Оперативная память эпизод i физическое устройство


Содержание

Физическая и логическая организация памяти вычислительных систем

Читайте также:

  1. Административно-правовая организация управления в области занятости населения, труда и социальных вопросов.
  2. Административно-правовая организация управления в области прогнозирования социального развития.
  3. Административно-правовая организация управления в области финансовой деятельности и кредитования.
  4. Акцентологическая и фонетическая (орфоэпическая) нормы.
  5. Апоптоз изнутри»: пусковые факторы и биологическая роль.
  6. Апоптоз по команде»: биологическая роль.
  7. Б. Всемирная организация интеллектуальной собственности (ВОИС)
  8. Базовые понятия операционных систем.
  9. Биологическая активность животных и человеческая деятельность
  10. БИОЛОГИЧЕСКАЯ ДОСТУПНОСТЬ ЛЕКАРСТВЕННЫХ СРЕДСТВ.
  11. Биологическая изменчивость и адаптация видов.
  12. Биологическая роль азота

Прежде чем рассматривать технологию физической организации памяти в ЭВМ, необходимо отметить следующее:

1. Память в ЭВМ имеет многоуровневую организацию.

2.Память классифицируется по способу доступа к данным.

— все виды памятей ,имеющих адресные структуры, функционируют по принципу взаимно- однозначного соответствия между каждым элементом множества адресного пространства и каждым элементом множества данных, хранимых в памяти.

— память с последовательным доступом исключает возможность произвольного доступа к элементу памяти, доступ к которому определяется алгоритмом очередности в структуре памяти при однородной ее организации или алгоритмом последовательного доступа от высшего уровня к низшему в многоуровневой организации (файловая система).

— ассоциативная память использует в качестве поиска элемента данных в памяти ассоциативный признак( тег, в качестве которого может быть использован код ,ключ ,адрес или его часть адресной памяти, хранящей его копию). Благодаря чему элемент данных может находиться в любом месте памяти, нарушая принцип взаимно- однозначного соответствия, характерный для адресных структур памятей.

3. По способу хранения.

4.Память в ЭВМ имеет модульную структуру. В основе которой лежит модульное построение, дающее возможность формирование переменного объема накопительного блока путем наращивания или уменьшения числа модулей в конфигурации.

Физическая память вычислительной системы разделяют на внешнюю и оперативную. Внешняя память предназначена для долговременного хранения информации и сохраняется в пассивном состоянии вычислительной системы даже в выключенном состоянии.

Внешняя память в современных вычислительных системах реализована в основном на дисках и магнитных лентах ,а также различного рода энергонезависимой памяти.

Внешняя память физически реализуется как устройства системы ввода вывода, которые имеют связь с процессором и памятью посредством интерфейсов ввода вывода, функционирование которых основано на двух различных архитектурных решениях: системная шина и каналы ввода вывода.

Что же касается оперативной памяти ,физическая и логическая организация которой является предметом рассмотрения данной темы, конструктивно разделена на две части: запоминающее устройство и блок управления или контроллер памяти.

Контроллер памяти является координатором оперативной памяти, он связан с интерфейсами с процессором и системой ввода вывода, получая от них запросы за данными как для записи их память ,так чтение из нее.

Получив запрос ,контроллер ставит его в очередь обращения к запоминающему устройству (ЗУ) согласно приоритету, отдавая предпочтение системе ввода вывода, организует связь с ЗУ с соответствии с протоколом интерфейса, соединяющим их.

Функциональные возможности контроллера памяти находятся в прямой зависимости от сложности функциональных возможностей системы. Так, например, в симметричных мультипроцессорных системах контроллер памяти является координатором запросов за данными от всех процессоров системы ,принимая их на исполнение или временно блокируя, если данные уже находятся в обработке у другого процессора ,таким образом обеспечивая когерентность данных в системе.

Современная оперативная память в вычислительных системах по способу хранения относится в большинстве случаев к динамической памяти, которая требует периодически во время работы режима восстановления информации в памяти, то есть циклов регенерации, во время которых обращение к памяти со стороны внешних агентов блокируется. Организация таких циклов и их периодичность входит в функции контроллера.

Для уменьшения влияния циклов регенерации на производительность памяти стали использовать различные методы. Это, во-первых, использование модульной технологии построения ЗУ с организацией банков и чередованием адресов, то есть с размещением данных с четными и нечетными адресами в разных модулях(микросхемах) памяти к которым возможно одновременное обращение в цикле памяти, таким образом совмещая выборку данных в одном модуле с циклом регенерации в другом, при отсутствии режима пакетной выборки то есть одновременной выборки данных по четному и нечетному адресу.

Также стали использовать режим автоматической регенерации ячеек памяти, к которым происходит обращение за данными в режиме чтения и режим внутренней регенерации всех ячеек памяти в микросхемах. Но для этой цели в каждую микросхему памяти пришлось встроить внутренний контроллер и возложить на него вышеуказанную и другие функции, освободив внешний контроллер для других боле важных задач.

Что касается архитектуры самих ЗУ, которые предназначены для хранения,

записи и считывания данных можно отметить следующее.

Используя в качестве запоминающих элементов на первоначальном этапе развития вычислительной техники электронные трубки, а в последствии ферритовые сердечники и в конечном результате перейдя на полупроводниковую технологию ,в которой стали использовать емкостные свойства изолированного стока полевого транзистора. конечной целью этих изменений было и будет решение следующих задач:

— увеличение емкости памяти

-повышение надежности хранения и снижение энергоемкости памяти.

Если системная память современных 32х разрядных компьютеров ,имеющих адресную шину обращения к памяти в 32 разряда, дает возможность наращивать свою емкость до 4ГБТ, то для ЭВМ 2и 3 поколений, имеющих ферритовую память, емкость даже суперкомпьютеров того времени исчислялась только десятками и сотнями кбт Так емкость памяти БЭСМ6 отечественного суперкомпьютера в свое время составляла около768кбт,даже не доходя до мегабайтной границы.

Скачок в объеме оперативной памяти произошел с введением полупроводниковой технологии при изготовлении запоминающих устройств памяти ,благодаря которой емкость оперативной памяти перешагнула мегабайтный рубеж. Одной из первых ЭВМ, которая имела такую память была IBM7030 в1961году.Размер ее памяти составлял 2МГБТ. Конструкторские наработки в этой машине были использованы позже в известных сериях машин IBM360 и IBM370. Эти машины, имеющие адресные шины обращения к памяти в 24 разряда имели возможность наращивания объемов своих памятей до16 МГБТ. С внедрением 32х разрядной шины в таких ЭВМ как ESA370, IBM4381 память хоть и не перешла гигабайтную границу, но имела возможность наращивания от 16 до64мгбт.

Современные мейнфреймы Zархитектуры такие ,например, как Z9BC имеют возможность наращивания до 64ГБТ,имея 64 разрядную шину, а ЭВМZ10 даже до 1,5ТРБТ.

Что же касается наших отечественных ЭВМ объем оперативной памяти машин ЕС Ряд 3(ЕС1046,ЕС1066) достиг 8Мгбт, машин которым суждено было закончить свой исторический путь развития на этом этапе.

Были еще ЭВМ класса суперкомпьютеров, предназначенных для оборонных целей системы ПРО ,которые имели емкость памяти большего размера, например, проект М13(объем оперативной памяти этого суперкомпьютера имел возможность расширения до34мгбт).

Следующей одной из основных характеристик физической организации памяти является время выборки данных ,которое составляло для ЭВМ 2ого поколения, имеющих память на магнитных сердечниках, 10-12мкск. И только с внедрением полупроводниковой памяти время выборки данных сократилось на порядок и стало от 1,5 до0,5мкск.

Динамическая память по своему характеру и способу хранения данных, несмотря на более простую структуру чем статическая, является наиболее инерционной, то есть медленной частью вычислительной системы и даже на значительное сокращение циклов обращения к ней таковой остается в настоящее время.

Эта и является причиной построения многоуровневой памяти в вычислительных системах ,в состав которой входят регистровые файлы и различное число уровней быстродействующей буферной памяти, выполненной на статических (триггерах) запоминающих элементах.

Современная архитектура вычислительных систем оперирует такими понятиями как виртуальная память ,отображение которой на физическую память представляется совокупностью оперативной и внешней памятью. Это стало возможным в результате идеи, выдвинутой английскими учеными Манчестерского университета суть которой заключалась в разделении понятий размера адресного пространства от конкретного размера адресного оперативной памяти в системе. Таким образом адресное пространство системы стало независимо от размера оперативной памяти и стало представляться в распоряжение программиста как виртуальная память, давая ему широкие возможности при написании программ, не ограничивая себя размером оперативной памяти.

Для реализации этой идеи потребовалось введение таких понятий как логические адреса и виртуальные страницы, представляющие области памяти определенного равного размера, на которые стало разбиваться все адресное пространство виртуальной памяти.

Реальная память стала разбиваться на физические страницы, размеры которых соответствовали размеру виртуальных страниц.

Фактически содержимое виртуальной памяти может находиться в оперативной памяти и тогда виртуальная страница приобретает статус физической, причем в разрешенной любой области оперативной памяти по усмотрению операционной системы или в противоположном случае ЗУ внешней памяти.

Следовательно вычислительная система ,реализующая механизм виртуализации памяти должна иметь механизм перемещения содержимого виртуальных страниц с внешней памяти в оперативную и обратно в процессе выполнения программ. Такой механизм носит название файловой системы, a механизм динамической переадресации ,например, в системах фирмы IBM или механизм страничного преобразования в процессорах INTEL осуществляют преобразования виртуальных адресов в физические.

Было введено понятие логических адресов. Адреса команд и данных ,формируемые в процессе выполнения команд в процессоре приобрели статус логических , так как перестали соответствовать физическим адресам памяти, а указывали только на местонахождение в адресном пространстве программного кода.

Более того, в системе стало возможным существование нескольких виртуальных адресных пространств, имеющих свои схемы преобразования логических адресов в физические.

Виртуальная память- это объект системы, рассматриваемый на уровне операционной системы и следовательно ее структуру целесообразней характеризовать с точки зрения логической организации памяти.

Прежде чем давать характеристику логической организации памяти, необходимо отметить, что адресация физической памяти осуществляется по- байтно то есть минимальной адресуемой единицей является байт ,а следовательно все размеры структурных элементов логической организации памяти должны быть кратны целочисленному числу байт в них.

Программа оперирует такими понятиями как оператор, операнды, константы, переменные ,выражаемые в числовой или символьной форме. В результате трансляции программного кода они представляют двоичные коды ,состоящие из целочисленного количества байт, которые размещают в оперативной памяти при выполнении программы. Байты объединяются в слова ,слова в строки, строки в страницы, страницы в сегменты.

Для логической организации памяти важен порядок размещения байт в памяти. Принято располагать байты последовательно в памяти слева на право ,увеличивая значения их адресов на единицу.

Разбиение виртуальной и физической памяти на страницы и сегменты дает возможность не только отображение виртуальных страниц на физическую память, но и описывать области линейного пространства и физической памяти с учетом их предназначения и прав доступа со стороны программ в так называемых дескрипторах, соответствующих каждому сегменту и каждой странице. Таким образом, реализуется механизм защиты при доступе в оперативную память.

И так уровень операционной системы имеет в своем распоряжении механизм разбиения виртуальной и физической памяти на страницы и сегменты, который он использует как инструмент для формирования структуры логической памяти системы. Но в оперативной памяти есть области, для которых используется только физическая адресация. В этих областях операционная система размещает обычно таблицы, используемые при преобразовании логических адресов памяти в физические. А. также различного рода служебную информацию, к которой разрешен доступ только с ее стороны. Эти области носят название постоянно – распределенных областей памяти, размер которых определяется архитектурой системы и операционными системами.

Существует плоская и многомерная модель логической памяти. Понятие плоской модели памяти связано с организацией оперативной памяти, предложенной фон-Нейманом, то есть с размещением команд и данных в общей области физической памяти, отдав право контроля за порядком их размещения самому программисту. Такая модель создавала определенные трудности и требовала от программиста дополнительных усилий при написании программы. Первой попыткой усовершенствовать плоскую модель памяти было внедрение механизма сегментации с целью разделения областей для команд и данных. Эта модель стала называться плоской защищенной ,в которой области команд и данных по-прежнему могли размещаться в пределах размера физической памяти, но в разных ее местах, доступ к которым указывался через начальные адреса сегментов в дескрипторах ,а размер ограничивался значением предела ,указанных в них. Таким образом, был реализован простейший механизм защиты в памяти. Данная технология напоминала технологию модели памяти в гарвардской архитектуре ,но примененную к общей физической памяти для команд и данных. В дальнейшем была внедрена плоская мультисегментная модель памяти, в которой и другие области, предназначенные не только для хранения команд и данных стали контролироваться механизмом защиты.

Модель памяти стала многомерной с внедрением виртуальной памяти, в которой логические адреса стали разбивать на несколько частей, каждая из которых подвергалась табличному преобразованию. Количество механизмов, участвующих в преобразовании определяет многомерность логической памяти. При страничном преобразовании адресов память становится одномерной ,в которой преобразованию подвергается в простейшем варианте группа состоящая из старших разрядов логического адреса. Число этих разрядов в группе, а точнее степень 2, определяемая этим числом разрядов определяет количество виртуальных страниц в виртуальной памяти. Младшие разряды логического адреса преобразованию не подвергаются и определяют смещение, то есть месторасположение данных в физической странице. Так как количество страниц виртуальной памяти достаточно велико, то старшая группа разрядов логического адреса разбивается на несколько групп. В результате чего вместо одной таблицы страниц механизм преобразования использует несколько наборов таблиц меньшего размера. Число таблиц ,входящих в набор будет определяться также степенью, определяемой числом разрядов адреса в группе, следующей за группой младших адресов логического адреса ,а количество наборов будет равно количеству строк в каталоге станиц, размер которого будет зависеть от числа разрядов в группе, определяющей размер каталога. Выше описанная структура будет характерна в случае разбиения старшей группы разрядов логического адреса на три части.

Рассмотрим, какие аппаратные средства необходимы для преобразования логических адресов в физические.

Как было сказано выше, младшая группа разрядов логического адреса преобразованию не подвергается и представляет смещение, то есть местонахождение первого байта данных адреса в пределах физической страницы.

Поэтапный механизм преобразования логического адреса в физический( при разбиении старшей части логического адреса на две части) происходит в следующем порядке:

1.Производится обращение к строке в таблице, определяемой группой старших разрядов логического адреса интерпретируемой как каталог страниц. Таблица размещается в оперативной памяти. Адрес строки формируется путем сложения базового адреса, указывающего на начало расположения таблицы в памяти, и загруженного предварительно в системный регистр в процессоре. Вторым слагаемым является код в группе старших разрядов.

2. В результате из памяти считывается строка каталога, которая содержит атрибуты и базовый адрес таблицы страниц, соответствующей этой строке каталога.

3. Организуется цикл обращения в память к строке в таблице страниц. Адрес строки формируется путем сложения базового адреса, считанного из строки каталога и кода, соответствующего значению разрядов в группе, следующей за группой разрядов каталога .

4. Считанная строка из таблицы страниц содержит базовый адрес физической страницы в памяти, который поступает на сумматор ,где путем сложения со значением группы младших разрядов логического адреса ,представляющих смещение в области физической страницы, формируется физический адрес обращения к памяти.

И так в соответствии с вышеописанным алгоритмом аппаратными средствами поддержки преобразования логических адресов в физические являются:

1. Область оперативной памяти, выделяемой для хранения таблиц. Эта область является пространством, в котором не действует механизм преобразования.

2. Наличие управляющих регистров в процессоре, для хранения базового адреса ,указывающего на расположение начальной таблицы в памяти.

3. Сумматор для выполнения операций сложения адресной арифметики.

4. Наличие буферных регистров или кэш памятей полностью ассоциативных для хранения результатов этапов преобразований логических адресов в физические.

Последние аппаратные средства необходимы для увеличения производительности работы системы, так как нет необходимости производить каждый раз полный цикл преобразований, когда обращение к памяти происходит в пределах одной физической страницы, координаты которой были вычислены при первом к ней обращении.

Внедрение дополнительного механизма сегментации при преобразовании логических адресов делает модель памяти двумерной. Механизм сегментации формирует линейное адресное пространство виртуальной памяти ,которая в результате преобразования состоит из сегментов, в которых размещены коды программ и данные, определяя таким образом одно измерение логической памяти, второе измерение определяет механизм страничного преобразования, представляя память в виде набора виртуальных страниц.

Следует отметить, что идеология сегментации виртуальной памяти в вычислительных системах трактуется по- разному. Например, этап сегментации в процессе преобразования логических адресов в физические в системах фирмы IBM(IBM360,IBM370,сервера Zархитектуры) неотделим от этапа страничного преобразования, являясь предшествующим этапом перед этапом преобразования страниц также как в системахINTEL, он управляется только старшей частью адресов логического адреса , средняя часть адреса и младшая группа адресов участвует только при страничном преобразовании. Тем самым осуществляя неразделимую логическую связь между этапами, разбивая виртуальную память вначале на сегменты- области большого размера а потом сегменты на страницы.

В серверах Zархитектуры размер виртуального адреса был увеличен до64 разрядов, что дало возможность адресовать виртуальную память объемом до 16 эксабайт. Что же касается многомерности логической памяти в этих серверах, то аппаратная часть их дает возможность иметь до4х типов виртуальных независимых друг от друга адресных пространств с количеством пространств в двух из них по 64К и в двух оставшихся по 16 со своими табличными преобразованиями для каждого типа, которые используются для построения виртуальных логических образований- логических партиций ,в каждой из которых функционирует своя операционная система . Каждый тип виртуальных адресов, связан с типом своей виртуальной памятью подвержен одному и тому же механизму преобразования со своими наборами таблиц. Следовательно, следуя понятиям и терминологии, рассмотренными выше, память в этих серверах можно считать набором из 4х типов одномерных виртуальных памятей с пятиэтапным преобразованием ,имеющими пять видов областей: страница, сегмент, регион1, регион2, регион3.

Схема преобразования виртуальных адресов в серверах Zархитектуры

| следующая лекция ==>
МЕТОДЫ И МОДЕЛИ | Структура логической памяти ПК

Дата добавления: 2014-01-03 ; Просмотров: 4018 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Типы и стандарты оперативной памяти

Приветствую, дорогие читатели! Сегодня я расскажу про типы оперативной памяти компьютера. Ее разновидностей существует много – достаточно, чтобы запутаться в параметрах.

Краткий экскурс в историю

Давным‐давно, когда компьютеры были большими, программы маленькими, а вирусов не существовало вообще, применялись модули SIMM нескольких модификаций: на 30, 68 и 72 контакта. Работали они в связке с процессорами от 286 до 486 включительно.

Сейчас найти такой компьютер в работоспособном состоянии крайне сложно: для него не существует современного софта. Программы, которые теоретически можно было бы запустить, на практике оказываются слишком тяжеловесными.


Главное отличие от предшественника в том, что расположенные на обеих сторонах планки контакты независимы, в отличие от спаренных контактов на SIMM. Здесь уже задействована технология SDRAM – синхронная динамическая память с произвольным доступом. Массовый выпуск этого типа памяти начался в 1993 году. Предназначались такие модули, в первую очередь, для процессора Intel Pentium или Celeron на 64‐разрядной шине данных.

Модули памяти SO‐DIMM более компактны, так как используются в ноутбуках.

Если точнее, правильно такой тип памяти называется DDR SDRAM. Появилась на рынке в 2001 году и использовалась в качестве оперативки и видеопамяти. Отличия от предшественника в удвоенной частоте, так как планка способна передавать данные дважды за один такт.

Это первый из типов модулей памяти, который может работать в двухканальном режиме.

Подробнее о том, что такое двухканальный режим, вы можете узнать здесь.

И так да, DDR SDRAM и ее потомки выпускаются в формфакторе DIMM, то есть имеют независимые контакты с обеих сторон.

Этот тип памяти смог составить конкуренцию предшественнику уже в 2004 году и занимал лидирующие позиции до 2010 года. Планки выпускались в формфакторах DIMM для десктопных компьютеров и SO‐DIMM для портативных.

По сравнению с предшественником этот тип памяти имеет:

  • Большую пропускную способность;
  • Меньшее энергопотребление;
  • Улучшенное охлаждение благодаря конструкции.

К недостаткам стоит отнести более высокие тайминги оперативной памяти. Что это такое можно узнать здесь.

Подобно предшественнику, выпускаются в виде 240‐контактной планки, однако несовместимы из‐за разных разъемов (далее расскажу об этом более подробно).

Тип памяти отличается еще большей частотой и меньшим энергопотреблением, а также увеличением предподкачки с 4 до 8 бит. Существует модификация DDR3L со сниженным до 1,35 В рабочим напряжением. Кстати, о частоте. Есть несколько модификаций: 1066, 1333, 1600, 1866, 2133 или 2400 с соответствующей скоростью передачи данных. Выпускается с 2012 года. Компьютеры, использующий этот тип памяти, работают до сих пор. Объем установленных модулей от 1 до 16 Гб. В формфакторе SO‐DIMM «потолок» – 8 Гб.

14,1,0,0,0

Четвертое поколение удвоило количество внутренних банков, благодаря чему увеличилась скорость передачи внешней шины. Массовое производство началось с 2014 году. У топовых моделей пропускная способность достигает 3200 миллионов передач за секунду, а выпускаются они в модулях объемом от 4 до 128 Гб.

Имеют они уже 288 контактов. Физические размеры детали те же, поэтому разъемы упакованы плотнее. По сравнению с DDR3 незначительно увеличена высота. Модули SO‐DIMM имеют по 260 контактов, расположенных ближе друг к другу.

А что дальше?

А дальше, полагаю, стандарты DDR5 и далее по нарастающей (но это неточно). Возможно, неожиданно изобретут нечто эдакое, что кардинально изменит архитектуру ЭВМ и сделает оперативную память для ПК лишним элементом.

Интересная тенденция: у каждого следующего поколения памяти увеличиваются тайминги, что инженеры стараются компенсировать увеличением рабочей частоты и скоростью передачи данных. Настолько эффективно, что следующее поколение оказывается шустрее предшественников.

Именно поэтому еще раз акцентирую ваше внимание на том, что при выборе комплектующих старайтесь «плясать» от стандарта DDR4 как самого нового и прогрессивного.

Илон Маск рекомендует:  Использование шаблонов в php4

Совместимость типов памяти

Существует заблуждение, что из‐за особенностей интерфейса планку памяти невозможно вставить в неподходящие слоты. Скажу так: достаточно сильный парень (и даже некоторые девчонки) вставит что угодно куда угодно – не только оперативную память, но и процессор Intel в слот для AMD. Правда, есть одно НО: работать такая сборка, увы, не будет.

Остальные юзеры, собирающие компы аккуратно, обычно оперативку вставить в неподходящий слот не могут. Даже если планки имеют одинаковые габариты, это не позволит сделать так называемый ключ. Внутри слота есть небольшой выступ, не дающий смонтировать несоответствующий тип ОЗУ. На подходящей же планке в этом месте есть небольшой вырез, поэтому вставить ее можно без проблем.

21,0,0,1,0

Как определить модель

Встроенные в Windows утилиты позволяют узнать только минимальную информацию – объем установленной памяти. Какого она типа, таким способом узнать невозможно. На помощь придет сторонний софт, выдающий полную информацию о системе – например, Everest или AIDA64.

Также тип памяти прописан в BIOS. Где именно указана эта информация и как вызвать BIOS, зависит от его модификации. В большинстве случаев достаточно удерживать кнопку Del при запуске компьютера, однако возможны исключения.

Естественно, маркировка указывается на самой оперативке, а точнее на приклеенном шильдике. Чтобы добраться до планки, придется разобрать корпус и демонтировать ее. В случае с ноутбуком эта простая задача превращается в увлекательнейший квест с просмотром подробных инструкций по разборке.

Вот, собственно, все о типах оперативки, что достаточно знать для самостоятельного подбора комплектующих. И если вы собираете игровой комп, рекомендую ознакомиться с информацией о влиянии оперативной памяти в играх.

Спасибо за внимание и до следующих встреч! Не забывайте подписаться на обновления этого блога и делиться публикациями в социальных сетях.

28,0,0,0,1

Оперативная память

Оперативная память (ОЗУ, $Random \ Access \ Memory$ – $RAM$, память с произвольным доступом) – запоминающее устройство сравнительно небольшого объёма, которое непосредственно связано с ЦП и предназначено для записи, чтения и хранения данных о выполняемых программах и данных, обрабатываемых этими программами.

Оперативная память используется только для временного хранения данных и программ, т.к. при выключении ПК информация, которая находилась в ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой, т.е. каждый байт памяти имеет свой индивидуальный адрес.

Назначение ОЗУ

Оперативная память используется для хранения и передачи информации ЦП, на жесткий диск, на другие внешние устройства, которая располагается в специальных разъемах на материнской плате. ОЗУ представляет собой схему из огромного числа мельчайших конденсаторов и транзисторов (одна пара позволяет хранить $1$ бит). При выключении ПК введенная информация исчезает, т.к. данные не были записаны на жесткий диск, где могут долго сохраняться, а находились в ОЗУ. Но в случае отсутствия оперативной памяти, данные должны были бы располагаться на жестком диске, и тогда время обращения к ним резко бы увеличилось, что привело бы к резкому снижению общей производительности ПК.

Попробуй обратиться за помощью к преподавателям

Итак, ОЗУ используется для:

  • хранения данных и команд для дальнейшей их передачи ЦП для обработки;
  • хранение результатов вычислений, которые были произведены ЦП.
  • считывание (или запись) содержимого ячеек.

Оперативная память изготовлена в виде микросхем, которые крепятся на специальных пластинах и устанавливаются на системной плате в соответствующие разъемы.

Рисунок 1. Модуль оперативной памяти, вставленный в системную плату

При включении ПК в ОЗУ загружается операционная система, затем программное обеспечение и документы. ЦП управляет загрузкой программ и данных в ОЗУ, далее данные в ОЗУ обрабатываются. Таки образом, ЦП работает с инструкциями и данными, которые находятся в ОЗУ, а другие устройства (диски, магнитная лента, модем и т.д.) действуют через нее. Поэтому оперативная память имеет огромное влияние на работу компьютера. Т.к. ОЗУ предназначена для хранения данных и программ только во время работы ПК, то после выключения электропитания все данные в ОЗУ теряются. Во избежание потери данных или внесенных в документы изменений перед выключением ПК необходимо сохранить данные на жесткий диск и только потом выйти из приложения.

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Типы оперативной памяти

Выделяют $2$ вида оперативной памяти:

  • статическую ($SRAM$) – используется в качестве кэш-памяти ЦП;
  • динамическую ($DRAM$) – используется в качестве оперативной памяти ПК.

Ячейки динамической памяти можно представить в виде микроконденсаторов, которые способны накапливать электрический заряд. Недостатками $DRAM$-памяти является более низкая скорость записи и чтения данных и необходимость постоянной подзарядки.

Основными являются виды типа $SDRAM$ ($Synchronous \ Dynamic \ Random \ Access \ Memory$ – синхронная динамическая память с произвольным доступом):

$DDR$ ($Double \ Data \ Rate$ – двойная скорость передачи данных). Удвоенная скорость достигается за счет считывания данных по нарастанию и по спаду сигнала.

Рисунок 2. Схема платы памяти DDR

На плате оперативной памяти (рис. 2) с обеих сторон находятся микросхемы с памятью. Снизу находится ключ для вставки платы в разъем системной платы.

Рисунок 3. Разъемы для установки оперативной памяти

$DDR2$ от $DDR$ отличается удвоенной частотой шины, по которой данные передаются в буфер, и способность работы на более высокой частоте. Скорость работы $DDR2$ чуть выше, чем у $DDR$.

$DDR3$ отлична от $DDR2$ пониженным энергопотреблением (на $40 \ %$).

$DDR4$ отличается повышенными частотными характеристиками и пониженным напряжением питания.


Платы $DDR$, $DDR2$, $DDR3$ и $DDR4$ не являются взаимозаменяемыми, т.к. имеют различия в строении (смещение ключа, разное количество контактов и т.п.).

Основные характеристики ОЗУ

  • Объем памяти – максимальное количество информации, которая может быть помещена в эту память, выражается в Кб, Мб и Гб.
  • Время доступа к памяти (в наносекундах) представляет собой минимальное время, необходимое для размещения в памяти единицы информации.
  • Плотность записи (в $бит/см^2$) – количество информации, которая записана на единице поверхности носителя.

$SIMM$-модули имеют объем $4$, $8$, $16$, $32$, $64$ Мб; $DIMM$-модули – $16$, $32$, $64$, $128$, $256$, $512$ Мб.

Время доступа SIMM-модулей – $50–70$ нс, $DIMM$-модулей – $7–10$ нс.

Модули оперативной памяти

Оперативная память в ПК размещена на стандартных панелях, которые называют модулями. Модули памяти представлены в двух видах:

  • односторонне расположение выводов ($SIMM$-модули) можно устанавливать только парами;
  • двухстороннее расположение выводов ($DIMM$-модули) можно устанавливать по одному, обладают большей скоростью передачи.

Устанавливать на одной плате разные модули нельзя.

Рисунок 4. Микросхемы памяти SIMM (сверху) и DIMM (снизу)

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Как работает оперативная память и зачем она нужна

Мое почтение, уважаемые читатели, други, недруги и прочие личности!

Сегодня хочется поговорить с Вами о такой важной и полезной штуке как оперативная память, в связи с чем опубликовано сразу две статьи, одна из которых рассказывает о памяти вообще (тобишь ниже по тексту), а другая рассказывает о том как эту самую память выбрать (собственно, статья находится прямо под этой, просто опубликована отдельно).

Изначально это был один материал, но, дабы не делать очередную многобуквенную страницу-простыню, да и просто из соображений разделения и систематизации статей, было решено разбить их на две.

Так как процесс дробления был произведен на лету и почти в последний момент, то возможны некоторые огрехи в тексте, которых не стоит пугаться, но можно сообщить об оных в комментариях, дабы, собственно, их так же на лету исправить.

Ну, а сейчас, приступаем.

Вводная

Перед каждым пользователем рано или поздно (или никогда) встает вопрос модернизации своего верного «железного коня». Некоторые сразу меняют «голову» — процессор, другие — колдуют над видеокартой, однако, самый простой и дешевый способ – это увеличение объема оперативной памяти.

Почему самый простой?

Да потому что не требует специальных знаний технической части, установка занимает мало времени и не создает практически никаких сложностей (и еще он наименее затратный из всех, которые я знаю).

Итак, чтобы узнать чуть больше о таком простом и одновременно эффективном инструменте апгрейда, как оперативная память (далее ОП), для этого обратимся к родимой теории.

Общее

ОЗУ (оперативное запоминающее устройство), оно же RAM (» Random Access Memory » — память с произвольным доступом), представляет собой область временного хранения данных, при помощи которой обеспечивается функционирование программного обеспечения. Физически, оперативная память в системе представляет собой набор микросхем или модулей (содержащих микросхемы), которые обычно подключаются к системной плате.

В процессе работы память выступает в качестве временного буфера (в ней хранятся данные и запущенные программы) между дисковыми накопителями и процессором, благодаря значительно большей скорости чтения и записи данных.

Примечание.
Совсем новички часто путают оперативную память с памятью жесткого диска ( ПЗУ — постоянное запоминающее устройство), чего делать не нужно, т.к. это совершенно разные виды памяти. Оперативная память (по типу является динамической — Dynamic RAM ), в отличие от постоянной — энергозависима, т.е. для хранения данных ей необходима электроэнергия, и при ее отключении (выключение компьютера) данные удаляются. Пример энергонезависимой памяти ПЗУ — флэш-память, в которой электричество используется лишь для записи и чтения, в то время как для самого хранения данных источник питания не нужен.

По своей структуре память напоминает пчелиные соты, т.е. состоит из ячеек, каждая из которых предназначена для хранения мёда определенного объема данных, как правило, одного или четырех бит. Каждая ячейка оной имеет свой уникальный «домашний» адрес, который делится на два компонента – адрес горизонтальной строки ( Row ) и вертикального столбца ( Column ).

Ячейки представляют собой конденсаторы, способные накапливать электрический заряд. С помощью специальных усилителей аналоговые сигналы переводятся в цифровые, которые в свою очередь образуют данные.

Для передачи на микросхему памяти адреса строки служит некий сигнал, который зовется RAS ( Row Address Strobe ), а для адреса столбца — сигнал CAS ( Column Address Strobe ).

С этим разобрались, идем дальше. Затронем еще один немаловажный вопрос:

Как же работает оперативная память?

Работа оперативной памяти непосредственно связана с работой процессора и внешних устройств компьютера, так как именно ей последние «доверяют» свою информацию. Таким образом, данные сперва попадают с жесткого диска (или другого носителя) в саму ОЗУ и уже затем обрабатываются центральным процессором (смотрите изображение).

Обмен данными между процессором и памятью может происходить напрямую, но чаще все же бывает с участием кэш-памяти.

Кэш-память является местом временного хранения наиболее часто запрашиваемой информации и представляет собой относительно небольшие участки быстрой локальной памяти. Её использование позволяет значительно уменьшить время доставки информации в регистры процессора, так как быстродействие внешних носителей (оперативки и дисковой подсистемы) намного хуже процессорного. Как следствие, уменьшаются, а часто и полностью устраняются, вынужденные простои процессора, что повышает общую производительность системы.

Оперативной памятью управляет контроллер, который находится в чипсете материнской платы, а точнее в той его части, которая называется North Bridge (северный мост) — он обеспечивает подключение CPU (процессора) к узлам, использующим высокопроизводительные шины: ОЗУ , графический контроллер (смотрите изображение).

Примечание.
Важно понимать, что если в процессе работы оперативной памяти производится запись данных в какую-либо ячейку, то её содержимое, которое было до поступления новой информации, будет безвозвратно утеряно. Т.е. по команде процессора данные записываются в указанную ячейку, одновременно стирая при этом то, что там было записано ранее.

Рассмотрим еще один важный аспект работы оперативки – это ее деление на несколько разделов с помощью специального программного обеспечения (ПО), которое поддерживается операционными системами.

Сейчас Вы поймете, о чем это я.

Подробнее

Дело в том, что современные устройства оперативной памяти являются достаточно объемными (привет двухтысячным, когда хватало и 32 Mб), чтобы в ней можно было размещать данные от нескольких одновременно работающих задач. Процессор также может одновременно обрабатывать несколько задач. Это обстоятельство способствовало развитию так называемой системы динамического распределения памяти, когда под каждую обрабатываемую процессором задачу отводятся динамические (переменные по своей величине и местоположению) разделы оперативной памяти.

Динамический характер работы позволяет распоряжаться имеющейся памятью более экономно, своевременно «изымая» лишние участки памяти у одних задач и «добавляя» дополнительные участки – другим (в зависимости от их важности, объема обрабатываемой информации, срочности выполнения и т.п.). За «правильное» динамическое распределение памяти в ПК отвечает операционная система, тогда как за «правильное» использование памяти, отвечает прикладное программное обеспечение.

Совершенно очевидно, что прикладные программы должны иметь способность работать под управлением операционной системы, в противном случае последняя не сможет выделить такой программе оперативную память или она не сможет «правильно» работать в пределах отведенной памяти. Именно поэтому не всегда удается запустить под современной операционкой, ранее написанные программы, которые работали под управлением устаревших систем, например под ранними версиями Windows (98 например).

Ещё (для общего развития) следует знать, что поддержка памяти зависит от разрядности системы, например, операционная система Windows 7, разрядностью 64 бита, поддерживает объем памяти до 192 Гбайт (младший 32 -битный собрат «видит» не больше 4 Гбайт). Однако, если Вам и этого мало, пожалуйста, 128 -разрядная Windows 8 заявляет поддержку поистине колоссальных объемов – я даже не осмеливаюсь озвучить эту цифру. Чуть подробнее про разрядность мы писали тут.

Что это такое разобрались.

Дальше, на очереди, как и гласил заголовок, у нас не менее интересный вопрос:

Зачем нужна эта самая оперативная память?

Как мы уже знаем, обмен данными между процессором и памятью происходит чаще всего с участием кэш-памяти. В свою очередь, ею управляет специальный контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их, т.е. кэш-контроллер загружает в кэш-память нужные данные из оперативной памят­и, и возвращает, когда нужно, модифицирован­ные процессором данные в оперативку.

После процессора, оперативную память можно считать самым быстродействующим устройством. Поэтому основной обмен данными и происходит между этими двумя девайсами. Вся информация в персональном компьютере хранится на жестком диске. При включении компа в ОЗУ с винта записываются драйверы, специальные программы и элементы операционной системы. Затем туда записываются те программы – приложения, которые мы будем запускать, при закрытии последних они будут стерты из оной.

Данные, записанные в оперативной памяти, передаются в CPU (он же не раз упомянутый процессор, он же Central Processing Unit ), там обрабатываются и записываются обратно. И так постоянно: дали команду процессору взять биты по таким-то адресам (как то: обработатьих и вернуть на место или записать на новое) – он так и сделал (смотрите изображение).

Все это хорошо до тех пор, пока ячеек памяти ( 1 ) хватает. А если нет?

Тогда в работу вступает файл подкачки ( 2 ). Этот файл расположен на жестком диске и туда записывается все, что не влезает в ячейки оперативной памяти. Поскольку быстродействие винта значительно ниже ОЗУ , то работа файла подкачки сильно замедляет работу системы. Кроме этого, это снижает долговечность самого жесткого диска. Но это уже совсем другая история.

Примечание.
Во всех современных процессорах имеется кэш ( cache ) — массив сверхскоростной оперативной памяти, являющейся буфером между контроллером сравнительно медленной системной памяти и процессором. В этом буфере хранятся блоки данных, с которыми CPU работает в текущий момент, благодаря чему существенно уменьшается количество обращений процессора к чрезвычайно медленной (по сравнению со скоростью работы процессора) системной памяти.

Однако, кэш-память малоэффективна при работе с большими массивами данных (видео, звук, графика, архивы), ибо такие файлы просто туда не помещаются, поэтому все время приходится обращаться к оперативной памяти, или к HDD (у которого также имеется свой кэш).

Компоновка модулей

Кстати, давайте рассмотрим из чего же состоит (из каких элементов) сам модуль.

Так как практически все модули памяти, состоят из одних и тех же конструктивных элементов, мы для наглядности возьмем стандарт SD-RAM (для настольных компьютеров). На изображении специально приведено разное конструктивное исполнение оных (чтобы Вы знали не только «шаблонное» исполнение модуля, но и весьма «экзотическое»).

Итак, модули стандарта SD-RAM ( 1 ): DDR ( 1.1 ); DDR2 ( 1.2 ).

  1. Чипы (микросхемы) памяти
  2. SPD ( Serial Presence Detect ) – микросхема энергонезависимой памяти, в которую записаны базовые настройки любого модуля. Во время старта системы BIOS материнской платы считывает информацию, отображенную в SPD , и выставляет соответствующие тайминги и частоту работы ОЗУ ;
  3. «Ключ» — специальная прорезь платы, по которой можно определить тип модуля. Механически препятствует неверной установке плашек в слоты, предназначенные для оперативной памяти;
  4. SMD -компоненты модулей (резисторы, конденсаторы). Обеспечивают электрическую развязку сигнальных цепей и управление питанием чипов;
  5. Cтикеры производителя — указывают стандарт памяти, штатную частоту работы и базовые тайминги;
  6. РСВ – печатная плата. На ней распаиваются остальные компоненты модуля. От качества зачастую зависит результат разгона: на разных платах одинаковые чипы могут вести себя по-разному.

Теперь обощая, упрощая.

Температура, лаг, энергозависимость и вообще «на пальцах»

Условно говоря, если очень просто, то оперативная память это много мелких ячеек, хранящих данные и каждый бит этих данных хранится зарядом (или его отсутствием) на крошечном конденсаторе в микросхеме (о чем говорилось выше по тексту).

Эта память является энергозависимой, именно поэтому во время режима сна (гибернации компьютера) содержимое памяти записывается на жесткий диск, а при пробуждении загружается обратно. Когда компьютер выключен, — память пуста.

Файл подкачки, который является «продолжением» этой памяти, логичным образом, хранит в себе данные на жестком диске, что, в общем случае, небезопасно.

Информация в ячейках со временем «теряется», причем, чем выше температура, тем быстрее это происходит.

Чтобы избежать потери сохранённых данных, они должны регулярно обновляться, чтобы восстановить заряд (если он есть) до первоначального уровня. Этот процесс обновления включает чтение каждого бита, а потом запись его обратно. Это происходит не целиком, а блоками. В процессе такого «обновления» память занята и не может выполнять обычные операции, такие как запись или хранение битов. В общем случае из-за этого обновления память тормозит каждые 7,8 мкс.

Послесловие

Собственно, это основы основ и базисный базис, а посему, надеюсь, что статья была интересна Вам как с точки зрения расширения кругозора, так и в качестве кирпичика в персональных знаниях о персональном компьютере :).

На сим всё. Как и всегда, если есть какие-то вопросы, комментарии, дополнения и тп, то можете смело бежать в комментарии, которые расположены ниже. И да, не забудьте прочитать материал по выбору этой самой оперативной памяти.

Урок 28
Устройства памяти

Изучив эту тему, вы узнаете:

— что такое память компьютера и как она соотносится с памятью человека;
— каковы характеристики памяти;
— почему память компьютера разделяется на внутреннюю и внешнюю;
— какова структура и особенности внутренней памяти;
— какие наиболее распространенные типы внешней памяти компьютера существуют и в чем состоит их назначение.

Назначение и основные характеристики памяти


В процессе работы компьютера программы, исходные данные, а также промежуточные и окончательные результаты необходимо где-то хранить и иметь возможность обращаться к ним. Для этого в составе компьютера имеются различные запоминающие устройства, которые называют памятью. Информация, хранящаяся в запоминающем устройстве, представляет собой закодированные с помощью цифр 0 и 1 различные символы (цифры, буквы, знаки), звуки, изображения.

Память компьютера — совокупность устройств для хранения информации.

В процессе развития вычислительной техники люди вольно или невольно пытались по образу и подобию собственной памяти проектировать и создавать различные технические устройства хранения информации. Чтобы лучше понять назначение и возможности различных запоминающих устройств компьютера, можно провести аналогию с тем, как хранится информация в памяти человека.

Может ли человек хранить всю информацию об окружающем мире в своей памяти и нужно ли это ему? Зачем, например, помнить названия всех поселков и деревень вашей области, когда при необходимости вы можете воспользоваться картой местности и найти все, что вас интересует? Нет необходимости помнить и цены железнодорожных билетов на разных направлениях, так как для этого есть справочные службы. А сколько существует всевозможных математических таблиц, где рассчитаны значения некоторых сложных функций! В поисках ответа вы всегда можете обратиться к соответствующему справочнику.

Информация, которую человек постоянно хранит в своей внутренней памяти, характеризуется гораздо меньшим объемом по сравнению с информацией, сосредоточенной в книгах, кинолентах, на видеокассетах, дисках и других материальных носителях. Можно сказать, что материальные носители, используемые для хранения информации, составляют внешнюю память человека. Для того чтобы воспользоваться информацией, хранящейся в этой внешней памяти, человек должен затратить гораздо больше времени, чем если бы она хранилась в его собственной памяти. Этот недостаток компенсируется тем, что внешняя память позволяет сохранять информацию сколь угодно длительное время и использовать ее может множество людей.

Существует еще один способ хранения информации человеком. Только что появившийся на свет малыш уже несет в себе внешние черты и, частично, характер, унаследованный от родителей. Это так называемая генетическая память. Новорожденный многое умеет: дышит, спит, ест. Знаток биологии вспомнит о безусловных рефлексах. Эту разновидность внутренней памяти человека можно назвать постоянной, неизменной.

Подобный принцип разделения памяти использован и в компьютере. Вся компьютерная память поделена на внутреннюю и внешнюю. Аналогично памяти человека, внутренняя память компьютера является быстродействующей, но имеет ограниченный объем. Работа же с внешней памятью требует гораздо большего времени, но она позволяет хранить практически неограниченное количество информации.

Внутренняя память состоит из нескольких частей: оперативной, постоянной и кэш-памяти. Это связано с тем, что используемые процессором программы можно условно разделить на две группы: временного (текущего) и постоянного использования. Программы и данные временного пользования хранятся в оперативной памяти и кэш-памяти только до тех пор, пока включено электропитание компьютера. После его выключения выделенная для них часть внутренней памяти полностью очищается. Другая часть внутренней памяти, называемая постоянной, является энергонезависимой, то есть записанные в нее программы и данные хранятся всегда, независимо от включения или выключения компьютера.

Внешняя память компьютера по аналогии с тем, как человек обычно хранит информацию в книгах, газетах, журналах, на магнитных лентах и пр., тоже может быть организована на различных материальных носителях: на дискетах, на жестких дисках, на магнитных лентах, на лазерных дисках (компакт-дисках).

Классификация видов компьютерной памяти по назначению показана на рисунке 18.1.

Рассмотрим общие для всех видов памяти характеристики и понятия.

Существует две распространенные операции с памятью — считывание (чтение) информации из памяти и запись ее в память для хранения. Для обращения к областям памяти используются адреса.

Илон Маск рекомендует:  Виде о сайте, создании сайтов

При считывании порции информации из памяти осуществляется передача ее копии в другое устройство, где с ней производятся определенные действия: числа участвуют в вычислениях, слова используются при создании текста, из звуков создается мелодия и т. д. После считывания информация не исчезает и хранится в той же области памяти до тех пор, пока на ее место не будет записана другая информация.

Рис. 18.1. Виды памяти компьютера

При записи (сохранении) порции информации предыдущие данные, хранящиеся на этом месте, стираются. Вновь записанная информация хранится до тех пор, пока на ее место не будет записана другая.

Операции чтения и записи можно сравнить с известными вам в быту процедурами воспроизведения и записи, выполняемыми с обычным кассетным магнитофоном. Когда вы прослушиваете музыку, то считываете информацию, хранящуюся на ленте. При этом информация на ленте не исчезает. Но после записи нового альбома любимой рок-группы ранее хранившаяся на ленте информация будет затерта и утрачена навсегда.

Чтение (считывание) информации из памяти — процесс получения информации из области памяти по заданному адресу.

Запись (сохранение) информации в памяти — процесс размещения информации в памяти по заданному адресу для хранения.

Способ обращения к устройству памяти для чтения или записи информации получил название доступа. С этим понятием связан такой параметр памяти, как время доступа, или быстродействие памяти — время, необходимое для чтения из памяти либо записи в нее минимальной порции информации. Очевидно, что для числового выражения этого параметра используются единицы измерения времени: миллисекунда, микросекунда, наносекунда.

Время доступа, или быстродействие, памяти — время, необходимое для чтения из памяти либо записи в нее минимальной порции информации.

Важной характеристикой памяти любого вида является ее объем, называемый также емкостью. Этот параметр показывает, какой максимальный объем информации можно хранить в памяти. Для измерения объема памяти используются следующие единицы: байты, килобайты (Кбайт), мегабайты (Мбайт), гигабайты (Гбайт).

Объем (емкость) памяти — максимальное количество хранимой в ней информации.

Внутренняя память

Характерными особенностями внутренней памяти по сравнению с внешней являются высокое быстродействие и ограниченный объем. Физически внутренняя память компьютера представляет собой интегральные микросхемы (чипы), которые размещаются в специальных подставках (гнездах) на плате. Чем больше размер внутренней памяти, тем более сложную задачу и с большей скоростью может решить компьютер.

Постоянная память хранит очень важную для нормальной работы компьютера информацию. В частности, в ней содержатся программы, необходимые для проверки основных устройств компьютера, а также для загрузки операционной системы. Очевидно, что изменять эти программы нельзя, так как при любом вмешательстве сразу станет невозможным последующее использование компьютера. Поэтому разрешено только чтение хранимой там постоянно информации. Это свойство постоянной памяти объясняет часто используемое ее английское название Read Only Memory (ROM) — память только для чтения.

Вся записанная в постоянную память информация сохраняется и после выключения компьютера, так как микросхемы являются энергонезависимыми. Запись информации в постоянную память происходит обычно только один раз — при производстве соответствующих чипов фирмой-изготовителем.

Постоянная память — устройство для долговременного хранения программ и данных.

Существует две основные разновидности микросхем постоянной памяти: однократно программируемые (после записи содержимое памяти не может быть изменено) и многократно программируемые. Изменение содержимого многократно программируемой памяти производится путем электронного воздействия.

Оперативная память хранит информацию, необходимую для выполнения программ в текущем сеансе работы: исходные данные, команды, промежуточные и конечные результаты. Эта память работает только при включенном электропитании компьютера. После его выключения содержимое оперативной памяти стирается, так как микросхемы являются энергозависимыми устройствами.

Оперативная память — устройство для хранения программ и данных, которые обрабатываются процессором в текущем сеансе работы.

Устройство оперативной памяти обеспечивает режимы записи, считывания и хранения информации, причем в любой момент времени возможен доступ к любой ячейке памяти. Часто оперативную память называют RAM (англ. Random Access Memory — память с произвольным доступом).

Если необходимо хранить результаты обработки длительное время, то следует воспользоваться каким-нибудь внешним запоминающим устройством.

ОБРАТИТЕ ВНИМАНИЕ!
При выключении компьютера вся находящаяся в оперативной памяти информация стирается.

Оперативная память характеризуется высоким быстродействием и относительно малой емкостью.

Микросхемы оперативной памяти монтируются на печатной плате. Каждая такая плата снабжена контактами, расположенными вдоль нижнего края, число которых может быть 30, 72 или 168 (рисунок 18.2). Для подключения к другим устройствам компьютера такая плата вставляется своими контактами в специальный разъем (слот) на системной плате, расположенной внутри системного блока. Системная плата имеет несколько разъемов для модулей памяти, суммарный объем которых может принимать ряд фиксированных значений, например 64, 128, 256 Мбайт и более.

Рис. 18.2. Микросхемы (чипы) оперативной памяти

Кэш-память (англ. cache — тайник, склад) служит для увеличения производительности компьютера.

Кэш-память используется при обмене данными между микропроцессором и оперативной памятью. Алгоритм ее работы позволяет сократить частоту обращений микропроцессора к оперативной памяти и, следовательно, повысить производительность компьютера.

Существует два типа кэш-памяти: внутренняя (8-512 Кбайт), которая размещается в процессоре, и внешняя (от 256 Кбайт до 1 Мбайт), устанавливаемая на системной плате.

Внешняя память

Назначение внешней памяти компьютера заключается в долговременном хранении информации любого вида. Выключение питания компьютера не приводит к очистке внешней памяти. Объем этой памяти в тысячи раз больше объема внутренней памяти. Кроме того, в случае необходимости ее можно «нарастить» так же, как можно купить дополнительную книжную полку для хранения новых книг. Но обращение к внешней памяти требует гораздо большего времени. Как человек затрачивает на поиск информации в справочной литературе гораздо больше времени, чем на ее поиск в собственной памяти, так и скорость обращения (доступа) к внешней памяти существенно больше, чем к оперативной.

Необходимо различать понятия носителя информации и устройства внешней памяти.

Носитель — материальный объект, способный хранить информацию.

Устройство внешней памяти (накопитель)—физическое приспособление, позволяющее производить считывание и запись информации на соответствующий носитель.

Носителями информации во внешней памяти современных компьютеров являются магнитные или оптические диски, магнитные ленты и некоторые другие.

По типу доступа к информации устройства внешней памяти делятся на два класса: устройства прямого (произвольного) доступа и устройства последовательного доступа.

В устройствах прямого (произвольного) доступа время обращения к информации не зависит от места ее расположения на носителе. В устройствах последовательного доступа такая зависимость существует.

Рассмотрим знакомые всем примеры. Время доступа к песне на аудиокассете зависит от местоположения записи. Для ее прослушивания необходимо предварительно перемотать кассету до того места, где записана песня. Это пример последовательного доступа к информации. Время же доступа к песне на грампластинке не зависит от того, первая эта песня на диске или последняя. Чтобы прослушать любимое произведение, достаточно установить звукосниматель проигрывателя в определенное место на диске, где записана песня, или на музыкальном центре указать ее номер. Это пример прямого доступа к информации.

Дополнительно к введенным ранее общим характеристикам памяти для внешней памяти используют понятия плотности записи и скорости обмена информацией.

Плотность записи определяется объемом информации, записанным на единице длины дорожки. Единицей измерения плотности записи служат биты на миллиметр (бит/мм). Плотность записи зависит от плотности нанесения дорожек на поверхность, то есть числа дорожек на поверхности диска.

ПЛОТНОСТЬ записи — объем информации, записанной на единице длины дорожки.

Скорость обмена информации зависит от скорости ее считывания или записи на носитель, что, в свою очередь, определяется скоростью вращения или перемещения этого носителя в устройстве. По способу записи и чтения устройства внешней памяти (накопители) подразделяются в зависимости от вида носителя на магнитные, оптические и электронные (флэш-память). Рассмотрим основные виды внешних носителей информации.

Гибкие магнитные диски

Одним из наиболее распространенных носителей информации являются гибкие магнитные диски (дискеты) или флоппи-диски (от англ. floppy disk). В настоящее время широко используются гибкие диски с внешним диаметром 3,5″ (дюйма), или 89 мм, называемые обычно 3-дюймовыми. Диски называются гибкими потому что их рабочая поверхность изготовлена из эластичного материала и помещена в твердый защитный конверт. Для доступа к магнитной поверхности диска в защитном конверте имеется закрытое шторкой окно.

Поверхность диска покрывается специальным магнитным слоем. Именно этот слой обеспечивает хранение данных, представленных двоичным кодом. Наличие намагниченного участка поверхности кодируется как 1, отсутствие — как 0. Информация записывается с двух сторон диска на дорожках, которые представляют собой концентрические окружности (рисунок 18.3). Каждая дорожка разделяется на секторы. Дорожки и секторы представляют собой намагниченные участки поверхности диска.

Работа с дискетой (запись и чтение) возможна только при наличии на ней магнитной разметки на дорожки и секторы. Процедура предварительной подготовки (разметки) магнитного диска называется форматированием. Для этого в состав системного программного обеспечения включена специальная программа, с помощью которой и производится форматирование диска.

Рис. 18.3. Разметка поверхности гибкого диска

Форматирование диска — процесс магнитной разметки диска на дорожки и секторы.

Для работы с гибкими магнитными дисками предназначено устройство, называемое дисководом, или накопителем на гибких магнитных дисках (НГМД). Дисковод для гибких дисков относится к группе накопителей прямого доступа и устанавливается внутри системного блока.

Гибкий диск вставляется в щель дисковода, после чего автоматически открывается шторка и происходит вращение диска вокруг своей оси. При обращении к нему соответствующей программы магнитная головка записи/чтения устанавливается над тем сектором диска, куда надо записать или откуда требуется считать информацию. Для этого дисковод снабжен двумя шаговыми электродвигателями. Один двигатель обеспечивает вращение диска внутри защитного конверта. Чем выше скорость вращения, тем быстрее считывается информация, а значит, увеличивается скорость обмена информацией. Второй двигатель перемещает головку записи/чтения вдоль радиуса поверхности диска, что и определяет другую характеристику внешней памяти — время доступа к информации.

В защитном конверте имеется специальное окно защиты записи. Это окно может быть открыто или закрыто с помощью бегунка. Для предохранения информации на диске от изменения или удаления это окно открывают. При этом запись на гибкий диск становится невозможна и доступным остается только чтение с диска.

Для обращения к диску, установленному в дисководе, используются специальные имена в виде латинской буквы с двоеточием. Наличие после буквы двоеточия позволяет компьютеру отличить имя дисковода от буквы, поскольку это общее правило. Дисководу для считывания информации с 3-дюймового диска присваивается имя А: или иногда В:.

Запомните правила работы с гибкими дисками.

1. Не дотрагивайтесь до рабочей поверхности диска руками.
2. Не держите диски вблизи источника сильного магнитного поля, например около магнита.
3. Не подвергайте диски нагреванию.
4. Рекомендуется делать копии содержимого гибких дисков на случай их повреждения и выхода из строя.

Существенно увеличить хранимый на магнитном диске объем позволяют технологии, которые при записи дополнительно используют сжатие информации (ZIP-диск).

Жесткие магнитные диски

Одним из обязательных компонентов персонального компьютера являются жесткие магнитные диски. Они представляют собой набор металлических либо керамических дисков (пакет дисков), покрытых магнитным слоем. Диски вместе с блоком магнитных головок установлены внутри герметичного корпуса накопителя, обычно называемого винчестером. Накопитель на жестких магнитных дисках (винчестер) относится к накопителям с прямым доступом.

Термин «винчестер» возник из жаргонного названия первой модели жесткого диска емкостью 16 Кб (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром 30″/30″ известного охотничьего ружья «Винчестер».

Основные особенности жестких дисков:

♦ жесткий диск относится к классу носителей с произвольным доступом к информации;
♦ для хранения информации жесткий диск размечается на дорожки и секторы;
♦ для доступа к информации один двигатель дисковода вращает пакет дисков, другой устанавливает головки в место считывания/запи си информации;
♦ наиболее распространенные размеры жесткого диска — 5,25 и 3,5 дюйма в наружном диаметре.

Жесткий магнитный диск представляет собой очень сложное устройство с высокоточной механикой чтения/записи и электронной платой, управляющей работой диска. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов, резких толчков.

Производители винчестеров сосредоточили свои усилия на создании жестких дисков большей емкости, надежности, скорости обмена данными и меньшей шумности. Можно выделить следующие основные тенденции развития жестких магнитных дисков:

♦ развитие винчестеров для мобильных приложений (например однодюймовые, двухдюймовые винчестеры для ноутбуков);
♦ развитие областей применения, не связанных с персональными компьютерами (в телевизорах, видеомагнитофонах, автомобилях).

Для обращения к жесткому диску используется имя, задаваемое любой латинской буквой, начиная с С:. В случае если установлен второй жесткий диск, ему присваивается следующая буква латинского алфавита D: и т. д. Для удобства работы в операционной системе предусмотрена возможность с помощью специальной системной программы условно разбивать один физический диск на несколько независимых частей, называемых логическими дисками. В этом случае каждой части одного физического диска присваивается свое логическое имя, что позволяет независимо обращаться к ним: С:, D: и т. д.

Оптические диски


Оптические, или лазерные носители — это диски, на поверхности которых информация записана с помощью лазерного луча. Эти диски изготовлены из органических материалов с напылением на поверхность тонкого алюминиевого слоя. Такие диски часто называют компакт-дисками у или CD (англ. Compact Disk — компакт -диск). Лазерные диски в настоящее время являются наиболее популярными носителями информации. При габаритах (диаметр — 120 мм), сопоставимых с флоппи-дисками (диаметр — 89 мм), емкость современного компакт-диска примерно в 500 раз больше, чем у дискеты. Емкость лазерного диска составляет примерно 650 Мбайт, что эквивалентно хранению текстовой информации объемом около 450 книг или звукового файла длительностью 74 минуты.

В отличие от магнитных дисков, лазерный диск имеет одну дорожку в виде спирали. Информация на дорожке-спирали записывается мощным лазерным лучом, выжигающим на поверхности диска углубления, и представляет собой чередование впадин и выпуклостей. При считывании информации выступы отражают свет слабого лазерного луча и воспринимаются как единица (1), впадины поглощают луч и, соответственно, воспринимаются как ноль (0).

Бесконтактный способ считывания информации с помощью лазерного луча определяет долговечность и надежность ком- пакт-дисков. Как и магнитные, оптические диски относятся к устройствам с произвольным доступом к информации. Оптическому диску присваивается имя — первая свободная буква латинского алфавита, не использованная для имен жестких дисков.

Различают два типа накопителей (оптических дисководов) для работы с лазерными дисками:

♦ устройство для чтения с компакт-дисков, которое позволяет только читать информацию, ранее записанную на диск. Этим обусловлено название оптического дисковода CD-ROM (от англ. Compact Disk Read Only Memory — компакт-диск только для чтения). Невозможность записи информации в этом устройстве объясняется тем, что в нем установлен источник слабого лазерного излучения, мощности которого хватает только для считывания информации;
♦ оптический дисковод, который позволяет не только считывать, но и выполнять запись информации на компакт-диск. Он называется CD-RW (Rewritable). Устройства CD-RW обладают достаточно мощным лазером, позволяющим менять отражающую способность участков поверхности в процессе записи диска и прожигать микроскопические углубления на поверхности диска под защитным слоем, производя тем самым запись непосредственно в дисководе компьютера.

Диски DVD, также как и CD, хранят данные за счет расположенных выпуклостей (насечек) вдоль спиральных дорожек на отражающей металлической поверхности, покрытой пластиком. Используемый в устройствах записи/чтения DVD дисков лазер создает насечки более мелкого размера, что позволяет увеличить плотность записи данных.

Внедрение полупрозрачного слоя, который прозрачен для света с одной длиной волны и отражает свет другой длины волны, позволяет создавать двухслойные и двухсторонние диски и следовательно увеличить емкость диска при прежних размерах. При этом геометрические размеры DVD и CD одинаковые, что позволило создать устройства, способные воспроизводить и записывать данные как на CD, так и на DVD. Но оказалось, что это не предел. Для записи видео и звука на DVD применяется сложная технология сжатия данных, обеспечивающая возможность разместить еще большие объемы информации в меньшем пространстве

Магнитные ленты

Магнитные ленты представляют собой носитель, аналогичный используемому в аудиокассетах бытовых магнитофонов. Устройство, которое обеспечивает запись и считывание информации с магнитных лент, называется стримером (от англ. stream — поток, течение; струиться). Стример относится к устройствам с последовательным доступом к информации и характеризуется гораздо меньшей скоростью записи и считывания информации по сравнению с дисководами.

Основное назначение стримеров — создание архивов данных, резервное копирование, надежное хранение информации. Многие большие банки, коммерческие фирмы, торговые предприятия в конце плановых периодов переносят важные сведения на магнитные ленты и убирают кассеты в архивы. Кроме того, на кассеты стримеров периодически записывается информация с винчестера, чтобы воспользоваться ею в случае непредвиденного сбоя жесткого диска, когда необходимо срочно восстановить хранившуюся на нем информацию.

Флэш-память

Флэш-память относится к электронному энергонезависимому типу памяти. Принцип работы флэш-памяти аналогичен принципу работы модулей оперативной памяти компьютера.

Главное отличие состоит в том, что она энергонезависима, то есть хранит данные до тех пор, пока вы их сами не удалите. При работе с флэш-памятью используются такие же операции, что и с другими носителями: запись, чтение, стирание (удаление).

Флэш-память имеет ограниченный срок службы, который зависит от объема перезаписываемой информации и от частоты ее обновления.

Сравнительные характеристики

Современные компьютеры, как правило, имеют внешнюю память в составе: винчестер, дисковод для 3,5-дюймовых дискет, CD-ROM, флэш-память. Следует помнить, что магнитные диски и ленты чувствительны к воздействию магнитных полей. В частности, размещение поблизости с ними сильного магнита может разрушить информацию, хранимую на перечисленных носителях. Поэтому, используя магнитные носители, необходимо обеспечить их удаленность от источников магнитных полей.

В таблице 18.1 приведено сравнение объемов памяти наиболее распространенных современных устройств памяти и носителей информации, рассмотренных ранее.

Таблица 18.1. Сравнительная характеристика устройств памяти
персонального компьютера, август 2006

Контрольные вопросы и задания

1. Емкость гибкого диска размером 3,5 дюйма равна 1,44 Мбайт. Лазерный диск может содержать 650 Мбайт информации. Определите, сколько дискет потребуется, чтобы разместить информацию с одного лазерного диска.

2. Диаметр гибких дисков задается в дюймах. Вычислите размеры гибких дисков в сантиметрах (1 дюйм = 2,54 см).

3. Установлено, что для записи одного символа необходим 1 байт памяти. В тетради в клеточку, состоящей из 18 листов, мы пишем по одному символу в каждой клетке. Сколько тетрадей можно записать на один гибкий диск с объем памяти 1,44 Мбайт?

4. Определите объем памяти, необходимой для хранения 2 млн символов. Сколько дисков объемом 1,44 Мбайт понадобится для записи этой информации?

5. Ваш жесткий диск имеет объем 2,1 Гбайт. Устройство распознавания речи воспринимает информацию с максимальной скоростью 200 букв в минуту. Сколько времени надо говорить, чтобы заполнить 90 % объема памяти жесткого диска?

6. Каково назначение устройств хранения информации в компьютере?

7. Какие виды памяти вы знаете и в чем их основное различие?

8. Для чего при работе на персональном компьютере используется внешняя память?

9. В чем суть считывания и записи информации в память?

10. Какие вы знаете характеристики, общие для всех видов памяти?

11. Чем характеризуется внутренняя память компьютера?

12. В чем особенности постоянной памяти?

13. В чем особенности оперативной памяти?

14. В чем особенности кэш-памяти?

15. Укажите отличительные особенности внутренней и внешней памяти компьютера.

16. Какие специфические характеристики внешней памяти вы знаете?

17. Перечислите известные вам носители информации с древних времен и до наших дней. Расположите их в хронологическом порядке.

18. Дайте краткую характеристику наиболее распространенным накопителям данных, которые используются в компьютере.

19. В чем отличие прямого и последовательного доступа к информации на носителях?

20. Укажите общие свойства и отличительные особенности гибких и жестких дисков.

21. Что такое CD, CD-ROM, CD-R?

22. Когда целесообразно использовать стример?

23. Заполните таблицу 18.1 данными для конкретной модели компьютера.

Правила выбора — оперативная память. Что скрывается за цифрами из технических характеристик

В «Игромании» №4/2013 мы запустили серию материалов «Правила выбора», посвященную основным техническим параметрам компьютерного железа. Несмотря на общее название, каждая статья полностью самостоятельна и рассказывает не только о том, какими характеристиками обладает определенный тип оборудования, но и о том, на какие из них важно обращать внимание, а на какие не очень.

В первых двух выпусках мы успели разобраться с процессорами и материнскими платами, теперь пришла очередь оперативки. Параметров у нее не то чтобы много, но все они достойны пристального внимания. Сегодня мы выясним, сколько гигабайтов брать, так ли уж важна многоканальность и стоит ли переплачивать за частоту. Ну а для закрепления теории проведем серию экспресс-тестов и расскажем, откуда вообще взялась оперативка и какие еще варианты были в прошлом.

Объем

Определить роль оперативки в компьютере несложно. Нашей главной вычислительной единице, процессору, для беспрерывной работы необходима постоянная подпитка данными. Все дровишки сложены на винчестере, но кристаллу он сродни огромному складу, находящемуся за тысячу километров. Информация с него идет слишком медленно и не может удовлетворить потребности камня. И вот чтобы дорогая штука не простаивала, существует оперативная память, локальный сарайчик, в который заранее завозятся нужные материалы и по мере надобности отправляются к ЦП на запредельной для обычного жесткого диска скорости.

Что же хранится в сарайчике? Да все подряд. Если интересно, нажмите прямо сейчас Ctrl+Alt+Delete и посмотрите на цифры в «Диспетчере задач». Гигабайта полтора занимает десяток открытых в браузере вкладок, около сотни мегабайт кушает антивирус, понемногу заполняет пространство системное ПО. И пока остается свободное место, выглядит это мирно и буднично. Ключевое слово — «пока».

Запуск ресурсоемкого приложения или даже открытие особо «тяжелой» странички в Google Chrome — и памяти как не бывало. С точки зрения бестолковой железки, все нормально. Ну нет быстрого хранилища, и фиг с ним: закинем файлы в «своп» (кусочек HDD, выделяемый на подобные случаи) и будем работать дальше. Для нас же такое решение оборачивается адом: тормоза, зависания и разбитые мышки с клавиатурами.

Бороться с ахтунгом можно тремя способами. Первый — перестать нервно кликать по иконкам и пойти пить чай. Рано или поздно система разберется с творящимся ужасом, перераспределит нагрузку и вернется к нормальному состоянию. Второй — следить за запущенными программами и не допускать переполнения памяти: заранее закрывать ненужные вкладки в браузере, завершать работу с Word, фотографиями и графическими редакторами. Ну и третий — самый простой — наращивать объем оперативки.

Сколько брать?

Сколько понадобится системе — зависит от ваших потребностей. Для офисной работы и активного интернет-серфинга достаточно 4 ГБ. Любителям посмотреть онлайн-видео лучше обзавестись 8 ГБ. Ну а людям творческих профессий, не мыслящих себя без фото/аудио/видеоредакторов, может не хватить и 128 ГБ.

Илон Маск рекомендует:  Vrml'97 анимация сенсоры, маршруты, интерполяторы

Что же касается игр, то вы будете приятно удивлены. На fps объем практически не сказывается. Мы проверили BioShock Infinite и «тяжелейший» Metro: Last Light на стенде с 2, 4, 8 и 12 ГБ оперативки. Между первым и последним вариантами разница составила всего 3%! Конечно, свою роль тут сыграла «чистота» операционки, но общая тенденция понятна: при ограниченном бюджете деньги разумнее вкладывать в видеокарту, а не «лишние» гигабайты, результат будет ощутимее.

Куда сложнее определиться, какие именно планки ставить. Наиболее распространенные — по 2/4/8 ГБ, хотя бывают и раритеты по 1 ГБ или даже по 512 МБ. Казалось бы, самое простое — взять модель потолще и не забивать голову ерундой. Но многих подобная легкомысленность пугает: «А как же двухканальность?» Да, есть такая штука.

Каналы

Как мы уже успели объяснить, память забирает данные с жесткого диска и передает их процессору. Работать по воздуху она не умеет и пользуется шиной данных, за глаза называемой каналом. За такт он может передать до 64 бит информации, а благодаря некоторым особенностям оперативки и все 128 бит (что и зашифровано в названии — Double Data Rate (DDR)). Цифры эти, надо сказать, более чем внушительные и для DDR3-1066 МГц обеспечивают пропускную способность в 8528 МБ/с (та самая маркировка PC-8500). Проблема одна: канал используется всеми модулями по очереди, а отсюда падение производительности.

Решить задачу взялись с выпуском Pentium 4 — пришпандорили материнке еще одну шину, повесили на нее каждую вторую планку и ввели понятие двухканальности. Последнее означало следующее: если поставить два идентичных модуля в слоты разных каналов, то компьютер их воспримет как одну, особо жирную плашку памяти и будет общаться с ней на скорости 256 бит за такт. То есть увеличит пропускную способность с 8528 до 17 056 МБ/с.

Звучит многообещающе, но только в теории. По нашим тестам в Everest, прибавка от дополнительной дорожки составляет всего 3 ГБ/с, которые в играх выражаются в «плюс 2-3%» к счетчику fps (смотрите наши таблички). Конечно, с учетом сравнимой стоимости 2х2 ГБ и 1х4 ГБ — бонус приятный, жертвовать им не стоит, но есть нюанс.

Материнская плата поддерживает строго определенное количество памяти. В ТТХ записано «4х DDR3 до 16 ГБ»? Значит, чипсет может принять четыре модуля объемом до 4 ГБ каждый. Возьмете версии меньшей емкости — в будущем, при апгрейде, не сможете реализовать весь потенциал своей системы.

Если денег сразу на две рекомендуемые модели не хватает, ничего страшного. Берите одну, потом докупите еще планку и организуете двухканалку. Особых проблем с этим сейчас нет, главное — придерживаться правила одинакового объема и скорости, о которой мы расскажем отдельно.

За скоростью

Стандартом для оперативки сегодня считается 1333 МГц. Однако есть планки гораздо быстрее и заметно дороже. Зачем они нужны? Да все для того же — увеличения пропускной способности.

Рассчитывается она просто: частоту модуля умножаем на ширину шины (64 бит) и делим на восемь для перехода к байтам. Из этой формулы вытекает логичное заключение: скорость напрямую влияет на пропускную способность, а значит, ведет к прибавке fps. Только вот если отталкиваться от тестов двухканальности, то для еще одной пары кадров частоту надо повысить в два раза. То есть купить вместо DDR3-1333 МГц версию на 2600 МГц, которая в полтора раза дороже. Стоит ли оно того — решать вам.

В случае положительного ответа не забудьте проверить, поддерживает ли материнка выбранные модели: доступные варианты отмечаются в той же графе, что и максимальный объем. Ну и обратите внимание на тайминги планок. Записываются они в виде четырех чисел — например, «9-9-9-24». Каждая цифра указывает, сколько тактов нужно модулю для перехода к следующей строчке или столбцу с данными. Чем меньше значения, тем лучше для производительности. Как правило, с поднятием частоты тайминги увеличиваются, а это приводит к росту нежелательных задержек.

Как видите, ничего сложного в выборе планок памяти нет. Определяемся с нужным объемом, решаем, необходима ли лишняя скорость, и вперед, за покупками. С производителями можно особо не напрягаться — чипы всем в основном поставляет либо Samsung, либо Hynix. То же касается и мощного охлаждения. Память не склонна к перегреву, и даже в топовые компьютеры с несколькими видеокартами набирают самые обычные планки по 300 рублей за 1 ГБ.

Оперативная память

Наверное, каждый из вас слышал такое понятие, но далеко не каждый знает, что такое оперативная память. А ведь от этой крохотной микросхемы во многом зависит наш комфорт работы за компьютером или ноутбуком, потянет ли он новую игру или сложную программу. Если вы решили собрать новый компьютер или модернизировать старый, то правильному выбору данной запчасти стоит уделить повышенное внимание. Прочитав эту статью вы сможете с легкостью справиться с любой задачей.

Содержание:

Для начала дадим определение: оперативная память (оперативное запоминающее устройство — ОЗУ) – это один из главных элементов компьютера, который представляет собой его временную память. А она, в свою очередь, нужна для нормального функционирования всех процессов, программ и приложений. Своё название она получила благодаря быстрой работе и способности создавать условия для мгновенного считывания процессором информации.

От постоянной (к примеру, дисковой) оперативная память отличается тем, что доступ к ней осуществляется значительно быстрее, и разница может достигать сотни тысяч раз. Данные, которые в неё записаны, доступны только при включенном компьютере.

Когда же вы выключаете или перезагружаете свой компьютер, абсолютно все содержимое ОЗУ стирается (обнуляется). Поэтому перед выключением компьютера или перезагрузки всю информацию, подвергнутую изменениям в процессе работы, нужно сохранить на жестком диске или на другом альтернативном запоминающем устройстве.

Само понятие «оперативная память компьютера» нередко обозначает не только микросхемы, составляющие устройства памяти в системе, но сюда также входят понятия размещения и логического отображения. Размещение — это расположение информации определенного типа по определенным адресам памяти в системе. В свою очередь, логическим отображением является способ представления этих адресов на установленных микросхемах. ОЗУ используется в различных устройствах персонального компьютера — от видеоплаты до принтера и сканера.

Типы оперативной памяти и их характеристики

  • SDRAM (PC-133) – сегодня является устаревшим видом, крайне редко встречается, но стоит довольно дорого. Компьютеры с этим типом оперативной памяти модернизировать уже не получится.
  • DDR SDRAM или DDR (с частотой 200-400 МГц) — также является устаревшим видом ОЗУ, который на сегодняшний момент крайне редко используется . Этот модуль представляет собой 184-контактную плату. Стандартным напряжением для него является напряжение в 2,5 В.

  • Далее следует DDR2 – более распространенный сегодня тип, но, тем не менее, уже не являющийся современным. DDR2 (с частотой 533-1200 МГц) делает выборку 4 бита данных за один такт работы процессора, в то время как DDR только 2 бита. Это означает способность передавать при каждом такте в два раза больше информации через ячейки микросхемы. Данный модуль имеет по 120 контактов с двух сторон, а стандартным напряжением для него есть 1,8 В.
  • Следующий вид оперативной памяти — DDR3 (частота 800-2400 МГц) — новый тип, который дает возможность делать выборку 8 бит данных за один такт работы процессора. Он также представляет собой 240-контактную плату, но имеет на 40% меньше энергопотребления, чем у DDR2, а рабочее напряжение всего 1,5 В. Такое сравнительно невысокое энергопотребление имеет большое значение для ноутбуков и мобильных устройств. Логично отметить, что чем выше показатели частоты, тем выше скорость работы оперативки.
  • DDR4 — самый новый тип, который является следующей ступенькой эволюционного развития. Как все предыдущие ступеньки, данный тип имеет еще большую частоту (от 2133 до 4266 МГц) и меньшее энергопотребление. Также значительно повысилась надежность работы благодаря механизму контроля чётности на шинах адреса и команд. Массовое производство началось лишь во втором квартале 2014 года. Массовое распространение получила в 2020 году после выхода нового поколения процессоров Intel Skylake.

Объём оперативной памяти

Далее остановимся подробнее на следующей важной характеристике оперативной памяти – ее объеме. Вначале следует отметить, что он самым непосредственным образом влияет на количество единовременно запущенных программ, процессов и приложений и на их бесперебойную работу. На сегодняшний день наиболее популярными модулями являются планки с объемом: 4 Гб и 8 Гб (речь идет про стандарт DDR3).

Исходя из того, какая операционная система установлена, а также, для каких целей используется компьютер, следует правильно выбирать и подбирать объем ОЗУ. В большинстве своем, если компьютер используется для доступа к всемирной паутине и для работы с различными приложениями, при этом установлена Windows XP, то 2 Гб вполне достаточно.

Для любителей «обкатать» недавно вышедшую игру и людей, работающих с графикой, следует ставить как минимум 4 Гб. А в том случае, если планируется установка виндовс 7, то понадобится еще больше.

Самым простым способом узнать, какой для вашей системы необходим объем памяти, является запуск Диспетчера задач (путем нажатия комбинации на клавиатуре ctrl+alt+del) и запуск самой ресурсопотребляющей программы или приложения. После этого необходимо проанализировать информацию в группе «Выделение памяти» — «Пик».

Таким образом можно определить максимальный выделенный объем и узнать, до какого объёма её необходимо нарастить, чтобы наш высший показатель умещался в оперативной памяти. Это даст вам максимальное быстродействие системы. Дальше увеличивать необходимости не будет.

Выбор оперативной памяти

Сейчас перейдем к вопросу выбора оперативки, наиболее подходящей конкретно вам. С самого начала следует определить именно тот тип ОЗУ, который поддерживает материнская плата вашего компьютера. Для модулей разных типов существуют разные разъемы соответственно. Поэтому, чтобы избежать повреждений системной платы или непосредственно модулей, сами модули имеют различные размеры.

Об оптимальных объемах ОЗУ говорилось выше. При выборе оперативной памяти следует акцентировать внимание на ее пропускную способность. Для быстродействия системы наиболее оптимальным будет тот вариант, когда пропускная способность модуля совпадает с той же характеристикой процессора.

То есть, если в компьютере стоит процессор с шиной 1333 МГц, пропускная способность которого 10600 Мб/с, то для обеспечения наиболее благоприятных условий для быстродействия, можно поставить 2 планки, пропускная способность которых 5300 Мб/с, и которые в сумме дадут нам 10600 Мб/с.

Однако, следует запомнить, что для такого режима работы модули ОЗУ должны быть идентичны как по объему, так и по частоте. Кроме того, должны быть изготовлены одним производителем. Вот краткий список производителей хорошо себя зарекомендовавших: Samsung, OCZ, Transcend, Kingston, Corsair, Patriot.

Оперативная память: виды, увеличение, диагностика

Что такое оперативная память?

Оперативная память – это оперативное запоминающее устройство (ОЗУ), в которой в процессе работы компьютерной техники хранятся выполняемые входные, выходные и промежуточные данные, обрабатываемые центральным процессором.

В процессе запуска операционной системы оперативка содержит данные программ и ОС. Объем оперативной памяти на прямую оказывает влияние на решение одновременно запущенных задач. То есть, чем больше объем ОЗУ, тем больше задач в состоянии обработать компьютер. Также очень часто используется видеокартой как видеопамять.

Виды оперативной памяти

На сегодняшний день выпущено четыре вида оперативной памяти: DDR, DDR2, DDR3, DDR4. Они также делятся на 2 форм фактора: DIMM – для компьютеров, SO-DIMM – для ноутбуков. Эти два типа абсолютно разные, их невозможно спутать, для компьютеров они вытянутые, для ноутбуков – короткие. Рассмотрим каждое поколение ОЗУ в отдельности.

DDR – первый тип памяти, ему более 20 лет. Использует напряжение 2.6В. Спецификации DDR SDRAM:

Название модуля Тип чипа Частота шины памяти, МГц
PC1600 DDR200 100
PC2100 DDR266 133
PC2400 DDR300 150
PC2700 DDR333 166
PC3200 DDR400 200
PC3500 DDR433 217
PC3700 DDR466 233
PC4000 DDR500 250
PC4200 DDR533 267
PC5600 DDR700 350

DDR2 – второе поколение оперативной памяти, впервые появилась в 2003 году. Использует напряжение 1.8В. Спецификации DDR2:

Название модуля Тип Частота шины памяти, МГц
PC2‑3200 DDR2‑400 200
PC2‑4200 DDR2‑533 266
PC2‑5300 DDR2‑667 333
PC2‑5400 DDR2‑675 337
PC2‑5600 DDR2‑700 350
PC2‑5700 DDR2‑711 355
PC2‑6000 DDR2‑750 375
PC2‑6400 DDR2‑800 400
PC2‑7100 DDR2‑888 444
PC2‑7200 DDR2‑900 450
PC2‑8000 DDR2‑1000 500
PC2‑8500 DDR2‑1066 533
PC2‑9200 DDR2‑1150 575
PC2‑9600 DDR2‑1200 600

DDR3 – это третье поколение, и оно делится на три типа с различным напряжением: DDR3 – 1.5В, DDR3L – 1.35В, DDR3U – 1.25В. Выпуск всех модификаций с 2007 по 2010 год. Спецификации DDR3:

Название модуля Тип Частота шины памяти, МГц
PC3‑6400 DDR3‑800 400
PC3‑8500 DDR3‑1066 533
PC3‑10600 DDR3‑1333 667
PC3‑12800 DDR3‑1600 800
PC3‑14900 DDR3‑1866 933
PC3‑17000 DDR3‑2133 1066
PC3‑19200 DDR3‑2400 1200

DDR4 – это последнее поколение на сегодняшний день, в массовое производство поступила в 2014 году. Потребляемое напряжение 1.2В. Имеет большее количество различных таймингов. Спецификации DDR4:

Название модуля Тип Частота шины памяти, МГц
PC4-12800 DDR4-1600 800
PC4-14900 DDR4-1866 933.33
PC4-17000 DDR4-2133 1066.67
PC4-19200 DDR4-2400 1200
PC4-21333 DDR4-2666 1333
PC4-23466 DDR4-2933 1466.5
PC4-25600 DDR4-3200 1600

Как вы наверное заметили, каждое последующее поколение меньше потребляет энергии, но выдает более высокую производительность. Что придает эффективность в работе и минимальные энергозатраты.

Как увеличить оперативную память

Тут, в принципе, нет ничего сложного. Чтобы увеличить оперативную память, предварительно отключаем блок питания компьютера с помощью кнопки или вытаскиваем кабель питания из сети; у ноутбука вытаскиваем зарядное устройство, снимаем аккумуляторную батарею. Открываем корпус компьютера или ноутбука, на материнской плате возле модулей оперативной памяти указан форм фактор ОЗУ, по нему вы сможете понять какой тип памяти поддерживает ваше устройство. Но я рекомендую снять модуль, установленный в вашем ПК и посмотреть поколение, тип, название и подобрать схожий с вашими характеристиками.

Что касается увеличения оперативки DDR3. Все материнские платы, поддерживающие DDR3, также поддерживают DDR3L, но не наоборот. То есть, материнки, выпущенные под DDR3L, не поддерживают оперативную память DDR3.

Диагностика ОЗУ

При повреждении модуля памяти, операционная система Windows начинает работать со сбоями и выдавать различные ошибки. В таких случаях приходится диагностировать все узлы компьютера. В рамках данной статьи я расскажу, как провести диагностику оперативной памяти.

Диагностика с помощью MemTest86+

Самой распространенной программой для диагностики оперативного запоминающего устройства среди мастеров является MemTest86+. Скачиваете образ программы MemTest86+, создаете загрузочный диск или флешку в UltraISO (можете в любой другой программе). Выставляете в биосе данный загрузчик на первое место или с помощью Boot Menu выбираете ваш носитель.

Загрузится MemTest86+ и автоматически начнется диагностика всех модулей оперативной памяти. Всего 10 тестов, каждая начинается с начала. Если выскочит хоть одна ошибка, то выключайте устройство, вытаскивайте все модули оставив лишь одну планку. Теперь диагностируйте каждую по отдельности чтобы выявить неисправную. О том, как выглядит неисправность в программе Мемтест смотрите картинку ниже. Ошибка может также показать себя как отображение различных казусов на экране.

По окончании теста, для выхода нажмите ESC.

Надеюсь данная статья многим читателям внесла ясность по вопросам оперативной памяти. В форме ниже подписывайтесь на новые статьи, делитесь с друзьями. Спасибо за внимание, до следующей встречи!

Лучшее «Спасибо» — ваш репост

Что такое физическая память, и где она находится? Только серьезно.

Операти́вная па́мять (также оперативное запоминающее устройство, ОЗУ) — в информатике — память, это часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т. п.) . Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

В современных вычислительных устройствах, оперативная память выполнена по технологии динамической памяти с произвольным доступом (англ. dynamic random access memory, DRAM). Понятие памяти с произвольным доступом предполагает, что текущее обращение к памяти не учитывает порядок предыдущих операций и расположения данных в ней. ОЗУ может изготавливаться как отдельный блок, или входить в конструкцию однокристальной ЭВМ или микроконтроллера.

В область, называемую основной областью памяти (англ. conventional memory), загружается таблица векторов прерываний, различные данные из BIOS, а также могут загружаться некоторые 16-разрядные программы DOS. Основная область памяти занимает 640 Кбайт.

Память. Устройство памяти компьютера

Компьютерная память представляет собой устройство, которое отвечает за хранение информации. Она может быть разных видов и выполнять различные функции. Это зависит от того, для каких именно целей будет использована память. Устройство памяти, помимо хранения, обеспечивает передачу нужной информации.

Что касается типологии, то память ПК может быть внутренней и внешней. Внутренняя, соответственно, находится внутри технического устройства и предназначена для записи различной информации, программ и др. Внешняя нужна для длительного хранения данных. Она не зависит от состояния компьютера, а также от того, какие параметры имеет его внутренняя память. Устройство памяти имеет сложную структуру и свою типологию.

Внутренняя память

Данный тип напрямую зависит от работы процессора и используется для хранения данных и программ, которые непосредственно участвуют в работе технического устройства. Обращение к такому типу памяти происходит очень быстро. Но она имеет ограниченные возможности по объему. Устройства внутренней памяти разделяются на подвиды: постоянную и оперативную память.

Первый тип отвечает за хранение и выдачу данных. Содержимое постоянной памяти определяется при изготовлении технического устройства. Его нельзя изменить в обычных условиях. В постоянной памяти хранятся часто используемые данные, программы операционной системы, а также программное обеспечение, которое отвечает за тестирование оборудования.

Что касается оперативного типа, то он занимает большую часть внутренней памяти и отвечает за прием, хранение и своевременную выдачу нужной информации. Устройство оперативной памяти является настолько быстродействующим, что при ее чтении или записи процессор практически нисколько не ждет.

Особенности оперативной памяти

Данный тип играет в компьютере большую роль, поскольку процессор может выполнять программу только после того, как она была загружена в оперативную память. Такое устройство, однако, имеет и существенный минус. Он заключается в том, что как только отключается его электропитание, оперативная память тут же стирается. И все данные, что не были сохранены, будут утеряны. От объема оперативной памяти зависит то, какие программы можно будет запустить на ПК. Если ее на компьютере недостаточно, то приложение либо совсем не запустится, либо будет работать очень медленно.

Другие виды

Кроме постоянной и оперативной, существуют и другие типы памяти:

  • Кэш-память. Отвечает за быстрый доступ к оперативной памяти и хранит копии определенных участков оперативного типа, которые наиболее часто используются. Это позволяет получить максимально быстрый доступ к нужной информации.
  • CMOS-RAM – часть памяти, которая отвечает за хранение параметров конфигурации ПК. Данный тип не изменяется после отключения устройства от электропитания.
  • Видеопамять используется для хранения изображения, которое выводится на монитор.

Внешняя память

Устройство памяти внешнего типа существует в разных формах. Их функции и структуры постоянно меняются и совершенствуются. Основным устройством внешней памяти является жесткий диск. Он предназначен для долговременного хранения всей информации, которая находится на ПК. Здесь расположена операционная система, практически все программное обеспечение и большинство документов пользователя.

К основным параметрам жесткого диска относятся следующие:

  • Емкость.
  • Скорость вращения диска, которая определяет скорость доступа к информации и скорость чтения данных.
  • Размер кэш-памяти и др.

Структура и функции жесткого диска

Что касается основных компонентов жесткого диска, то их четыре:

  • Диски.
  • Электронная часть устройства.
  • Шпиндель.
  • Головки для чтения и записи.

Во время записи компьютер отправляет на жесткий диск информацию в виде двоичных битов, каждый их которых записывается намагничиванием как положительный или отрицательный.

В случае если техническое устройство запрашивает информацию, которая была записана ранее, жесткие диски вращаются, и головки, которые предназначены для чтения или записи, продвигаются к тем областям, где были зафиксированы конкретные данные. Головки сразу же определяют сигналы как положительные или отрицательные и оправляют эти данные назад компьютеру. Несмотря на то что разные части информации находятся на разных участках диска, головки без проблем получают допуск к любой нужной им области. Это позволяет значительно ускорить доступ к данным в сравнении с аналогичными функциями магнитной ленты.

Какие еще устройства обеспечивают память

Устройство памяти также существует и в других вариациях:

  • Гибкие диски. Достаточно распространены были в прошлом, но практически отсутствуют на сегодняшний день. Обеспечивают хранение информации небольшого по современным стандартам объема – 1,44-2,88 Мб. Сам гибкий диск помещается в пластиковый корпус, который вставляется в специальный дисковод компьютера. Устройства хранения памяти такого типа обязательно форматируются перед использованием, а также содержатся вдали от воздействия магнитных полей.
  • CD-ROM и CD-RW – дешевый и распространенный вариант хранения информации, который применяется и на сегодняшний день. Объем для записи данных здесь намного больше, и пользоваться ими удобнее.
  • DVD-ROM, DVD-R, DVD-RW, DVD+RW и др. Многофункциональные накопители, которые позволяют записывать данные разного формата: аудио, видео, документы и т. д. Имеют достаточно большой объем памяти – около 4,7-17 Гбайт, что позволяет хранить такое количество информации, для которого бы понадобилось несколько CD-ROM.

Современные носители внешней памяти

Несмотря на распространенность, CD- и DVD-диски все больше вытесняются другими техническими средствами, которые хранят информацию.

Устройство данной типологии представлено преимущественно флеш-памятью, которая существует в разных формах:

  • Карты, которые отличаются по объему и скорости передачи данных. Устройство карты памяти позволяет применять ее в самых различных вариантах, начиная с персонального компьютера, чаще всего ноутбука, и мобильного телефона и заканчивая цифровыми фотоаппаратами, камерами и другой техникой.
  • USB Flash Drive, известный как “флешка”. Данное устройство использует последовательный интерфейс с пропускной способностью до 480 Мбит/с. Сам хранитель вставляется в компактный корпус, который может иметь любой цвет, форму и материал. Плюс данного технического устройства также в том, что его можно не только использовать в указанном качестве, но и непосредственно с него запускать музыку, видео, читать и исправлять документы и т. д.

Память компьютера является комплексным понятием. Оно состоит из нескольких частей – внешней и внутренней. К внутренней относится постоянная, оперативная и другие типы памяти. Внешняя представлена жестким диском, а также различными по формату, объему, виду, скорости передачи и записи данных переносными устройствами. Характеристики устройств памяти могут быть самыми разными, что определяется сферой и целью их использования. Вопрос памяти персонального компьютера и ее возможностей является чрезвычайно актуальным. С каждым годом происходят изменения и усовершенствования в данной области.

Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL