя сообщения, если это поле будет пустым, то сообщение будет
  • отправляться всем компьютерам.

Клиентская часть

Через клиентскую компоненту мы можем отправлять сообщения, а так же получать сообщения от других сообщений.

Установим на форму клиентского приложения компоненту TIdTCPClient .

Установим на форму кнопки Подключиться и Отключиться.

Обработчик кнопки Подключиться:

В кнопке Отключиться прописываем:

Тип TClientHandleThread предназначен для обработки команд с клиентской стороны.

В процедуре HandleInput перехватываются сообщения. В событии EventMest мы можем определить процедуру, которая будет

выполняться при получении сообщения.

Помещаем на форму кнопку Послать, поле ввода Сообщение, и список Команда, где будут перечислены

все доступные команды.

В обработчике щелчка кнопки опишем команду посылки сообщения

TCP/IP

В этом стеке различают несколько уровней, и протоколы высокого уровня всегда базируются на протоколах более низких уровней.

В самом низу находятся физический уровень и канальный уровень. Пример — интерфейс Ethernet, описывающий передачу данных по коаксиальному кабелю или витой паре. Протоколы этих уровней обычно реализуются на уровне железа, например в сетевой карте компьютера.

Выше идёт сетевой уровень, где находится протокол IP, описывающий структуру сети и доставку пакетов.

Ещё выше — транспортный уровень, где находится протокол TCP, использующийся для передачи данных. Эти протоколы обычно реализуются на уровне операционной системы.

На самом верху находится множество протоколов прикладного уровня, выполняющих конкретные прикладные задачи. Обычно они программируются в отдельных приложениях.

Содержание

IP — протокол, лежащий в основе Интернета, его название так и расшифровывается: Internet Protocol.

В настоящее время используются следующие две версии протокола IP:

  • IPv6 — сравнительно новая (текущая версия спецификации опубликована в декабре 1998 [1] ); IP-адрес имеет разрядность 128 бит и записывается в виде восьми 16-битных полей, с использованием шестнадцатеричной системы счисления и с возможностью сокращения двух и более последовательных нулевых полей до :: ; пример: 2001:db8:42::1337:cafe ;
  • IPv4 — «классическая» (1981 г. [2] ); IP-адрес имеет разрядность 32 бита и записывается в виде четырех десятичных чисел в диапазоне 0 … 255 через точку; пример: 192.0.2.34 .

Каждый узел может напрямую связаться только с узлами своей сети (например: подключенными к тому же сегменту Ethernet), для определения которых используется адрес сети — часть IP-адреса, определяемая маской сети). Связь с узлами других сетей осуществляется через промежуточные узлы — маршрутизаторы.

Посмотреть, как выглядит маршрут пакета от вашего компьютера к другим узлам, можно с помощью команды traceroute (в Linux) или tracert (в Windows).

TCP протокол базируется на IP для доставки пакетов, но добавляет две важные вещи:

  • установление соединения — это позволяет ему, в отличие от IP, гарантировать доставку пакетов
  • порты — для обмена пакетами между приложениями, а не просто узлами

Протокол TCP предназначен для обмена данными — это «надежный» протокол, потому что:

  1. Обеспечивает надежную доставку данных, так как предусматривает установления логического соединения;
  2. Нумерует пакеты и подтверждает их прием квитанцией, а в случае потери организует повторную передачу;
  3. Делит передаваемый поток байтов на части — сегменты — и передает их нижнему уровню, на приемной стороне снова собирает их в непрерывный поток байтов.

Соединение двух узлов начинается с handshake (рукопожатия):

  1. Узел A посылает узлу B специальный пакет SYN — приглашение к соединению
  2. B отвечает пакетом SYN-ACK — согласием об установлении соединения
  3. A посылает пакет ACK — подтверждение, что согласие получено

После этого TCP-соединение считается установленным, и приложения, работающие в этих узлах, могут посылать друг другу пакеты с данными.

«Соединение» означает, что узлы помнят друг о друге, нумеруют все пакеты, идущие в обе стороны, посылают подтверждения о получении каждого пакета и перепосылают потерявшиеся по дороге пакеты.

Для узла A это соединение называется исходящим, а для узла B — входящим.

Отметим, что эти термины не имеют никакого отношения к входящему или исходящему трафику. Они показывают только инициатора соединения, то есть направление самого первого пакета (SYN). Любое установленное TCP-соединение симметрично, и пакеты с данными по нему всегда идут в обе стороны.

Когда один из узлов решает, что пора заканчивать соединение, он посылает специальный пакет FIN, после этого узлы прощаются и разрывают соединение.

Сетевой порт — это сетевой ресурс, отображаемый в виде числа (1-65535), которое определяет назначение входящих или исходящих сетевых потоков данных на заданном устройстве.

Если прибегнуть к аналогии, IP адрес — это адрес общежития с вахтёром, а порт — номер комнаты в этом общежитии или фамилия ее жильца.

Согласно IP, в каждом пакете присутствуют IP-адрес узла-источника и IP-адрес узла-назначения. В TCP-пакетах дополнительно указываются порт источника и порт назначения.

Например, почтовое письмо (пакет данных) имеет информацию об отправителе (порт) и информацию о получателе (фамилия или номер комнаты по конкретному адресу).

Узел назначения («вахтер»), получив пакет («письмо»), смотрит на порт назначения («фамилию или номер комнаты») и передает пакет соответствующему у себя приложению («конкретному жильцу»).

Использование портов позволяет независимо использовать TCP протокол («почтовые услуги») сразу многим приложениям на одном и том же компьютере (общежитии).

Клиентом называют приложение, которое пользуется каким-то сервисом, предоставляемым другим приложением — Сервером, обычно на удаленном компьютере. Практически всегда клиент начинает исходящие соединения, а сервер ожидает входящих соединений (от клиентов), хотя бывают и исключения.

Сервер при запуске сообщает Операционной Системе, что хотел бы «занять» определенный порт (или несколько портов). После этого все пакеты, приходящие на компьютер к этому порту, ОС будет передавать этому серверу. Говорят, что сервер «слушает» этот порт.

Клиент, начиная соединение, запрашивает у своей ОС какой-нибудь незанятый порт во временное пользование, и указывает его в посланных пакетах как порт источника. Затем на этот порт он получит ответные пакеты от сервера.

Таким образом, сервер:

  • слушает на определённом порту, заранее известном клиенту
  • занимает этот порт всё время, пока не завершит работу
  • об IP-адресе и номере порта клиента узнаёт из приглашения, посланного клиентом
  • заранее знает IP-адрес и порт сервера
  • выбирает у себя произвольный порт, который освобождает после окончания соединения
  • посылает приглашение к соединению

UDP — это ещё один протокол транспортного уровня. Он тоже базируется на IP и тоже использует порты, но в отличие от TCP он не устанавливает соединений и не требует подтверждения получения каждого пакета.

Поэтому пакеты могут теряться или приходить в неправильном порядке. Зато этот протокол быстрее и использует меньше ресурсов.

На UDP обычно базируют прикладные протоколы, которым скорость доставки данных важнее надежности, например для передачи потокового видео, общения голосом или онлайн-игр.

Большинство прикладных протоколов базируется на TCP.

У многих протоколов прикладного уровня для серверов определены стандартные порты, используемые по умолчанию. Самые известные прикладные протоколы и их стандартные порты:

  • HTTP — основной протокол всемирной паутины (TCP-порт 80)
  • SMTP — протокол пересылки почты (TCP-порт 25)
  • FTP — протокол передачи файлов (TCP-порт 21)
  • DNS — протокол сопоставления доменных имен IP-адресам (UDP-порт 53)

Благодаря использованию стандартных портов мы можем набирать в браузере адреса веб серверов и не указывать порт — наши браузеры сами добавляют стандартный номер порта. Например, адрес http://www.example.com/ на самом деле полностью выглядит так: http://www.example.com:80/

Разумеется, стандартный — не значит обязательный. Практически во всех прикладных протоколах можно указать серверу слушать произвольный номер порта. Правда, тогда этот номер уже указывать обязательно, например http://www.example.com:8080/

Порты в диапазоне от 1 до 1023 называются хорошо известными. Службы, которыми используются эти порты, должны быть описаны как RFC и одобрены IESG. Далее идут зарегистрированные порты (1024 — 49151). Вы можете зарегистрировать в IANA (эта организация как раз занимается всем этим) один или несколько из этих портов под свою программу. Оставшиеся порты с 49152 по 65535 можно использовать без какой-либо регистрации.

Чтобы указать на документ, расположенный в сети, используется унифицированный идентификатор ресурса, или URI (англ. Unified Resource Identifier ), например: https://ru.wikibooks.org/wiki/TCP/IP. Первая часть адреса (от начала до двоеточия) называется схемой (в данном случае — https.) Дальше идёт часть, зависящая от схемы.

Идентификаторы ресурсов (URI) в свою очередь делят на включающие информацию о размещении ресурса в сети URL (англ. Unified Resource Locator ), и лишенные таковой URN (англ. Unified Resource Name .) Приведенный выше URI является примером URL; примеры URN: news:m5jgdq$7ig$1@reader1.panix.com, urn:ietf:rfc:2648, urn:isbn:0-13-066102-3, geo:48.2010,16.3695,183.

Ясно, что для получения ресурса по его URN, программное обеспечение должно вначале каким-либо образом определить (или предположить) его наличие на некотором сетевом ресурсе. Так, NNTP-сервер для URN-схемы news: может быть задан переменной окружения NNTPSERVER . Относящиеся к пространству urn:ietf: URN можно преобразовать по образцу: urn:ietf:rfc:2648 → https://tools.ietf.org/html/rfc2648, или же https://www.rfc-editor.org/rfc/rfc2648.txt.

Пожалуйста, добавляйте шаблон <<По алфавиту >> только на титульные страницы.

Протокол TCP/IP и другие протоколы

TCP/IP

Вся прелесть протокола TCP/IP заключается в том, что он позволяет обмениваться информацией между компьютерами, работающими в разных операционных системах. Например, Novell NetWare умеет «разговаривать» на языке TCP/IP , как и Windows XP Professional .

TCP/IP разработан DARPA ( Defense Advanced Research Projects Agency ) в 1970-х годах. Целью его разработки являлось создание возможности для обмена информацией между различными компьютерами, независимо от их местоположения. С самого начала TCP/IP разрабатывался на компьютерах UNIX , что способствовало росту популярности протокола, так как производители включали TCP/IP в набор программного обеспечения каждого UNIX -компьютера. TCP/IP находит свое отображение в эталонной модели OSI , как это показано на рисунке 3.1.

Вы видите, что TCP/IP располагается на третьем и четвертом уровнях модели OSI . Смысл этого состоит в том, чтобы оставить технологию работы LAN разработчикам. Целью TCP/IP является передача сообщений в локальных сетях любого типа и установка связи с помощью любого сетевого приложения.

Протокол TCP/IP функционирует за счет того, что он связан с моделью OSI на двух самых нижних уровнях — на уровне передачи данных и физическом уровне. Это позволяет TCP/IP находить общий язык практически с любой сетевой технологией и, как результат, с любой компьютерной платформой. TCP/IP включает в себя четыре абстрактных уровня, перечисленных ниже.

  • Сетевой интерфейс. Позволяет TCP/IP активно взаимодействовать со всеми современными сетевыми технологиями, основанными на модели OSI.
  • Межсетевой. Определяет, как IP управляет пересылкой сообщений через маршрутизаторы сетевого пространства, такого как интернет.
  • Транспортный. Определяет механизм обмена информацией между компьютерами.
  • Прикладной. Указывает сетевые приложения для выполнения заданий, такие как пересылка, электронная почта и прочие.

Благодаря своему широкому распространению протокол TCP/IP фактически стал интернет -стандартом. Компьютер , на котором реализована сетевая технология , основанная на модели OSI ( Ethernet или Token Ring ), имеет возможность устанавливать связь с другими устройствами. В «Основы организации сети» мы рассматривали уровни 1 и 2 при обсуждении LAN -технологий. Теперь мы перейдем к стеку OSI и посмотрим, каким образом компьютер устанавливает связь в интернете или в частной сети. В этом разделе рассматривается протокол TCP/IP и его конфигурации.

Что такое TCP/IP

То, что компьютеры могут общаться между собой, само по себе представляется чудом. Ведь это компьютеры от разных производителей, работающие с различными операционными системами и протоколами. При отсутствии какой-то общей основы такие устройства не смогли бы обмениваться информацией. При пересылке по сети данные должны иметь такой формат, который был бы понятен как отправляющему устройству, так и принимающему.

TCP/IP удовлетворяет этому условию за счет своего межсетевого уровня. Этот уровень напрямую совпадает с сетевым уровнем эталонной модели OSI и основан на фиксированном формате сообщений, называемом IP-дейтаграммой. Дейтаграмма — это нечто вроде корзины, в которую помещена вся информация сообщения. Например, при загрузке веб-страницы в браузер то, что вы видите на экране, доставлено по частям дейтаграммой.

Легко перепутать дейтаграммы с пакетами. Дейтаграмма — это информационная единица, в то время как пакет — это физический объект сообщения (созданный на третьем и более высоких уровнях), который действительно пересылается в сети. Хотя некоторые считают эти термины взаимозаменяемыми, их различие на самом деле имеет значение в определенном контексте — не здесь, конечно. Важно понять то, что сообщение разбивается на фрагменты, передается по сети и собирается заново на принимающем устройстве.

Положительным в таком подходе является то, что если один-единственный пакет будет испорчен во время передачи, то потребуется повторная передача только этого пакета, а не сообщения целиком. Другой положительный момент состоит в том, что ни одному хосту не приходится ждать неопределенно долгое время, пока не закончится передача на другом хосте, чтобы послать свое собственное сообщение.

TCP и UDР

При пересылке IP-сообщения по сети используется один из протоколов транспортировки: TCP или UDР. TCP (Transmission Control Protocol) составляет первую половину аббревиатуры TCP/IP. Протокол пользовательских дейтаграмм (User Datagram Protocol, UDР) используется вместо ТСР для транспортировки менее важных сообщений. Оба протокола служат для корректного обмена сообщениями в сетях TCP/IP. Между этими протоколами есть одно существенное различие.

ТСР называют надежным протоколом, так как он связывается с получателем для проверки факта получения сообщения.

UDР называют ненадежным протоколом, так как он даже не пытается устанавливать связь с получателем, чтобы убедиться в доставке.

Важно помнить, что для доставки сообщения можно воспользоваться только одним протоколом. Например, при загрузке веб-страницы доставкой пакетов управляет ТСР без всякого вмешательства UDP. С другой стороны, простой протокол передачи файлов (Trivial File Transfer Protocol, TFTP) загружает или отправляет сообщения под контролем протокола UDP.

Используемый способ транспортировки зависит от приложения — это может быть электронная почта, НТТР, приложение, отвечающее за сетевую работу, и так далее. Разработчики сетевых программ используют UDP везде, где только можно, так как этот протокол снижает избыточный трафик. Протокол ТСР прилагает больше усилий для гарантированной доставки и передает гораздо больше пакетов, чем UDP. На рисунке 3.2 представлен список сетевых приложений, и показано, в каких приложениях применяется ТСР, а в каких — UDP. Например, FTP и TFTP делают практически одно и то же. Однако TFTP, в основном, применяется для загрузки и копирования программ сетевых устройств. TFTP может использовать UDP, потому что при неудачной доставке сообщения ничего страшного не происходит, поскольку сообщение предназначалось не конечному пользователю, а администратору сети, уровень приоритета которого гораздо ниже. Другим примером является сеанс голосовой видеосвязи, в котором могут быть задействованы порты как для ТСР-сессий, так и для UDP. Так, сеанс TCP инициируется для обмена данными при установке телефонной связи, в то время как сам телефонный разговор передается посредством UDP. Это связано со скоростью потоковой передачи голоса и видео. В случае потери пакета не имеет смысла повторно посылать его, так как он уже не будет соответствовать потоку данных.

Формат IP-дейтаграммы

IP-пакеты можно разбивать на дейтаграммы. Формат дейтаграммы создает поля для полезной нагрузки и для данных управления передачей сообщения. На рисунке 3.3 показана схема дейтаграммы.

Примечание. Пусть вас не вводит в заблуждение величина поля данных в дейтаграмме. Дейтаграмма не перегружена дополнительными данными. Поле данных является на самом деле самым большим полем дейтаграммы.

Важно помнить, что IP-пакеты могут иметь различную длину. В «Основы организации сети» говорилось о том, что информационные пакеты в сети Ethernet имеют размер от 64 до 1400 байт. В сети Token Ring их длина составляет 4000 байт, в сети ATM — 53 байта.

Примечание. Использование в дейтаграмме байтов может привести вас в недоумение, так как передача данных чаще связана с такими понятиями, как мегабиты и гигабиты в секунду. Однако в связи с тем, что компьютеры предпочитают работать с байтами данных, в дейтаграммах также используются байты.

Если вы еще раз посмотрите на формат дейтаграммы на рисунке 3.3, то заметите, что крайние поля слева имеют постоянную величину. Так происходит, потому что центральный процессор, работающий с пакетами, должен знать, где начинается каждое поле. Без стандартизации этих полей конечные биты будут представлять собой мешанину из нулей и единиц. В правой части дейтаграммы находятся пакеты переменной длины. Назначение различных полей дейтаграммы состоит в следующем.

  • VER . Версия протокола IP, используемого станцией, где появилось исходное сообщение. Текущей версией IP является версия 4. Это поле обеспечивает одновременное существование различных версий в межсетевом пространстве.
  • HLEN. Поле информирует получающее устройство о длине заголовка, чтобы центральный процессор знал, где начинается поле данных.
  • Service type (Тип сервиса). Код, сообщающий маршрутизатору о типе управления пакетом с точки зрения уровня сервиса (надежность, первоочередность, отсрочка и т. д.).
  • Length (Длина). Общее количество байт в пакете, включая поля заголовка и поле данных.
  • >checksum . Контрольная сумма — это число, которое используется для проверки целостности сообщения. Если контрольные суммы всех пакетов сообщения не совпадают с правильным значением, то это означает, что сообщение было искажено.
  • Source IP address (Адрес отправителя). 32-битный адрес хоста, отправившего сообщение (обычно персональный компьютер или сервер).
  • Destination IP address (Адрес получателя). 32-битный адрес хоста, которому отправлено сообщение (обычно персональный компьютер или сервер).
  • IP options. Используются для тестирования сети или других специальных целей.
  • Padding. Заполняет все неиспользованные (пустые) позиции битов, чтобы процессор мог правильно определить позицию первого бита в поле данных.
  • Data. Полезная нагрузка отправленного сообщения. Например, в поле данных пакета может содержаться текст электронного письма.

Как говорилось ранее, пакет состоит из двух основных компонентов: данных об обработке сообщения, размещенных в заголовке, и собственно информации. Информационная часть находится в секторе полезной нагрузки. Можете представить себе этот сектор в виде грузового отсека космического корабля. Заголовок — это все бортовые компьютеры шаттла в кабине управления. Он распоряжается всей информацией, необходимой всевозможным маршрутизаторам и компьютерам на пути следования сообщения, и используется для поддержания определенного порядка сборки сообщения из отдельных пакетов.

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

TCP/IP (Transmission Control Protocol/Internet Protocol)

Содержание

Стек протоколов ТСР/IP

IP-сеть

IP-сеть (какой является Интернет) отличается от глобальных сетей тем, что является составной сетью из подсетей, число которых измеряется тысячами. Для Интернета характерно использование стека протоколов не эталонной модели OSI, а эталонной модели TCP/IP [1] [2] . На рис. 1 представлен стек протоколов TCP/IP и его соответствие уровням модели OSI. Отличительной особенностью TCP/IP является также то, что IP-пакеты могут передаваться с использованием различных технологий составных сетей, в том числе посредством уже рассмотренных глобальных сетей Х.25, FR и ATM, которые являются самостоятельными со своими протоколами, адресацией и др. Другой особенностью является то, что эталонная модель TCP/IP в отличие от эталонной модели OSI была разработана под конкретную составную сеть (интерсеть или internet). Подсети, составляющую эту составную сеть, соединяются между собой маршрутизаторами. Такими подсетями могут быть как локальные, так и глобальные сети различных технологий.

Прикладной уровень стека TCP/IP (уровень 4) соответствует трём верхним уровням модели OSI. К протоколам прикладного уровня относятся протокол переноса файлов (FTP); протокол электронной почты (SMTP); протокол, используемый для создания страниц во всемирной паутине WWW (HTTP) — основа для доступа к связанным между собой документам; протокол преобразования (DNS) текстовых имен в сетевые IP-адреса, простой протокол сетевого управления (SNMP), протоколы соответственно сигнализации и передачи данных (SIP, RTP/RTCP) в IP-телефонии или речь поверх IP (VoIP-Voice over IP) и др. К протоколам прикладного уровня относятся также протоколы информационной безопасности Kerberos, PGP, SET и др.

Транспортный уровень стека TCP/IP

Транспортный уровень стека TCP/IP (уровень 3) обеспечивает передачу данных между прикладными процессами. Транспортный уровень включает два протокола TCP и UDP. Протокол управления передачей TCP (Transmission Control Protocol) является надёжным протоколом с установлением соединения, позволяющим управлять потоком, т.е. без ошибок доставлять байтовый поток с одной машины на любую другую машину составной сети. Для того чтобы обеспечить надёжную доставку данных, протокол TCP предусматривает установление логического соединения. Это позволяет ему нумеровать пакеты, подтверждать их прием квитанциями, в случае потери организовывать повторные передачи, распознавать и уничтожать дубликаты, доставлять прикладному уровню в том порядке, в котором они были отправлены. Пакеты, поступающие на транспортный уровень, организуются в виде множества очередей к точкам входа прикладных процессов. В терминологии TCP/IP такие очереди, однозначно определяющие приложение в пределах хоста, называется портами. За портами каждого стандартного приложения определён номер например, порт TCP № 21 — за протоколом передачи файла FTP (File Transport Protocol). Номер порта в совокупности с номером сети и номером конечного узла имеет название сокет (socket). Каждое логическое соединение идентифицируется парой сокетов взаимодействующих процессов. Второй протокол транспортного уровня -протокол пользователей дейтаграмм UDP (User Data Protocol) является простейшим дейтаграммным протоколом (т.е. без установления соединения). К протоколу транспортного уровня относится протокол информационной безопасности SSL/TLS. Протоколы прикладного и транспортного уровней стека уровней TCP/IP устанавливаются на оконечных станциях (хостах) сети.

Межсетевой уровень стека TCP/IP

Межсетевой уровень стека TCP/IP (уровень 2), называемый также сетевым уровнем (по модели OSI), является стержнем всей архитектуры TCP/IP. Именно этот уровень, функции которого соответствуют сетевому уровню модели OSI, обеспечивает перенос пакетов данных в пределах всей составной сети. Протоколы межсетевого уровня поддерживают интерфейсы с вышележащим транспортным уровнем, получая от него запросы на передачу данных по составной сети. Основным протоколом межсетевого уровня является межсетевой протокол IP (Internet Protocol). Он обеспечивает продвижение пакета между подсетями — от одного пограничного маршрутизатора до другого, до тех пор, пока пакет не попадёт в сеть назначения. Протокол IP так же, как и протоколы функций коммутации глобальных сетей связи (FR, ATM и др.), устанавливается не только на оконечных пунктах (хостах), но и на всех маршрутизаторах сети. Маршрутизатор представляет собой процессор, который связывает между собой две сети (подсети). Протокол межсетевого уровня работает в режиме без установления соединения (дейтаграммный режим), в соответствии с которым он не отвечает за доставку пакета до узла назначения. При потере пакета в сети протокол IP не пытается восстановить его.

В заголовке IP-пакета содержится IP-адрес отправителя и получателя — по 4 байта каждый. К межсетевому уровню относятся также протоколы, выполняющие функции составления и коррекции таблиц маршрутизации RIP (Routing Internet Protocol), OSPF (Open Shortest Path First), протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). К протоколу сетевого уровня относится протокол информационной безопасности IPSec. Уровень сетевого доступа стека TCP/IP (уровень 1) отвечает за организацию интерфейса с частными технологиями подсетей составной сети. Перемещение пакета можно рассматривать как последовательность «прыжков» от одного маршрутизатора к другому. На очередном маршрутизаторе на сетевом уровне определяется сетевой адрес следующего по маршруту маршрутизатора. Чтобы передать пакет IP этому маршрутизатору, надо перенести его через некоторую подсеть. Для этого необходимо использовать транспортные средства этой подсети. Задача уровня сетевого доступа сводится к инкапсуляции (вложению) пакета в блок данных этой промежуточной сети и в преобразовании сетевых адресов граничных маршрутизаторов этой подсети в новый тип адреса, принятой в технологии промежуточной сети.

Пример переноса данных в IP-сети

На примере IP-сети (рис. 2) покажем перенос данных оконечной станции А локальной вычислительной сети (подсети) Ethernet в оконечную станцию В сети (подсети) АТМ. Как видно из рисунка в эту составную сеть еще входит сеть (подсеть) Frame Relay. В основу приведенного упрощенного описания положен пример межсетевого взаимодействия сетей Ethernet и АТМ, приведенный в работе [3] . Дополнительно в эту составную сеть введена сеть (подсеть) Frame Relay. Принцип маршрутизации и краткое описание протоколов маршрутизации в сети Интернет приведены в следующей главе. Для того, чтобы технология TCP/IP могла решать задачу объединения сетей, ей необходима собственная глобальная система адресации, не зависящая от способов адресации узлов в отдельных подсетях. Таким адресом является IP-адрес, состоящий из адреса подсети (префикса) и адреса оконечного устройства (хоста). Приведем пример адресации подсети и хоста. IP-адрес 200.15.45.126/25 означает, что 25 старших бит из выделенных 4-х байт под адресацию являются адресом подсети, а оставшиеся 7 бит означают адрес хоста в этой сети.

Как видно из предыдущих глав, глобальные сети Frame Relay и АТМ имеют различные системы нумерации, которые отличаются от системы нумерации локальной вычислительной сети (ЛВС) технологии Ethernet. Каждый компьютер Ethernet имеет уникальный физический адрес, состоящий из 48 бит. Этот адрес называется МАС-адресом и относится к канальному уровню — управлению доступом к среде MAC (Media Access Control). Для организации межсетевого взаимодействия подсетей различной технологии и адресации используются маршрутизаторы, включающие IP-пакеты. В состав этих пакетов входят глобальные IP-адреса. Каждый интерфейс маршрутизатора IP-сети и оконечного устройства включает два адреса – локальный адрес оконечного устройства подсети и IP-адрес.

Рассмотрим продвижение IP-пакета в сети (рис. 2).

  1. Пользователь компьютера А сети Ethernet, имеющий IP-адрес (IP-адрес 1), обращается по протоколу передачи файла FTP к компьютеру В, подключенному к сети АТМ и имеющий IP-адрес (IP-адрес 6).
  2. Компьютер А формирует кадр Ethernet для отправки IP-пакета. По таблице маршрутизации в компьютере А на основании IP-адресов А и В определятся маршрутизатор М1 и входящий интерфейс для передачи этого IP-пакета. При этом становится известен IP-адрес интерфейса маршрутизатора М1(IP-адрес 2).
  3. Компьютер А отправляет по сети Ethernet IP-пакет, инкапсулированный в кадр Ethernet и включающий следующие поля (рис. 3).

Протоколы TCP/IP

Ниже приводится краткое описание протокола прикладного уровня SNMP и протокола транспортного уровня TCP архитектуры TCP/IP.

Протокол прикладного уровня SNMP

Большие сети не могут быть настроены и управляться вручную в плане изменения конфигурации сети, устранения неисправности в сети, сбора параметров о качестве обслуживания. Если в сети используется оборудование разных производителей, необходимость таких средств становится особенно необходимой. В связи с этим были разработаны стандарты сетевого управления. Одним из наиболее широко используемых является простой протокол управления сетью SNMP (Simple Network Management Protocol) [4] . Приведем краткие сведения об архитектуре сетевого управления. Система сетевого управления включает инструментальные средства для решения задач управления. При этом необходимо использование уже имеющегося оборудования путем внедрения в него дополнительных аппаратных и программных средств для управления сетью. Это программное обеспечение размещается в хостах, коммуникационных процессорах и других устройствах сети. Модель сетевого управления, используемая для SNMP состоит из следующих элементов:

  • станция управления, выполняющая роль интерфейса между сетевым администратором и системой сетевого управления. Станция управления позволяет осуществить мониторинг сети и управление сетью. В этой станции имеется база данных с информацией, полученной из информационных баз всех управляемых объектов сети;
  • агент управления (хосты, коммутаторы и др.), которые отвечают на запросы от станции управления. Агент обеспечивает информацией станцию и без запроса;
  • агент поддерживает базу данных, именуемую MIB (база управляющей информации, Management Information Base), в которой записаны конфигурация, характеристики и состояние устройств.

Станция управления и агенты взаимодействуют по протоколу SNMP. Так как управление сетью задача многоцелевая, приведем некоторые возможности использования протокола SNMP в сети Frame Relay [5] . Агент поддерживает базу данных, именуемую MIB (база управляющей информации, Management Information Base), в которой записаны конфигурация, характеристики и состояние устройств. Форум Frame Relay стандартизировал MIB для устройств Frame Relay. В большинстве служб Frame Relay провайдер собирает информации от агентов SNMP в каждом коммутаторе FR и записывает ее в центральную базу MIB для общего пользования. Тем самым пользователю предоставляется единый источник статистической информации обо всех соединениях виртуальных каналов сети. Это дает возможность отследить свои потоки данных в сети провайдера от коммутатора к коммутатору. Можно использовать SNMP для сбора статистики и аварийных сообщений от собственного оборудования, подключенного к сети FR. Для этого приходится работать с множеством MIB. Для сбора данных на основе SNMP можно использовать виртуальный канал FR.

SNMP может управлять конфигурацией сети. Для сети FR это касается как физической, так и логической конфигурации сети, включая установление адресации, определение DLCI, назначение полосы пропускания для PVC. SNMP может управлять устранением неисправностей в сети при получении системой управления аварийных сообщений от агента сетевого устройства.

Обеспечение информационной безопасности протокола SNMP

В документе RFC 2574 [6] определяется модель USM (User Security Model – модель защиты пользователя) при использовании протокола SNMP. USM разрабатывалась с целью защиты от угроз следующих типов.

  1. Модификация информации. По пути следования сообщения, сгенерированного авторизованным объектом, некоторый другой объект может изменить это сообщение, чтобы выполнить несанкционированные операции управления (например, установив соответствующие значения объекта управления). Суть угрозы заключается в том, что несанкционированный объект может изменить любые параметры управления, включая параметры конфигурации, выполняемых действий и контроля.
  2. Имитация. Объект может пытаться выполнить не разрешенные для него операции управления, отождествляя данный объект с некоторым авторизованным объектом.
  3. Модификация потока сообщений. Протокол SNMP предназначен для работы над транспортным протоколом, не предполагающим установку соединений. Существует угроза переупорядочения, задержки или воспроизведения (дублирования) сообщений SNMP для несанкционированного управления. Например, можно скопировать и впоследствии воспроизвести сообщение, вызывающее перезапуск устройства.
  4. Разглашение информации. Наблюдая за потоком обмена данными между администратором и агентом, объект может выяснить значения управляемых объектов и распознать подлежащие регистрации события. Например, наблюдение за набором команд, изменяющих пароли, может позволить атакующему узнать новые пароли.

Протокол транспортного уровня TCP

Протокол транспортного уровня TCP выполняет функцию управления потоками между оконечными пунктами, так как уровень IP не гарантирует правильной доставки дейтаграмм. Дейтаграммы с уровня IP могут прибывать в неправильном порядке. Восстанавливает сообщения из таких дейтаграмм протокол TCP, обеспечивая этим надежный режим установленного соединения с низкой вероятностью потери пакета. Механизм управления потоками, используемый ТСP, отличается от механизма восстановления правильной последовательности кадров в Х.25 и называется схемой кредитов. В этой схеме считается, что каждый передаваемый байт данных имеет порядковый номер. Границы между сообщениями не сохраняются. Например, если отправляющий прикладной процесс записывает в ТСP-поток четыре 512-байтовые порции данных, эти данные могут быть доставлены получающему процессу в виде четырех 512-байтовых порций, либо двух 1024-байтовых порций, либо одной 2048-байтовой порции. Каждая протокольная единица PDU TCP называется сегментом TCP и включает в заголовок сегмента порт источника данных и порт получателя. Значения портов идентифицируют соответствующих пользователей (приложения) двух объектов TCP.

Логическая связь относится именно к данной паре значения портов. В процессе связи каждый объект отслеживает сегменты TCP, получаемые от другой стороны или отправленные другой стороне, для того, чтобы регулировать поток сегментов и восстанавливать утерянные или поврежденные сегменты. Стандартный номер порта однозначно идентифицирует тип приложения, однако он не может однозначно идентифицировать прикладной процесс этого приложения. Одно приложение может одновременно осуществлять несколько процессов. Поэтому прикладной процесс однозначно определяется в пределах сети и в пределах отдельного компьютера парой (IP-адрес, номер порта) и называется сокетом (socket). Логическое TCP-соединение однозначно идентифицируется парой сокетов, определенных для этого соединения двумя взаимодействующими сокетами.

При работе на хост-отправителе протокол TCP рассматривает информацию, поступающую к нему от уровня приложений, как неструктурированный поток байтов. Эти данные буферируются средствами TCP. На уровень IP из буфера «вырезаются» сегменты, к которым добавляются заголовки. В состав заголовка входят сегменты SYN и ACK, служащие для установления TCP-соединения.

Для передачи сегмента данных имеются три поля, связанные с управлением потоком (восстановлением целостности принятого сообщения): порядковый номер (SN), номер подтверждения (AN) и окно (W).Когда транспортный объект отправляет сегмент, он помещает в поле данных сегмента порядковый номер первого байта. Принимающий объект подтверждает получение сегмента с помощью обратного сегмента, в котором (АN=i, W=j), что означает:

  • все байты до SN=i-1 подтверждены. Следующий ожидаемый байт имеет номер АN=i.
  • разрешается отправить дополнительное окно из W=j байт данных, т.е. байты от I до i+j-1.

Таким образом, протокол TCP обеспечивает надежную доставку сообщений, поступающих из сети от ненадежного дейтаграммного протокола на межсетевом уровне. В сети Х.25 функцию надежной доставки выполняет канальный уровень модели OSI, который был подробно рассмотрен в предыдущих главах, а в сети Frame Relay эту функцию выполняет протокол ITU-T Q.921.

Интернет | TCP/IP

Стек протоколов TCP/IP — набор сетевых протоколов передачи данных, используемых в сетях, включая сеть Интернет. Название TCP/IP происходит из двух наиважнейших протоколов семейства — Transmission Control Protocol (TCP) и Internet Protocol (IP), которые были разработаны и описаны первыми в данном стандарте.

История создания протокола TCP/IP

В 1969 году на свет появляется ARPANET (от англ. Advanced Research Projects Agency Network ) — компьютерная сеть, которая стала прототипом сети Интернет.

Команда разработчиков сети ARPANET
Однако развитие проекта ARPANET требовало разработки новой версии протокола передачи данных, т.е. набора правил, определяющих принципы обмена данными между различными компьютерными программами и удовлетворяющих требованиям окружения с открытой сетевой архитектурой. В 1974 году Internet Network Working Group (INWG), руководимая Винтоном Серфом (Vinton Cerf), представила универсальный протокол передачи данных и объединения сетей. Этот протокол был назван Transmission Control Protocol/Internet Protocol (TCP/IP — Протокол управления передачей/Межсетевой протокол) — TCP/IP. Это было попадание в яблочко. В современном Интернете до сих пор используется именно этот протокол.

Хронология возникновения TCP/IP
DARPA заключило три контракта на реализацию TCP/IP — со Стэнфордом (Винтон Серф), с BBN (Рэй Томлинсон) и с Университетским колледжем Лондона (UCL, Петер Кирстен — Peter Kirstein). (В статье Серфа и Кана использовалось название TCP, за которым скрывались оба протокола.) Стэнфордская команда, возглавляемая Серфом, подготовила детальные спецификации, после чего примерно за год были выполнены три реализации TCP, способные взаимодействовать друг с другом. Начался долгий период экспериментов и разработок, направленных на развитие и шлифовку концепций и технологий Интернета. Отправляясь от первых трех сетей (ARPANET, Packet Radio, Packet Satellite) и образовавшихся вокруг них коллективов исследователей, экспериментальное окружение росло, вбирая в себя, по существу, все виды сетей и очень широкое сообщество исследователей и разработчиков. Каждое расширение ставило новые задачи. Ранние реализации TCP были выполнены для больших систем с разделением времени, таких как Tenex и TOPS 20. Когда начали появляться настольные системы, многие посчитали, что для персональных компьютеров TCP — слишком большой и сложный протокол. Дэвид Кларк и его исследовательская группа из MIT решили доказать возможность компактной и простой реализации TCP, выполнив ее сначала для Xerox Alto (ранняя персональная рабочая станция, созданная в Xerox PARC), а затем для IBM PC.

Эта реализация обладала полной интероперабельностью с другими воплощениями TCP, но была специально настроена на набор приложений и параметры производительности персональных компьютеров. Таким образом, удалось продемонстрировать, что рабочие станции могут войти в Интернет наряду с большими системами с разделением времени. В 1976 году Клейнрок опубликовал первую книгу по ARPANET. В ней он обращал особое внимание на сложность протоколов и связанные с этим опасности. Книга способствовала распространению идей пакетной коммутации среди очень широкого сообщества. Большое распространение в 1980-е годы локальных сетей, персональных компьютеров и рабочих станций дало толчок бурному росту Интернета.

Карта сети ARPANET за 1980 год
Технология Ethernet, разработанная в 1973 году Бобом Меткалфом (Bob Metcalfe) из Xerox PARC, в наши дни является, вероятно, доминирующей сетевой технологией в Интернете, а ПК и рабочие станции стали доминирующими компьютерами. Переход от небольшого количества сетей с умеренным числом систем с разделением времени (первоначальная модель ARPANET) к множеству сетей привел к выработке ряда новых концепций и внесению изменений в базовые технологии. Прежде всего, были определены три класса сетей (A, B и C), чтобы учесть разные масштабы конфигураций. В класс A входят большие сети общенационального масштаба (малое количество сетей с большим числом компьютеров). Класс B предназначен для сетей регионального масштаба, класс C — для локальных сетей (большое количество сетей с относительно малым числом компьютеров). Рост Интернета вызвал важные изменения и в подходе к вопросам управления. Чтобы сделать сеть более дружественной, компьютерам были присвоены имена, делающие ненужным запоминание числовых адресов. Первоначально, при небольшом количестве компьютеров, было разумно иметь единую таблицу с их именами и адресами. Переход к большому числу независимо администрируемых сетей (таких, как ЛВС) сделал идею единой таблицы непригодной. Пол Мокапетрис (Paul Mockapetris) из Института информатики Университета Южной Калифорнии (USC/ISI) придумал доменную систему имен (Domain Name System, DNS). DNS позволила создать масштабируемый распределенный механизм для отображения иерархических имен компьютеров (например www.acm.org) в Интернет-адресах.

Доменная система
com — коммерческие организации
edu — учебные и научные организации
gov — правительственные организации
mil — военные организации
net — сетевые организации разных сетей
org — другие организации

С ростом Интернета пришлось пересмотреть и характер функционирования маршрутизаторов. Первоначально существовал единый распределенный алгоритм маршрутизации, единообразно реализуемый всеми маршрутизаторами в Интернете. В условиях быстрого увеличения числа сетей стало невозможно расширять этот ранний подход в нужном темпе. Его пришлось заменить иерархической моделью маршрутизации с Внутренним шлюзовым протоколом (Interior Gateway Protocol, IGP), используемым внутри каждой области Интернета, и Внешним шлюзовым протоколом (Exterior Gateway Protocol, EGP), применяемым для связывания областей между собой. Подобная архитектура позволила иметь в разных областях разные варианты IGP, учитывающие специфику требований к стоимости, скорости реконфигурации, устойчивости и масштабируемости.

Кроме алгоритма, тяжелым испытанием стал рост таблиц маршрутизации. Недавно были предложены новые подходы к агрегированию адресов (в частности, бесклассовая междоменная маршрутизация, CIDR), позволяющие уменьшить размер этих таблиц. Еще одной проблемой, вызванной ростом Интернета, стало внесение изменений в программное обеспечение, особенно в ПО хостов. DARPA поддержало исследования Университета Беркли (Калифорния) по модификации операционной системы Unix, включая встраивание реализации TCP/IP, выполненной в компании BBN. Хотя позднее в Беркли переписали программы, полученные от BBN, чтобы более эффективно объединить их с Unix-системой в целом и ядром ОС в особенности, встраивание TCP/IP в Unix BSD оказалось критически важным для распространения протоколов среди исследовательского сообщества. Дело в том, что большая часть специалистов в области информатики в то время начала использовать Unix BSD в своей повседневной практике. Оглядываясь назад, можно прийти к заключению, что стратегия встраивания протоколов Интернета в операционную систему, поддерживаемую исследовательским сообществом, явилась одним из ключевых элементов успешного и повсеместного распространения Интернета. Одной из самых интересных задач был перевод ARPANET с протокола NCP на TCP/IP, состоявшийся 1 января 1983 года.Перевод ARPANET с NCP на TCP/IP позволил разделить эту сеть на MILNET, собственно сеть для военных нужд, и ARPANET, использовавшуюся в исследовательских целях.

Перевод ARPANET с NCP на TCP/IP
Это был переход в стиле «дня X», требующий одновременных изменений на всех компьютерах. (На долю опоздавших оставались коммуникации, действовавшие с помощью специализированных средств.) Переход тщательно планировался всеми заинтересованными сторонами в течение нескольких предшествующих лет и прошел на удивление гладко (но привел к распространению значка «Я пережил переход на TCP/IP»). Протокол TCP/IP был принят в качестве военного стандарта тремя годами раньше, в 1980 году. Это позволило военным начать использование технологической базы Интернета и, в конце концов, привело к разделению на военное и гражданское Интернет-сообщества.

К 1983 году ARPANET использовало значительное число военных исследовательских, разрабатывающих и эксплуатирующих организаций. Перевод ARPANET с NCP на TCP/IP позволил разделить эту сеть на MILNET, обслуживавшую оперативные нужды, и ARPANET, использовавшуюся в исследовательских целях. Таким образом, к 1985 году технологии Интернета поддерживались широкими кругами исследователей и разработчиков. Интернет начинали использовать для повседневных компьютерных коммуникаций люди самых разных категорий. Особую популярность завоевала электронная почта, работавшая на разных платформах. Совместимость различных почтовых систем продемонстрировала выгоды массовых электронных коммуникаций между людьми.

2 ноября 1988 года выпускник Корнельского университета Роберт Таппан Моррис запустил в сети свою программу, которая из-за ошибки начала бесконтрольное распространение и многократное инфицирование узлов сети. В результате было инфицировано около 6200 машин, что составило 7,3 % общей численности машин в сети. Д. Червь Морриса был одним из первых вирусов, подсчитанные потери, хотя формально червь не наносил какою-либо ущерба данным в инфицированных ЭВМ, были оценены на сумму в 98 253 260 долларов, и мировое сообщество всерьез озаботилась проблемой компьютерных вирусов.

Формирование широкой общественности

Интернет — это не только собрание технологий, но и собрание сообществ. Успехи Интернета в значительной степени объясняются, как его способностью удовлетворить основные социальные потребности, так и возможностью эффективно использовать общественность для развития инфраструктуры. Дух коллективизма, содружества в Интернете имеет глубокие корни, он зародился еще в начале работ над ARPANET. Пионеры ARPANET работали как единый спаянный коллектив, чтобы как можно быстрее продемонстрировать жизнеспособность технологии пакетной коммутации. Аналогично проекты пакетных радио- и спутниковой сетей (Packet Radio, Packet Satellite), равно как и другие исследовательские программы DARPA в области информатики, развивались в условиях сотрудничества многих подрядчиков, интенсивно использовавших для координации все наличные механизмы. Исторически первым механизмом была электронная почта, затем к ней добавились разделение файлов и удаленный доступ; сейчас пришел черед Всемирной паутины. В рамках каждой из программ формировалась рабочая группа, первой из которых была Сетевая рабочая группа ARPANET. В силу уникальной инфраструктурной роли, которую сеть ARPANET играла для многих исследовательских программ в начале развития Интернета, Сетевая рабочая группа была преобразована в Рабочую группу Интернета (Internet Working Group). В конце 1970-х годов, когда стало понятно, что рост Интернета сопровождается ростом заинтересованного исследовательского сообщества, все больше нуждающегося в средствах координации, Винт Серф, руководивший в то время в DARPA Программой «Интернет», сформировал несколько координирующих органов — Международный совет по сотрудничеству (International Cooperation Board, ICB), Исследовательскую группу «Интернет» (Internet Research Group) и Совет по конфигурационному управлению Интернетом (Internet Configuration Control Board, ICCB). Совет ICB, который возглавил Петер Кирстен из UCL, должен был координировать работы с рядом европейских стран, участвовавших в проекте Packet Satellite. Исследовательская группа «Интернет» обеспечивала среду для обмена информацией общего характера. Совету ICCB под руководством Кларка отводились «пригласительные» функции; он должен был помогать Серфу управлять нарастающей Интернет-активностью.

В 1983 году исследовательскую группу «Интернет» возглавил Барри Лейнер. Вместе с Кларком они решили, что продолжающийся рост Интернет-сообщества требует перестройки координирующих механизмов. Совет ICCB был упразднен, ему на смену пришла совокупность Тематических групп (Task Forces), занимавшихся определенными технологическими областями (например, маршрутизаторами, сквозными протоколами и т. п.). Из руководителей Тематических групп был образован Совет по развитию Интернета (Internet Activities Board, IAB). По чистой случайности Тематические группы возглавили люди, бывшие до этого членами ICCB, а Дэйв Кларк сохранил пост главы совета. После некоторых изменений в составе IAB Фил Гросс (Phill Gross) стал председателем возрожденной Тематической группы по технологии Интернета (Internet Engineering Task Force, IETF), в то время бывшей обычной тематической группой IAB. Как уже отмечалось выше, к 1985 году наблюдался стремительный рост именно практических, технологических аспектов Интернета. Это привело к колоссальному увеличению числа специалистов, присутствовавших на заседаниях IETF, так что Гросс был вынужден создать в IETF подструктуру в виде рабочих групп.

Рост Интернета сопровождался значительным увеличением числа заинтересованных организаций. Управление DARPA перестало быть крупным единственным инвестором; в дополнение к NSFNet и другим программам, финансировавшимся правительствами США и других стран, начали разворачиваться коммерческие проекты. В том же 1985 году Кан и Лейнер ушли из DARPA, после чего активность Управления в области Интернета резко пошла на убыль. В результате Совет IAB остался без основного спонсора, но это только укрепило его руководящую роль. Рост продолжался, приводя к созданию все новых подструктур в рамках как IAB, так и IETF. В IETF прошло объединение Рабочих групп по областям деятельности с назначением директоров областей, объединившихся в Группу управления технологией Интернета (Internet Engineering Steering Group, IESG). В IAB осознали растущую важность IETF и перестроили процесс стандартизации, сделав IESG основным рецензирующим органом. Изменилась и структура самого Совета IAB. Тематические группы, не входившие в иерархию IETF, были объединены в Тематическую группу Интернет-исследований (Internet Research Task Force, IRTF), которую возглавил Постел, и переименованы в Исследовательские группы. Рост в коммерческом секторе принес с собой повышенное внимание к самому процессу стандартизации.

С начала 1980-х годов и по настоящее время Интернет далеко отошел от первоначальных исследовательских корней, что выразилось как в расширившемся круге пользователей, так и в возросшей коммерческой активности. Предметом особой заботы стали открытость и честность процесса стандартизации. Это в сочетании с осознанием необходимости общественной поддержки Интернета, в конце концов, привело к формированию в 1991 году Сообщества Интернета (Internet Society) под руководством Серфа, работавшего в то время в CNRI, и под патронажем Корпорации национальных исследовательских инициатив (Corporation for National Research Initiatives, CNRI), возглавляемой Каном. В 1992 году состоялась еще одна реорганизация — Совет по развитию Интернета (Internet Activities Board) был превращен в Совет по архитектуре Интернета (Internet Architecture Board), функционирующий под покровительством Сообщества Интернета. Между новым вариантом IAB и IESG были установлены более равноправные отношения, а на IETF и IESG легла большая ответственность за принятие стандартов. В итоге между IAB, IETF и Сообществом Интернета сформировались отношения сотрудничества и взаимной поддержки, причем целью Сообщества стало обеспечение оптимальных условий для работы IETF. Недавнее создание и широкое распространение Всемирной паутины привлекло в Интернет массу новых людей, никогда не причислявших себя к числу исследователей и разработчиков сетей.

Размах сети NSFNET и размеры финансирования этой программы (200 миллионов долларов за период с 1986 по 1995 год) в сочетании с качеством протоколов привели к тому, что к 1990 году, когда окончательно разукомплектовали ARPANET, семейство TCP/IP вытеснило или значительно потеснило во всем мире большинство других протоколов глобальных компьютерных сетей, а IP уверенно становился доминирующим сервисом транспортировки данных в глобальной информационной инфраструктуре. Хочется еще раз подчеркнуть, что именно усилия NSF и других академических организаций и научных фондов всего мира по подключению научных учреждений к Сети способствовали всеобщей доступности Интернета по линии науки и образования. И если прежде Сетью пользовались только исследователи в области информатики, государственные служащие и подрядчики, то теперь практически любой желающий может получить доступ к ней. Таким образом, в течение более чем двадцатилетнего периода мы наблюдаем постоянное развитие организационных структур, призванных поддерживать все расширяющееся сообщество, работающее на благо Интернета.

Коммерциализация Интернет

Коммерциализация Интернета включает в себя не только развитие конкурентных, частных сетевых сервисов, но и разработку коммерческих продуктов, реализующих Интернет-технологию. В начале 1980-х годов десятки производителей, предвидя спрос на подобные сетевые решения, встраивали TCP/IP в свои продукты. К сожалению, они не располагали достоверной информацией о том, как Интернет-технология должна была работать и, как потенциальные покупатели предполагали использовать сети. Большинство производителей видели в TCP/IP небольшую добавку к собственным закрытым сетевым решениям: SNA, DECNet, NetWare, NetBios. Министерство обороны США во многих контрактах требовало обязательного использования TCP/IP, но практически не помогало своим подрядчикам понять, как строить полезные TCP/IP-продукты.

В 1985 году, осознав недостаток доступной информации и возможностей пройти обучение, Дэн Линч (Dan Lynch) совместно с IAB организовал трехдневный семинар для всех производителей. На семинаре рассказывалось о возможностях, устройстве и о нерешенных пока проблемах TCP/IP. Большинство докладчиков (всего их было около 50 на 250 слушателей) представляли исследовательские круги DARPA, разрабатывавшие протоколы и использовавшие их в своей повседневной деятельности. Результаты семинара оказались удивительными для обеих сторон. Сотрудников компаний-производителей поразила открытость, с которой изобретатели рассказывали о том, как все работает (и что пока не работает). Изобретатели с удовольствием узнали о новых для себя проблемах, с которыми сталкивались производители. Таким образом, начался диалог, продолжающийся более десяти лет. После двух лет конференций, учебных курсов, встреч и семинаров проектировщиков было организовано специальное мероприятие, на которое пригласили производителей наиболее зрелых TCP/IP-продуктов. Производители собрались на три дня в одном зале, чтобы продемонстрировать, насколько хорошо их продукты взаимодействуют между собой и с Интернетом. В сентябре 1988 года состоялась первая торговая выставка Interop. В ней приняли участие 50 компаний. Выставку посетили около 5 тысяч инженеров из организаций — потенциальных клиентов. Их интересовало, действительно ли все работает так, как обещают. Все работало. Почему? Потому что производители чрезвычайно настойчиво стремились обеспечить полную совместимость со всеми другими продуктами, даже представленными конкурентами. С тех пор размах торговых выставок Interop значительно увеличился.

В наши дни ежегодно проводится семь выставок в разных странах. Их посещают более 250 тысяч человек, чтобы узнать о взаимной совместимости продуктов, о новинках на рынке и в технологии. Параллельно с действиями по коммерциализации, связанными с Interop, производители начали посещать собрания IETF, происходящие 3 или 4 раза в год, чтобы обсудить новые идеи по расширению семейства протоколов TCP/IP. Раньше на такие встречи, финансировавшиеся американским правительством, собирались несколько сот человек, преимущественно из академических кругов. Теперь число участников нередко превосходит тысячу, по большей части они представляют производителей и сами оплачивают организационные расходы. Такое самоорганизующееся сообщество, объединяющее все заинтересованные стороны — исследователей, пользователей и производителей, весьма эффективно развивает семейство TCP/IP в духе сотрудничества и взаимной выгоды. Примером сотрудничества между исследовательскими и коммерческими кругами может служить технология управления Сетью. На заре Интернета основной упор делался на определение и реализацию протоколов, обеспечивающих взаимную совместимость. С ростом Сети становилось понятно, что некоторые частные решения, использовавшиеся для управления, не всегда удается промасштабировать. В результате ручное конфигурирование таблиц стало заменяться распределенными автоматическими алгоритмами, были придуманы улучшенные средства изоляции неисправностей.

В 1987 году выявилась потребность в протоколе, обеспечивающем единообразное удаленное администрирование сетевых компонентов, таких как маршрутизаторы. Для этой цели было предложено несколько протоколов, в том числе Простой протокол управления сетью (Simple Network Management Protocol, SNMP), спроектированный, как подсказывает название, из соображений простоты и ставший развитием более раннего предложения SGMP (Simple Gateway Monitoring Protocol — Простой протокол мониторинга шлюзов). Кроме SNMP, были предложены протоколы HEMS (High-level Entity Management System — Высокоуровневая система управления объектами — более сложный проект исследовательского сообщества) и CMIP (Common Management Information Protocol — Общий протокол передачи управляющей информации — проект OSI-сообщества). Серия встреч привела к решению вывести HEMS из числа кандидатов на стандартизацию, чтобы разрядить конфликтную ситуацию. Было решено также продолжить работы над обоими оставшимися протоколами — SNMP и CMIP, причем SNMP рассматривался как краткосрочное решение, а CMIP — как более долгосрочное. Рынок мог делать выбор по своему усмотрению. В наше время практически повсеместно базой сетевого управления служит SNMP. В последние несколько лет можно наблюдать новую фазу коммерциализации. Первоначально в коммерческой деятельности участвовали преимущественно производители базовых сетевых продуктов, а также поставщики услуг, предлагавшие подключение к Интернету и базовый сервис. В наши дни Интернет-обслуживание перешло в разряд почти бытового, и основное внимание теперь сосредоточено на использовании этой глобальной информационной инфраструктуры как основы новых коммерческих услуг. Данный процесс в огромной степени ускорен широким распространением и быстрым внедрением Web-технологии, открывающей пользователям легкий доступ к информации, расположенной по всему миру.

Протоколы обмена маршрутной информацией стека TCP/IP

Все протоколы обмена маршрутной информацией стека TCP/IP относятся к классу адаптивных протоколов, которые в свою очередь делятся на две группы, каждая из которых связана с одним из следующих типов алгоритмов:

  • дистанционно-векторный алгоритм (Distance Vector Algorithms, DVA),
  • алгоритм состояния связей (Link State Algorithms, LSA).

В алгоритмах дистанционно-векторного типа каждый маршрутизатор периодически и широковещательно рассылает по сети вектор расстояний от себя до всех известных ему сетей. Под расстоянием обычно понимается число промежуточных маршрутизаторов через которые пакет должен пройти прежде, чем попадет в соответствующую сеть. Может использоваться и другая метрика, учитывающая не только число перевалочных пунктов, но и время прохождения пакетов по связи между соседними маршрутизаторами. Получив вектор от соседнего маршрутизатора, каждый маршрутизатор добавляет к нему информацию об известных ему других сетях, о которых он узнал непосредственно (если они подключены к его портам) или из аналогичных объявлений других маршрутизаторов, а затем снова рассылает новое значение вектора по сети. В конце-концов, каждый маршрутизатор узнает информацию об имеющихся в интерсети сетях и о расстоянии до них через соседние маршрутизаторы.

Дистанционно-векторные алгоритмы хорошо работают только в небольших сетях. В больших сетях они засоряют линии связи интенсивным широковещательным трафиком, к тому же изменения конфигурации могут отрабатываться по этому алгоритму не всегда корректно, так как маршрутизаторы не имеют точного представления о топологии связей в сети, а располагают только обобщенной информацией — вектором дистанций, к тому же полученной через посредников. Работа маршрутизатора в соответствии с дистанционно-векторным протоколом напоминает работу моста, так как точной топологической картины сети такой маршрутизатор не имеет.

Наиболее распространенным протоколом, основанным на дистанционно-векторном алгоритме, является протокол RIP.

Алгоритмы состояния связей обеспечивают каждый маршрутизатор информацией, достаточной для построения точного графа связей сети. Все маршрутизаторы работают на основании одинаковых графов, что делает процесс маршрутизации более устойчивым к изменениям конфигурации. Широковещательная рассылка используется здесь только при изменениях состояния связей, что происходит в надежных сетях не так часто.

Для того, чтобы понять, в каком состоянии находятся линии связи, подключенные к его портам, маршрутизатор периодически обменивается короткими пакетами со своими ближайшими соседями. Этот трафик также широковещательный, но он циркулирует только между соседями и поэтому не так засоряет сеть.

Протоколом, основанным на алгоритме состояния связей, в стеке TCP/IP является протокол OSPF.

Дистанционно-векторный протокол RIP

Протокол RIP (Routing Information Protocol) представляет собой один из старейших протоколов обмена маршрутной информацией, однако он до сих пор чрезвычайно распространен в вычислительных сетях. Помимо версии RIP для сетей TCP/IP, существует также версия RIP для сетей IPX/SPX компании Novell.

В этом протоколе все сети имеют номера (способ образования номера зависит от используемого в сети протокола сетевого уровня), а все маршрутизаторы — идентификаторы. Протокол RIP широко использует понятие «вектор расстояний». Вектор расстояний представляет собой набор пар чисел, являющихся номерами сетей и расстояниями до них в хопах.

Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор отмечает этот факт тем, что присваивает элементу вектора, соответствующему расстоянию до этой сети, максимально возможное значение, которое имеет специальный смысл — «связи нет». Таким значением в протоколе RIP является число 16.

На рисунке 8.1 приведен пример сети, состоящей из шести маршрутизаторов, имеющих идентификаторы от 1 до 6, и из шести сетей от A до F, образованных прямыми связями типа «точка-точка».

Рис. 8.1. Обмен маршрутной информацией по протоколу RIP

На рисунке приведена начальная информация, содержащаяся в топологической базе маршрутизатора 2, а также информация в этой же базе после двух итераций обмена маршрутными пакетами протокола RIP. После определенного числа итераций маршрутизатор 2 будет знать о расстояниях до всех сетей интерсети, причем у него может быть несколько альтернативных вариантов отправки пакета к сети назначения. Пусть в нашем примере сетью назначения является сеть D.

При необходимости отправить пакет в сеть D маршрутизатор просматривает свою базу данных маршрутов и выбирает порт, имеющий наименьшее расстояния до сети назначения (в данном случае порт, связывающий его с маршрутизатором 3).

Для адаптации к изменению состояния связей и оборудования с каждой записью таблицы маршрутизации связан таймер. Если за время тайм-аута не придет новое сообщение, подтверждающее этот маршрут, то он удаляется из маршрутной таблицы.

При использовании протокола RIP работает эвристический алгоритм динамического программирования Беллмана-Форда, и решение, найденное с его помощью является не оптимальным, а близким к оптимальному. Преимуществом протокола RIP является его вычислительная простота, а недостатками — увеличение трафика при периодической рассылке широковещательных пакетов и неоптимальность найденного маршрута.

На рисунке 8.2 показан случай неустойчивой работы сети по протоколу RIP при изменении конфигурации — отказе линии связи маршрутизатора M1 с сетью 1. При работоспособном состоянии этой связи в таблице маршрутов каждого маршрутизатора есть запись о сети с номером 1 и соответствующим расстоянием до нее.

Рис. 8.2. Пример неустойчивой работы сети при использовании протокола RIP

При обрыве связи с сетью 1 маршрутизатор М1 отмечает, что расстояние до этой сети приняло значение 16. Однако получив через некоторое время от маршрутизатора М2 маршрутное сообщение о том, что от него до сети 1 расстояние составляет 2 хопа, маршрутизатор М1 наращивает это расстояние на 1 и отмечает, что сеть 1 достижима через маршрутизатор 2. В результате пакет, предназначенный для сети 1, будет циркулировать между маршрутизаторами М1 и М2 до тех пор, пока не истечет время хранения записи о сети 1 в маршрутизаторе 2, и он не передаст эту информацию маршрутизатору М1.

Для исключения подобных ситуаций маршрутная информация об известной маршрутизатору сети не передается тому маршрутизатору, от которого она пришла.

Существуют и другие, более сложные случаи нестабильного поведения сетей, использующих протокол RIP, при изменениях в состоянии связей или маршрутизаторов сети.

Комбинирование различных протоколов обмена. Протоколы EGP и BGP сети Internet

Большинство протоколов маршрутизации, применяемых в современных сетях с коммутацией пакетов, ведут свое происхождение от сети Internet и ее предшественницы — сети ARPANET. Для того, чтобы понять их назначение и особенности, полезно сначала познакомится со структурой сети Internet, которая наложила отпечаток на терминологию и типы протоколов.

Internet изначально строилась как сеть, объединяющая большое количество существующих систем. С самого начала в ее структуре выделяли магистральную сеть (core backbone network), а сети, присоединенные к магистрали, рассматривались как автономные системы (autonomous systems). Магистральная сеть и каждая из автономных систем имели свое собственное административное управление и собственные протоколы маршрутизации. Общая схема архитектуры сети Internet показана на рисунке 8.3. Далее маршрутизаторы будут называться шлюзами для следования традиционной терминологии Internet.

Рис. 8.3. Архитектура сети Internet

Шлюзы, которые используются для образования подсетей внутри автономной системы, называются внутренними шлюзами (interior gateways), а шлюзы, с помощью которых автономные системы присоединяются к магистрали сети, называются внешними шлюзами (exterior gateways). Непосредственно друг с другом автономные системы не соединяются. Соответственно, протоколы маршрутизации, используемые внутри автономных систем, называются протоколами внутренних шлюзов (interior gateway protocol, IGP), а протоколы, определяющие обмен маршрутной информацией между внешними шлюзами и шлюзами магистральной сети — протоколами внешних шлюзов (exterior gateway protocol, EGP). Внутри магистральной сети также может использоваться любой собственный внутренний протокол IGP.

Смысл разделения всей сети Internet на автономные системы в ее многоуровневом представлении, что необходимо для любой крупной системы, способной к расширению в больших масштабах. Внутренние шлюзы могут использовать для внутренней маршрутизации достаточно подробные графы связей между собой, чтобы выбрать наиболее рациональный маршрут. Однако, если информация такой степени детализации будет храниться во всех маршрутизаторах сети, то топологические базы данных так разрастутся, что потребуют наличия памяти гигантских размеров, а время принятия решений о маршрутизации непременно возрастет.

Поэтому детальная топологическая информация остается внутри автономной системы, а автономную систему как единое целое для остальной части Internet представляют внешние шлюзы, которые сообщают о внутреннем составе автономной системы минимально необходимые сведения — количество IP-сетей, их адреса и внутреннее расстояние до этих сетей от данного внешнего шлюза.

При инициализации внешний шлюз узнает уникальный идентификатор обслуживаемой им автономной системы, а также таблицу достижимости (reachability table), которая позволяет ему взаимодействовать с другими внешними шлюзами через магистральную сеть.

Затем внешний шлюз начинает взаимодействовать по протоколу EGP с другими внешними шлюзами и обмениваться с ними маршрутной информацией, состав которой описан выше. В результате, при отправке пакета из одной автономной системы в другую, внешний шлюз данной системы на основании маршрутной информации, полученной от всех внешних шлюзов, с которыми он общается по протоколу EGP, выбирает наиболее подходящий внешний шлюз и отправляет ему пакет.

В протоколе EGP определены три основные функции:

  • установление соседских отношений,
  • подтверждение достижимости соседа,
  • обновление маршрутной информации.

Каждая функция работает на основе обмена сообщениями запрос-ответ.

Так как каждая автономная система работает под контролем своего административного штата, то перед началом обмена маршрутной информацией внешние шлюзы должны согласиться на такой обмен. Сначала один из шлюзов посылает запрос на установление соседских отношений (acquisition request) другому шлюзу. Если тот согласен на это, то он отвечает сообщением подтверждение установления соседских отношений (acquisition confirm), а если нет — то сообщением отказ от установления соседских отношений (acquisition refuse), которое содержит также причину отказа.

После установления соседских отношений шлюзы начинают периодически проверять состояние достижимости друг друга. Это делается либо с помощью специальных сообщений (привет (hello) и Я-услышал-тебя (I-heard-you)), либо встраиванием подтверждающей информации непосредственно в заголовок обычного маршрутного сообщения.

Обмен маршрутной информацией начинается с посылки одним из шлюзов другому сообщения запрос данных (poll request) о номерах сетей, обслуживаемых другим шлюзом и расстояниях до них от него. Ответом на это сообщение служит сообщение обновленная маршрутная информация (routing update). Если же запрос оказался некорректным, то в ответ на него отсылается сообщение об ошибке.

Все сообщения протокола EGP передаются в поле данных IP-пакетов. Сообщения EGP имеют заголовок фиксированного формата (рисунок 8.4).

Поля Тип и Код совместно определяют тип сообщения, а поле Статус — информацию, зависящую от типа сообщения. Поле Номер автономной системы — это номер, назначенный той автономной системе, к которой присоединен данный внешний шлюз. Поле Номер последовательности служит для синхронизации процесса запросов и ответов.

Рис. 8.4. Формат сообщения протокола EGP

Поле IP-адрес исходной сети в сообщениях запроса и обновления маршрутной информации обозначает сеть, соединяющую два внешних шлюза (рисунок 8.5).

Сообщение об обновленной маршрутной информации содержит список адресов сетей, которые достижимы в данной автономной системе. Этот список упорядочен по внутренним шлюзам, которые подключены к исходной сети и через которые достижимы данные сети, а для каждого шлюза он упорядочен по расстоянию до каждой достижимой сети от исходной сети, а не от данного внутреннего шлюза. Для примера, приведенного на рисунке 8.5, внешний шлюз R2 в своем сообщении указывает, что сеть 4 достижима с помощью шлюза R3 и расстояние ее равно 2, а сеть 2 достижима через шлюз R2 и ее расстояние равно 1 (а не 0, как если бы шлюз измерял ее расстояние от себя, как в протоколе RIP).

Протокол EGP имеет достаточно много ограничений, связанных с тем, что он рассматривает магистральную сеть как одну неделимую магистраль.

Развитием протокола EGP является протокол BGP (Border Gateway Protocol), имеющий много общего с EGP и используемый наряду с ним в магистрали сети Internet.

Рис. 8.5. Пример автономной системы

Протокол состояния связей OSPF

Протокол OSPF (Open Shortest Path Firs) является достаточно современной реализацией алгоритма состояния связей (он принят в 1991 году) и обладает многими особенностями, ориентированными на применение в больших гетерогенных сетях.

Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.

Непосредственно связанные (то есть достижимые без использования промежуточных маршрутизаторов) маршрутизаторы называются «соседями». Каждый маршрутизатор хранит информацию о том, в каком состоянии по его мнению находится сосед. Маршрутизатор полагается на соседние маршрутизаторы и передает им пакеты данных только в том случае, если он уверен, что они полностью работоспособны. Для выяснения состояния связей маршрутизаторы-соседи достаточно часто обмениваются короткими сообщениями HELLO.

Для распространения по сети данных о состоянии связей маршрутизаторы обмениваются сообщениями другого типа. Эти сообщения называются router links advertisement — объявление о связях маршрутизатора (точнее, о состоянии связей). OSPF-маршрутизаторы обмениваются не только своими, но и чужими объявлениями о связях, получая в конце-концов информацию о состоянии всех связей сети. Эта информация и образует граф связей сети, который, естественно, один и тот же для всех маршрутизаторов сети.

Кроме информации о соседях, маршрутизатор в своем объявлении перечисляет IP-подсети, с которыми он связан непосредственно, поэтому после получения информации о графе связей сети, вычисление маршрута до каждой сети производится непосредственно по этому графу по алгоритму Дэйкстры. Более точно, маршрутизатор вычисляет путь не до конкретной сети, а до маршрутизатора, к которому эта сеть подключена. Каждый маршрутизатор имеет уникальный идентификатор, который передается в объявлении о состояниях связей. Такой подход дает возможность не тратить IP-адреса на связи типа «точка-точка» между маршрутизаторами, к которым не подключены рабочие станции.

Маршрутизатор вычисляет оптимальный маршрут до каждой адресуемой сети, но запоминает только первый промежуточный маршрутизатор из каждого маршрута. Таким образом, результатом вычислений оптимальных маршрутов является список строк, в которых указывается номер сети и идентификатор маршрутизатора, которому нужно переслать пакет для этой сети. Указанный список маршрутов и является маршрутной таблицей, но вычислен он на основании полной информации о графе связей сети, а не частичной информации, как в протоколе RIP.

Описанный подход приводит к результату, который не может быть достигнут при использовании протокола RIP или других дистанционно-векторных алгоритмов. RIP предполагает, что все подсети определенной IP-сети имеют один и тот же размер, то есть, что все они могут потенциально иметь одинаковое число IP-узлов, адреса которых не перекрываются. Более того, классическая реализация RIP требует, чтобы выделенные линии «точка-точка» имели IP-адрес, что приводит к дополнительным затратам IP-адресов.

В OSPF такие требования отсутствуют: сети могут иметь различное число хостов и могут перекрываться. Под перекрытием понимается наличие нескольких маршрутов к одной и той же сети. В этом случае адрес сети в пришедшем пакете может совпасть с адресом сети, присвоенным нескольким портам.

Если адрес принадлежит нескольким подсетям в базе данных маршрутов, то продвигающий пакет маршрутизатор использует наиболее специфический маршрут, то есть адрес подсети, имеющей более длинную маску.

Например, если рабочая группа ответвляется от главной сети, то она имеет адрес главной сети наряду с более специфическим адресом, определяемым маской подсети. При выборе маршрута к хосту в подсети этой рабочей группы маршрутизатор найдет два пути, один для главной сети и один для рабочей группы. Так как последний более специфичен, то он и будет выбран. Этот механизм является обобщением понятия «маршрут по умолчанию», используемого во многих сетях.

Использование подсетей с различным количеством хостов является вполне естественным. Например, если в здании или кампусе на каждом этаже имеются локальные сети, и на некоторых этажах компьютеров больше, чем на других, то администратор может выбрать размеры подсетей, отражающие ожидаемые требования каждого этажа, а не соответствующие размеру наибольшей подсети.

В протоколе OSPF подсети делятся на три категории:

  • «хост-сеть», представляющая собой подсеть из одного адреса,
  • «тупиковая сеть», которая представляет собой подсеть, подключенную только к одному маршрутизатору,
  • «транзитная сеть», которая представляет собой подсеть, подключенную к более чем одному маршрутизатору.

Транзитная сеть является для протокола OSPF особым случаем. В транзитной сети несколько маршрутизаторов являются взаимно и одновременно достижимыми. В широковещательных локальных сетях, таких как Ethernet или Token Ring, маршрутизатор может послать одно сообщение, которое получат все его соседи. Это уменьшает нагрузку на маршрутизатор, когда он посылает сообщения для определения существования связи или обновленные объявления о соседях. Однако, если каждый маршрутизатор будет перечислять всех своих соседей в своих объявлениях о соседях, то объявления займут много места в памяти маршрутизатора. При определении пути по адресам транзитной подсети может обнаружиться много избыточных маршрутов к различным маршрутизаторам. На вычисление, проверку и отбраковку этих маршрутов уйдет много времени.

Когда маршрутизатор начинает работать в первый раз (то есть инсталлируется), он пытается синхронизировать свою базу данных со всеми маршрутизаторами транзитной локальной сети, которые по определению имеют идентичные базы данных. Для упрощения и оптимизации этого процесса в протоколе OSPF используется понятие «выделенного» маршрутизатора, который выполняет две функции.

Во-первых, выделенный маршрутизатор и его резервный «напарник» являются единственными маршрутизаторами, с которыми новый маршрутизатор будет синхронизировать свою базу. Синхронизировав базу с выделенным маршрутизатором, новый маршрутизатор будет синхронизирован со всеми маршрутизаторами данной локальной сети.

Во-вторых, выделенный маршрутизатор делает объявление о сетевых связях, перечисляя своих соседей по подсети. Другие маршрутизаторы просто объявляют о своей связи с выделенным маршрутизатором. Это делает объявления о связях (которых много) более краткими, размером с объявление о связях отдельной сети.

Для начала работы маршрутизатора OSPF нужен минимум информации — IP-конфигурация (IP-адреса и маски подсетей), некоторая информация по умолчанию (default) и команда на включение. Для многих сетей информация по умолчанию весьма похожа. В то же время протокол OSPF предусматривает высокую степень программируемости.

Интерфейс OSPF (порт маршрутизатора, поддерживающего протокол OSPF) является обобщением подсети IP. Подобно подсети IP, интерфейс OSPF имеет IP-адрес и маску подсети. Если один порт OSPF поддерживает более, чем одну подсеть, протокол OSPF рассматривает эти подсети так, как если бы они были на разных физических интерфейсах, и вычисляет маршруты соответственно.

Интерфейсы, к которым подключены локальные сети, называются широковещательными (broadcast) интерфейсами, так как они могут использовать широковещательные возможности локальных сетей для обмена сигнальной информацией между маршрутизаторами. Интерфейсы, к которым подключены глобальные сети, не поддерживающие широковещание, но обеспечивающие доступ ко многим узлам через одну точку входа, например сети Х.25 или frame relay, называются нешироковещательными интерфейсами с множественным доступом или NBMA (non-broadcast multi-access). Они рассматриваются аналогично широковещательным интерфейсам за исключением того, что широковещательная рассылка эмулируется путем посылки сообщения каждому соседу. Так как обнаружение соседей не является автоматическим, как в широковещательных сетях, NBMA-соседи должны задаваться при конфигурировании вручную. Как на широковещательных, так и на NBMA-интерфейсах могут быть заданы приоритеты маршрутизаторов для того, чтобы они могли выбрать выделенный маршрутизатор.

Интерфейсы «точка-точка», подобные PPP, несколько отличаются от традиционной IP-модели. Хотя они и могут иметь IP-адреса и подмаски, но необходимости в этом нет.

В простых сетях достаточно определить, что пункт назначения достижим и найти маршрут, который будет удовлетворительным. В сложных сетях обычно имеется несколько возможных маршрутов. Иногда хотелось бы иметь возможности по установлению дополнительных критериев для выбора пути: например, наименьшая задержка, максимальная пропускная способность или наименьшая стоимость (в сетях с оплатой за пакет). По этим причинам протокол OSPF позволяет сетевому администратору назначать каждому интерфейсу определенное число, называемое метрикой, чтобы оказать нужное влияние на выбор маршрута.

Число, используемое в качестве метрики пути, может быть назначено произвольным образом по желанию администратора. Но по умолчанию в качестве метрики используется время передачи бита в 10-ти наносекундных единицах (10 Мб/с Ethernet’у назначается значение 10, а линии 56 Кб/с — число 1785). Вычисляемая протоколом OSPF метрика пути представляет собой сумму метрик всех проходимых в пути связей; это очень грубая оценка задержки пути. Если маршрутизатор обнаруживает более, чем один путь к удаленной подсети, то он использует путь с наименьшей стоимостью пути.

В протоколе OSPF используется несколько временных параметров, и среди них наиболее важными являются интервал сообщения HELLO и интервал отказа маршрутизатора (router dead interval).

HELLO — это сообщение, которым обмениваются соседние, то есть непосредственно связанные маршрутизаторы подсети, с целью установить состояние линии связи и состояние маршрутизатора-соседа. В сообщении HELLO маршрутизатор передает свои рабочие параметры и говорит о том, кого он рассматривает в качестве своих ближайших соседей. Маршрутизаторы с разными рабочими параметрами игнорируют сообщения HELLO друг друга, поэтому неверно сконфигурированные маршрутизаторы не будут влиять на работу сети. Каждый маршрутизатор шлет сообщение HELLO каждому своему соседу по крайней мере один раз на протяжении интервала HELLO. Если интервал отказа маршрутизатора истекает без получения сообщения HELLO от соседа, то считается, что сосед неработоспособен, и распространяется новое объявление о сетевых связях, чтобы в сети произошел пересчет маршрутов.

Пример маршрутизации по алгоритму OSPF

Представим себе один день из жизни транзитной локальной сети. Пусть у нас имеется сеть Ethernet, в которой есть три маршрутизатора — Джон, Фред и Роб (имена членов рабочей группы Internet, разработавшей протокол OSPF). Эти маршрутизаторы связаны с сетями в других городах с помощью выделенных линий.

Пусть произошло восстановление сетевого питания после сбоя. Маршрутизаторы и компьютеры перезагружаются и начинают работать по сети Ethernet. После того, как маршрутизаторы обнаруживают, что порты Ethernet работают нормально, они начинают генерировать сообщения HELLO, которые говорят о их присутствии в сети и их конфигурации. Однако маршрутизация пакетов начинает осуществляться не сразу — сначала маршрутизаторы должны синхронизировать свои маршрутные базы (рисунок 8.6).

Рис. 8.6. Гипотетическая сеть с OSPF маршрутизаторами

На протяжении интервала отказа маршрутизаторы продолжают посылать сообщения HELLO. Когда какой-либо маршрутизатор посылает такое сообщение, другие его получают и отмечают, что в локальной сети есть другой маршрутизатор. Когда они посылают следующее HELLO, они перечисляют там и своего нового соседа.

Когда период отказа маршрутизатора истекает, то маршрутизатор с наивысшим приоритетом и наибольшим идентификатором объявляет себя выделенным (а следующий за ним по приоритету маршрутизатор объявляет себя резервным выделенным маршрутизатором) и начинает синхронизировать свою базу данных с другими маршрутизаторами.

С этого момента времени база данных маршрутных объявлений каждого маршрутизатора может содержать информацию, полученную от маршрутизаторов других локальных сетей или из выделенных линий. Роб, например, вероятно получил информацию от Мило и Робина об их сетях, и он может передавать туда пакеты данных. Они содержат информацию о собственных связях маршрутизатора и объявления о связях сети.

Базы данных теперь синхронизированы с выделенным маршрутизатором, которым является Джон. Джон суммирует свою базу данных с каждой базой данных своих соседей — базами Фреда, Роба и Джеффа — индивидуально. В каждой синхронизирующейся паре объявления, найденные только в какой-либо одной базе, копируются в другую. Выделенный маршрутизатор, Джон, распространяет новые объявления среди других маршрутизаторов своей локальной сети. Например, объявления Мило и Робина передаются Джону Робом, а Джон в свою очередь передает их Фреду и Джеффри. Обмен информацией между базами продолжается некоторое время, и пока он не завершится, маршрутизаторы не будут считать себя работоспособными. После этого они себя таковыми считают, потому что имеют всю доступную информацию о сети.

Посмотрим теперь, как Робин вычисляет маршрут через сеть. Две из связей, присоединенных к его портам, представляют линии T-1, а одна — линию 56 Кб/c. Робин сначала обнаруживает двух соседей — Роба с метрикой 65 и Мило с метрикой 1785. Из объявления о связях Роба Робин обнаружил наилучший путь к Мило со стоимостью 130, поэтому он отверг непосредственный путь к Мило, поскольку он связан с большей задержкой, так как проходит через линии с меньшей пропускной способностью. Робин также обнаруживает транзитную локальную сеть с выделенным маршрутизатором Джоном. Из объявлений о связях Джона Робин узнает о пути к Фреду и, наконец, узнает о пути к маршрутизаторам Келли и Джеффу и к их тупиковым сетям.

После того, как маршрутизаторы полностью входят в рабочий режим, интенсивность обмена сообщениями резко падает. Обычно они посылают сообщение HELLO по своим подсетям каждые 10 секунд и делают объявления о состоянии связей каждые 30 минут (если обнаруживаются изменения в состоянии связей, то объявление передается, естественно, немедленно). Обновленные объявления о связях служат гарантией того, что маршрутизатор работает в сети. Старые объявления удаляются из базы через определенное время.

Представим, однако, что какая-либо выделенная линия сети отказала. Присоединенные к ней маршрутизаторы распространяют свои объявления, в которых они уже не упоминают друг друга. Эта информация распространяется по сети, включая маршрутизаторы транзитной локальной сети. Каждый маршрутизатор в сети пересчитывает свои маршруты, находя, может быть, новые пути для восстановления утраченного взаимодействия.

Сравнение протоколов RIP и OSPF по затратам на широковещательный трафик

В сетях, где используется протокол RIP, накладные расходы на обмен маршрутной информацией строго фиксированы. Если в сети имеется определенное число маршрутизаторов, то трафик, создаваемый передаваемой маршрутной информацией, описываются формулой (1):

(1) F = (число объявляемых маршрутов/25) x 528 (байтов в сообщении) x
(число копий в единицу времени) x 8 (битов в байте)

В сети с протоколом OSPF загрузка при неизменном состоянии линий связи создается сообщениями HELLO и обновленными объявлениями о состоянии связей, что описывается формулой (2):

(2) F = < [ 20 + 24 + 20 + (4 x число соседей)] x
(число копий HELLO в единицу времени) >x 8 +
[(число объявлений x средний размер объявления) x
(число копий объявлений в единицу времени)] x 8,

где 20 — размер заголовка IP-пакета,

24 — заголовок пакета OSPF,

20 — размер заголовка сообщения HELLO,

4 — данные на каждого соседа.

Интенсивность посылки сообщений HELLO — каждые 10 секунд, объявлений о состоянии связей — каждые полчаса. По связям «точка-точка» или по широковещательным локальным сетям в единицу времени посылается только одна копия сообщения, по NBMA сетям типа frame relay каждому соседу посылается своя копия сообщения. В сети frame relay с 10 соседними маршрутизаторами и 100 маршрутами в сети (подразумевается, что каждый маршрут представляет собой отдельное OSPF-обобщение о сетевых связях и что RIP распространяет информацию о всех этих маршрутах) трафик маршрутной информации определяется соотношениями (3) и (4):

(3) RIP: (100 маршрутов / 25 маршрутов в объявлении) x 528 x
(10 копий / 30 сек) = 5 632 б/с

(4) OSPF: <[20 + 24 + 20 + (4 x 10) x (10 копий / 10 сек)] +
[100 маршрутов x (32 + 24 + 20) + (10 копий / 30 x 60 сек]> x 8 = 1 170 б/с

Как видно из полученных результатов, для нашего гипотетического примера трафик, создаваемый протоколом RIP, почти в пять раз интенсивней трафика, создаваемого протоколом OSPF.

Использование других протоколов маршрутизации

Случай использования в сети только протокола маршрутизации OSPF представляется маловероятным. Если сеть присоединена к Internet’у, то могут использоваться такие протоколы, как EGP (Exterior Gateway protocol), BGP (Border Gateway Protocol, протокол пограничного маршрутизатора), старый протокол маршрутизации RIP или собственные протоколы производителей.

Когда в сети начинает применяться протокол OSPF, то существующие протоколы маршрутизации могут продолжать использоваться до тех пор, пока не будут полностью заменены. В некоторых случаях необходимо будет объявлять о статических маршрутах, сконфигурированных вручную.

В OSPF существует понятие автономных систем маршрутизаторов (autonomous systems), которые представляют собой домены маршрутизации, находящиеся под общим административным управлением и использующие единый протокол маршрутизации. OSPF называет маршрутизатор, который соединяет автономную систему с другой автономной системой, использующей другой протокол маршрутизации, пограничным маршрутизатором автономной системы (autonomous system boundary router, ASBR).

В OSPF маршруты (именно маршруты, то есть номера сетей и расстояния до них во внешней метрике, а не топологическая информация) из одной автономной системы импортируются в другую автономную систему и распространяются с использованием специальных внешних объявлений о связях.

Внешние маршруты обрабатываются за два этапа. Маршрутизатор выбирает среди внешних маршрутов маршрут с наименьшей внешней метрикой. Если таковых оказывается больше, чем 2, то выбирается путь с меньшей стоимостью внутреннего пути до ASBR.

Область OSPF — это набор смежных интерфейсов (территориальных линий или каналов локальных сетей). Введение понятия «область» служит двум целям — управлению информацией и определению доменов маршрутизации.

Для понимания принципа управления информацией рассмотрим сеть, имеющую следующую структуру: центральная локальная сеть связана с помощью 50 маршрутизаторов с большим количеством соседей через сети X.25 или frame relay (рисунок 8.7). Эти соседи представляют собой большое количество небольших удаленных подразделений, например, отделов продаж или филиалов банка. Из-за большого размера сети каждый маршрутизатор должен хранить огромное количество маршрутной информации, которая должна передаваться по каждой из линий, и каждое из этих обстоятельств удорожает сеть. Так как топология сети проста, то большая часть этой информации и создаваемого ею трафика не имеют смысла.

Для каждого из удаленных филиалов нет необходимости иметь детальную маршрутную информацию о всех других удаленных офисах, в особенности, если они взаимодействуют в основном с центральными компьютерами, связанными с центральными маршрутизаторами. Аналогично, центральным маршрутизаторам нет необходимости иметь детальную информацию о топологии связей с удаленными офисами, соединенными с другими центральными маршрутизаторами. В то же время центральные маршрутизаторы нуждаются в информации, необходимой для передачи пакетов следующему центральному маршрутизатору. Администратор мог бы без труда разделить эту сеть на более мелкие домены маршрутизации для того, чтобы ограничить объемы хранения и передачи по линиям связи не являющейся необходимой информации. Обобщение маршрутной информации является главной целью введения областей в OSPF.

Рис. 8.7. Большая сеть с топологией звезда

В протоколе OSPF определяется также пограничный маршрутизатор области (ABR, area border router). ABR — это маршрутизатор с интерфейсами в двух или более областях, одна из которых является специальной областью, называемой магистральной (backbone area). Каждая область работает с отдельной базой маршрутной информации и независимо вычисляет маршруты по алгоритму OSPF. Пограничные маршрутизаторы передают данные о топологии области в соседние области в обобщенной форме — в виде вычисленных маршрутов с их весами. Поэтому в сети, разбитой на области, уже не действует утверждение о том, что все маршрутизаторы оперируют с идентичными топологическими базами данных.

Маршрутизатор ABR берет информацию о маршрутах OSPF, вычисленную в одной области, и транслирует ее в другую область путем включения этой информации в обобщенное суммарное объявление (summary) для базы данных другой области. Суммарная информация описывает каждую подсеть области и дает для нее метрику. Суммарная информация может быть использована тремя способами: для объявления об отдельном маршруте, для обобщения нескольких маршрутов или же служить маршрутом по умолчанию.

Дальнейшее уменьшение требований к ресурсам маршрутизаторов происходит в том случае, когда область представляет собой тупиковую область (stub area). Этот атрибут администратор сети может применить к любой области, за исключением магистральной. ABR в тупиковой области не распространяет внешние объявления или суммарные объявления из других областей. Вместо этого он делает одно суммарное объявление, которое будет удовлетворять любой IP-адрес, имеющий номер сети, отличный от номеров сетей тупиковой области. Это объявление называется маршрутом по умолчанию. Маршрутизаторы тупиковой области имеют информацию, необходимую только для вычисления маршрутов между собой плюс указания о том, что все остальные маршруты должны проходить через ABR. Такой подход позволяет уменьшить в нашей гипотетической сети количество маршрутной информации в удаленных офисах без уменьшения способности маршрутизаторов корректно передавать пакеты.

5. Стек протоколов tcp/ip.

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

В операционной системе Microsoft Windows Server 2003 стек TCP/IP выбран в качестве основного, хотя поддерживаются и другие протоколы (например, стек IPX/SPX, протокол NetBIOS).

Стек протоколов TCP/IP обладает двумя важными свойствами:

платформонезависимостью, т. е. возможна его реализация на самых разных операционных системах и процессорах;

открытостью, т. е. стандарты, по которым строится стек TCP/IP, доступны любому желающему.

В 1967 году Агентство по перспективным исследовательским проектам министерства обороны США (ARPA – Advanced Research Projects Agency) инициировало разработку компьютерной сети, которая должна была связать ряд университетов и научно-исследовательских центров, выполнявших заказы Агентства. Проект получил название ARPANET. К 1972 году сеть соединяла 30 узлов.

В рамках проекта ARPANET были разработаны и в 1980–1981 годах опубликованы основные протоколы стека TCP/IP – IP, TCP и UDP. Важным фактором распространения TCP/IP стала реализация этого стека в операционной системе UNIX 4.2 BSD (1983).

К концу 80-х годов значительно расширившаяся сеть ARPANET стала называться Интернет (Interconnected networks – связанные сети) и объединяла университеты и научные центры США, Канады и Европы.

В 1992 году появился новый сервис Интернет – WWW (World Wide Web – всемирная паутина), основанный на протоколе HTTP. Во многом благодаря WWW Интернет, а с ним и протоколы TCP/IP, получил в 90-е годы бурное развитие.

В начале XXI века стек TCP/IP приобретает ведущую роль в средствах коммуникации не только глобальных, но и локальных сетей.

Модель взаимодействия открытых систем (OSI – Open Systems Interconnection) была разработана Международной организацией по стандартизации (ISO – International Organization for Standardization) для единообразного подхода к построению и объединению сетей. Разработка модели OSI началась в 1977 году и закончилась в 1984 году утверждением стандарта. С тех пор модель является эталонной для разработки, описания и сравнения различных стеков протоколов.

Рассмотрим кратко функции каждого уровня.

Модель OSI включает семь уровней: физический, канальный, сетевой, транспортный, сеансовый, представления и прикладной.

Физический уровень (physical layer) описывает принципы передачи сигналов, скорость передачи, спецификации каналов связи. Уровень реализуется аппаратными средствами (сетевой адаптер, порт концентратора, сетевой кабель).

Канальный уровень (data link layer) решает две основные задачи – проверяет доступность среды передачи (среда передачи чаще всего оказывается разделена между несколькими сетевыми узлами), а также обнаруживает и исправляет ошибки, возникающие в процессе передачи. Реализация уровня является программно-аппаратной (например, сетевой адаптер и его драйвер).

Сетевой уровень (network layer) обеспечивает объединение сетей, работающих по разным протоколам канального и физического уровней, в составную сеть. При этом каждая из сетей, входящих в единую сеть, называется подсетью (subnet). На сетевом уровне приходится решать две основные задачи – маршрутизации (routing, выбор оптимального пути передачи сообщения) и адресации (addressing, каждый узел в составной сети должен иметь уникальное имя). Обычно функции сетевого уровня реализует специальное устройство – маршрутизатор (router) и его программное обеспечение.

Транспортный уровень (transport layer) решает задачу надежной передачи сообщений в составной сети с помощью подтверждения доставки и повторной отправки пакетов. Этот уровень и все следующие реализуются программно.

Сеансовый уровень (session layer) позволяет запоминать информацию о текущем состоянии сеанса связи и в случае разрыва соединения возобновлять сеанс с этого состояния.

Уровень представления (presentation layer) обеспечивает преобразование передаваемой информации из одной кодировки в другую (например, из ASCII в EBCDIC).

Прикладной уровень (application layer) реализует интерфейс между остальными уровнями модели и пользовательскими приложениями.

Структура TCP/IP. В основе структуры TCP/IP лежит не модель OSI, а собственная модель, называемая DARPA (Defense ARPA – новое название Агентства по перспективным исследовательским проектам) или DoD (Department of Defense – Министерство обороны США). В этой модели всего четыре уровня. Соответствие модели OSI модели DARPA, а также основным протоколам стека TCP/IP показано на рис. 2.2.

Следует заметить, что нижний уровень модели DARPA – уровень сетевых интерфейсов – строго говоря, не выполняет функции канального и физического уровней, а лишь обеспечивает связь (интерфейс) верхних уровней DARPA с технологиями сетей, входящих в составную сеть (например, Ethernet, FDDI, ATM).

Все протоколы, входящие в стек TCP/IP, стандартизованы в документах RFC.

Утвержденные официальные стандарты Интернета и TCP/IP публикуются в виде документов RFC (Request for Comments – рабочее предложение). Стандарты разрабатываются всем сообществом ISOC (Internet Society – Сообщество Интернет, международная общественная организация). Любой член ISOC может представить на рассмотрение документ для его публикации в RFC. Далее документ рассматривается техническими экспертами, группами разработчиков и редактором RFC и проходит в соответствии с RFC 2026 следующие этапы, называемые уровнями готовности (maturity levels):

черновик (Internet Draft) – на этом этапе с документом знакомятся эксперты, вносятся дополнения и изменения;

предложенный стандарт (Proposed Standard) – документу присваивается номер RFC, эксперты подтвердили жизнеспособность предлагаемых решений, документ считается перспективным, желательно, чтобы он был опробован на практике;

черновой стандарт (Draft Standard) – документ становится черновым стандартом, если не менее двух независимых разработчиков реализовали и успешно применили предлагаемые спецификации. На этом этапе ещё допускаются незначительные исправления и усовершенствования;

стандарт Интернета (Internet Standard) – наивысший этап утверждения стандарта, спецификации документа получили широкое распространение и хорошо зарекомендовали себя на практике. Список стандартов Интернета приведен в RFC 3700. Из тысяч RFC только несколько десятков являются документами в статусе «стандарт Интернета».

Кроме стандартов документами RFC могут быть также описания новых сетевых концепций и идей, руководства, результаты экспериментальных исследований, представленных для информации и т. д. Таким документам RFC может быть присвоен один из следующих статусов:

экспериментальный (Experimental) – документ, содержащий сведения о научных исследованиях и разработках, которые могут заинтересовать членов ISOC;

информационный (Informational) – документ, опубликованный для предоставления информации и не требующий одобрения сообщества ISOC;

лучший современный опыт (Best Current Practice) – документ, предназначенный для передачи опыта конкретных разработок, например реализаций протоколов.

Статус указывается в заголовке документа RFC после слова Category (Категория). Для документов в статусе стандартов (Proposed Standard, Draft Standard, Internet Standard) указывается название Standards Track, так как уровень готовности может меняться.

Номера RFC присваиваются последовательно и никогда не выдаются повторно. Первоначальный вариант RFC никогда не обновляется. Обновленная версия публикуется под новым номером. Устаревший и замененный документ RFC получает статус исторический (Historic).

Все существующие на сегодня документы RFC можно посмотреть, например, на сайте www.rfc-editor.org. В августе 2007 года их насчитывалось более 5000. Документы RFC, упоминаемые в этом курсе, приведены в Приложении I.

Обзор основных протоколов.

Протокол IP (Internet Protocol) – это основной протокол сетевого уровня, отвечающий за адресацию в составных сетях и передачу пакета между сетями. Протокол IP является дейтаграммным протоколом, т. е. не гарантирует доставку пакетов до узла назначения. Обеспечением гарантий занимается протокол транспортного уровня TCP.

Протоколы RIP (Routing Information Protocol протокол маршрутной информации) и OSPF (Open Shortest Path First – «первыми открываются кратчайшие маршруты») – протоколы маршрутизации в IP-сетях.

Протокол ICMP (Internet Control Message Protocol протокол управляющих сообщений в составных сетях) предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов сообщает о невозможности доставки пакета, о продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Протокол ARP (Address Resolution Protocol – протокол преобразования адресов) преобразует IP-адреса в аппаратные адреса локальных сетей. Обратное преобразование осуществляется с помощью протокола RAPR (Reverse ARP).

TCP (Transmission Control Protocol – протокол управления передачей) обеспечивает надежную передачу сообщений между удаленными узлами сети за счет образования логических соединений. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт на любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части – сегменты и передает их сетевому уровню. После того как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

UDP (User Datagram Protocol – протокол дейтаграмм пользователя) обеспечивает передачу данных дейтаграммным способом.

Далее рассматриваются протоколы прикладного уровня.

HTTP (HyperText Transfer Protocol – протокол передачи гипертекста) – протокол доставки web-документов, основной протокол службы WWW.

FTP (File Transfer Protocol – протокол передачи файлов) – протокол для пересылки информации, хранящейся в файлах.

POP3 (Post Office Protocol version 3 – протокол почтового офиса) и SMTP (Simple Mail Transfer Protocol – простой протокол пересылки почты) – протоколы для доставки входящей электронной почты (POP3) и отправки исходящей (SMTP).

Telnet – протокол эмуляции терминала 1 , позволяющий пользователю подключаться к другим удалённым станциям и работать с ними со своей машины, как если бы она была их удалённым терминалом.

SNMP (Simple Network Management Protocol – простой протокол управления сетью) предназначен для диагностики работоспособности различных устройств сети.

Илон Маск рекомендует:  Алгебраические фракталы
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL