Pi — Функция Delphi


Содержание

Функции delphi

Здравствуй, дорогой читатель. Сегодня я планирую рассказать о таком значимом элементе программирования как функции. А если быть точным, будем разбирать функции Delphi.

Начнем с общего определения:

Функция – фрагмент программного кода, который имеет свое имя. По этому имени данный фрагмент можно вызвать из любого места программы. Результатом выполнения функции Delphi является значение.

Объясню доступным языком, зачем нужны функции. Представьте себе ситуацию, что Вам в программе нужно несколько раз вычислять площадь квадрата. Вместо того, чтобы каждый раз писать один и тот же код, Вы можете объявить функцию и просто вызывать её в нужном месте. Если ещё не совсем понятно зачем все это нужно, советую прочесть статью до конца и на примерах станет все ясно.

Давайте разберем как определить функцию.

Итак, в начале идет ключевое слово function, затем имя функции. Далее в круглых скобках список параметров. Также необходимо указать тип возвращаемого результата. При необходимости можно определить локальные переменные. Между операторных скобок (begin..end;) необходимо записать требуемые инструкции.

В каждой функции Delphi автоматически создает переменную с именем result, переменная имеет тот же тип, что и возвращаемое значение функции. С помощью этой переменной мы и будем возвращать значения. (Есть еще одна возможность вернуть значение, её я продемонстрирую на примере).

В функцию можно передавать параметры разных типов: значения, константы, переменные, выходные параметры. Но это тема отдельной статьи, которую я напишу чуть позже.

Разберем применение функций Делфи на простом примере.

Создайте новое приложение и на форме разместите три кнопки (Button).

Далее откройте код и будем писать функцию, цель которой будет возвращать квадрат числа. Описание у нас будет вне класса после строк:

Сама же функция будет иметь следующий вид:

Название – square, параметр всего один – x типа Double, результат тоже будет Double.

Делфи позволяет возвращать значения через переменную, название которой совпадает с названием функции Delphi. В нашем случае это выглядит так: square:=x*x;(закомментированный код).

Теперь посмотрим как можно использовать написанный код. Напишем обработчик события Onclickдля каждой из кнопок.

  • Для первой кнопки — ShowMessage(FloatToStr(square(1)));
  • Для второй — ShowMessage(FloatToStr(square(2)));
  • Для третей — ShowMessage(FloatToStr(square(3)));

У меня получился следующий Unit

Как можно заметить мы однажды определили функцию, а использовали её трижды. Если функция была бы побольше, мы бы сэкономили уйму времени и сил, сократили количество вводимого текста. Модифицировать программу также легче, если Вы используете функции – поправив тело функции вы изменяете логику на всех участках, где она используется.

Подведем итог. Функции делают разработку на Делфи проще и быстрее, код читабельнее, правку проще. Используйте фунуции Delphi.

Pi — Функция Delphi

Изучив основные «кирпичики», из которых составляются программные инструкции, а именно — переменные и операторы, мы можем приступить к исследованию вопросов их эффективного расположения в теле программы. Для этих целей рассмотрим вопрос использования подпрограмм.

О подпрограммах в Object Pascal

Важной составной частью программирования в Object Pascal является использование подпрограмм — специальным образом оформленных и логически законченных блоков инструкций. Подпрограмму можно вызывать любое число раз из других мест программы, или из других подпрограмм. Таким образом, использование подпрограмм позволяет сделать исходный код более стройным и наглядным.

Структура подпрограммы похожа на программу в миниатюре: она содержит заголовок, блок объявления переменных и блок инструкций. Из отличий можно выделить лишь невозможность подключать модули (блок uses), а так же ограничения на объявления типов данных: если локальные простые и даже составные типы в подпрограммах вполне допустимы, то более сложные типы — объекты, классы и интерфейсы, локальными быть не могут, а потому в подпрограммах их объявлять нельзя.

Использование подпрограммы состоит из 2 этапов: сначала подпрограмму описывают, а затем, уже в блоке инструкций программы, вызывают. Отметим, что в библиотеке Delphi имеется описание тысяч готовых подпрограмм, описывать которые, разумеется, уже не надо. А их вызовом мы уже неоднократно занимались — достаточно взглянуть на любой пример, где мы встречали инструкции, подобные таким:

write(‘Hello, world!’); readln;

Здесь и write, и readln — стандартные подпрограммы Object Pascal. Таким образом, с вызовом подпрограмм мы уже знакомы. Осталось узнать, как создавать собственные, или пользовательские, подпрограммы. Но прежде отметим, что все подпрограммы делятся на 2 лагеря: процедуры и функции. Мы уже использовали эти термины, и даже давали им описание, однако повторимся: процедуры — это такие подпрограммы, которые выполняют предназначенное действие и возвращают выполнение в точку вызова. Функции в целом аналогичны процедурам, за тем исключением, что они еще и возвращают результат своего выполнения. Результатом работы функции могут быть данные любого типа, включая объекты.

Вместе с тем, значение, возвращаемое функцией, можно проигнорировать, в таком случае она ничем не будет отличаться от процедуры. Разумеется, при этом функция все-таки должна выполнить какое-либо действие, сказывающееся на выполнении программы, иначе она потеряет всякий смысл. С другой стороны, процедуры могут возвращать значения через свои параметры — например, как это делает DecodeDate. Таким образом, различия между процедурами и функциями в современном программировании весьма призрачны.

Как процедурам, так и функциям могут передаваться данные для обработки. Делается это при помощи списка параметров. Список параметров в описании подпрограммы и список аргументов, указываемых при ее вызове должен совпадать. Иначе говоря, если в описании определено 2 параметра типа Integer, то, вызывая такую подпрограмму, в качестве аргументов так же следует указать именно 2 аргумента и именно типа Integer или совместимого (скажем, Word или Int64).

ПРИМЕЧАНИЕ
На самом деле, Object Pascal позволяет довольно гибко обращаться с аргументами, для чего имеются различные методы, включая «перегружаемые» функции, значения параметров по умолчанию и т.д. Тем не менее, в типичном случае, количество, тип, и порядок перечисления аргументов при объявлении и при вызове процедуры или функции, должны совпадать.

Любые подпрограммы выполняются до тех пор, пока не будет выполнена последняя инструкция в блоке подпрограммы, или пока в ее теле не встретится специальная процедура exit. Процедура exit досрочно прерывает выполнение подпрограммы и возвращает управление инструкции, следующей за вызовом данной подпрограммы.

Процедуры

Итак, начнем исследование подпрограммы с процедур. Как уже было отмечено, процедуру надо описать. Описание процедуры состоит из заголовка и тела процедуры.

Заголовок состоит из ключевого слова procedure, за которым следует имя процедуры и, при необходимости, список параметров, заключенных в круглые скобки:

Вслед за заголовком может следовать блок объявления локальных меток, типов и переменных. Локальными они называются потому, что предназначены исключительно для этой процедуры.

ПРИМЕЧАНИЕ
Вопросы локальных и глобальных переменных, и вообще видимости в программах, будет рассмотрен позже в этой главе.

После заголовочной части следует тело процедуры, заключаемое в begin и end. Таким образом, исходный код процедуры может выглядеть примерно таким образом:

procedure TriplePrint(str: string); var i: integer; begin for i := 1 to 3 do begin writeln(‘»‘+str+'»‘); end; // конец цикла for end; // конец процедуры TriplePrint

Здесь мы определили процедуру TriplePrint, которая будет трижды выводить переданную ей в качестве аргумента строку, заключенную в двойные кавычки. Как видно, данная процедура имеет все составные части: ключевое слово procedure, имя, список параметров (в данном случае он всего один — строковая переменная str), блок объявления собственных переменных (целочисленная переменная i), и собственное тело, состоящее из оператора цикла for.

Для использования данной процедуры в любом месте программы достаточно написать инструкцию вызова процедуры, состоящую из имени процедуры и списка аргументов, например:

Отметим так же, что рассмотренная нами процедура сама содержит вызов другой процедуры — writeln. Процедуры могут быть встроенными. Иначе говоря, объявление одной процедуры можно помещать в заголовочную часть другой. Например, наша процедура TriplePrint может иметь вспомогательную процедуру, которая будет «подготавливать» строку к выводу. Для этого перед объявлением переменной i, разместим объявление еще одной процедуры. Назовем ее PrepareStr:

procedure PrepareStr; begin str := ‘»‘+str+'»‘; end;

Отметим, что переменная str, хотя и не передается этой процедуре в качестве параметра, тем не менее может в ней использоваться, поскольку данная процедура является составной частью процедуры TriplePrint, внутри которой данная переменная доступна для использования.

Таким образом, мы получаем две процедуры, одна из которых (TriplePrint) может использоваться во всей программе, а другая (PrepareStr) — только внутри процедуры TriplePrint. Чтобы преимущество использования процедур было очевидно, рассмотрим их на примере программы, которая будет использовать ее неоднократно, для чего обратимся к листингу 6.1 (см. так же пример в Demo\Part1\Procs).

Листинг 6.1. Использование процедур

program procs; <$APPTYPE CONSOLE>procedure TriplePrint(str: string); procedure PrepareStr; begin str := ‘»‘+str+'»‘; end; var i: integer; begin PrepareStr; for i := 1 to 3 do begin writeln(str); end; end; // конец процедуры TriplePrint begin // начало тела основной программы TriplePrint(‘Hello. ‘); // первый вызов TriplePrint TriplePrint(‘How are you. ‘); // 2-й вызов TriplePrint(‘Bye. ‘); // 3-й readln; end.

Очевидно, что если бы не процедура, то нам трижды пришлось бы писать цикл, свой для каждого слова. Таким образом, процедуры позволяют использовать единожды написанный код многократно, что существенно облегчает написание программ.

Функции

Подобно процедурам, описание функции состоит из заголовка и тела. Однако описание заголовка имеет 2 отличия: прежде всего, для функций используется ключевое слово function. Кроме того, поскольку функции всегда возвращают результат, завершается строка заголовка типом возвращаемого значения. Таким образом, для объявления функции мы получаем следующий синтаксис:

Возвращаемое значение может быть любого типа, кроме файлового. Что касается дальнейшего описания функции, то оно полностью аналогично таковому для процедур. Единственным дополнением является то, что в теле функции обязательно должна присутствовать хотя бы одна операция присваивания, в левой части которой должно быть либо имя функции, либо ключевое слово result. Именно это выражение и определяет возвращаемое функцией значение.

Рассмотрим пример функции, которая будет возвращать куб числа, переданного ей в качестве аргумента:

function cube(value: integer) : integer; result := value * value * value; >

Здесь определена функция, имеющая параметр value типа целого числа, которое она возводит в третью степень путем троекратного умножения, и результат присваивается специальной переменной result. Таким образом, чтобы в любом месте программы вычислить значение числа в 3-й степени, достаточно написать такое выражение:

В результате выполнения этого выражения переменной x будет присвоено значение 27. Данный пример иллюстрирует использование функций в классическом случае — для явного вычисления значения переменной. Однако функции могут использоваться в выражениях и напрямую. Например, можно поставить вызов функции cube в каком-либо месте арифметического выражения подобно обычной переменной:

Подобно процедурам, функции так же могут быть встроенными. Кроме того, функции могут включать в себя не только локальные функции, но и процедуры. Впрочем, верно и обратное — в процедурах могут использоваться локальные функции. Например, в той же процедуре TriplePrint можно было бы использовать не процедуру, а функцию PrepareStr, которая принимала бы строку и возвращала ее же в кавычках:

procedure TriplePrint(str: string); function PrepareStr(s: string) : string; begin result := ‘»‘+s+'»‘; end; var i: integer; begin for i := 1 to 3 do begin writeln(PrepareStr(str)); // функция использована как переменная end; end;

Как уже отмечалось, помимо специальной переменной result, в функциях можно использовать другую автоматически объявляемую переменную, имя которой соответствует имени функции. Так, для функции cube имя переменной также будет cube:

function cube(value: integer) : integer; cube := value * value * value; >

В данном случае оба варианта будут вести себя полностью аналогично. Различия проявляются лишь в том случае, если использовать такую переменную в выражениях в теле функции. В подобных случаях следует использовать именно переменную result, а не имя функции, поскольку использ0овании имени функции в выражении внутри самой функции приведет к ее рекурсивному вызову.

Рекурсия

Таким образом мы подошли к теме рекурсии — вызову подпрограммы из самой себя. Это не является ошибкой, более того, целый ряд алгоритмов решить без рекурсии вообще было бы затруднительно.

Рассмотрим вопрос рекурсии на следующем примере:

function recfunc(x: integer) : integer begin dec(x); // функция декремента, уменьшает целое на 1 if x > 5 then x := recfunc(x); result := 0; // возвращаемое значение тут не используется end;

Здесь мы объявили функцию recfunc, принимающую один аргумент, и вызывающую саму себя до тех пор, пока значение этого аргумента больше 5. Хотя на первый взгляд может показаться, что такое поведение функции похоже на обычный цикл, на самом деле все работает несколько по-иному: если вы вызовите ее со значением 8, то она выдаст вам 3 сообщения в следующей последовательности: 5, 6, 7. Иначе говоря, функция вызывала саму себя до тех пор, пока значение x было больше 5, и собственно вывод сообщений начала 3-я по уровню получившейся вложенности функция, которая и вывела первое сообщение (в данном случае им стало 5, т.е. уменьшенное на единицу 6).

Чтобы представить себе более наглядно, как работает рекурсивный вызов, дополним эту функцию выводом комментариев, а так же счетчиком глубины рекурсии. Для этого мы, во-первых, задействуем возвращаемое функцией значение, а во-вторых, добавим еще один параметр, который и будет счетчиком. Результат проделанной работы приведен в листинге 6.2.

Листинг 6.2. Рекурсия с комментариями

program recurse; <$APPTYPE CONSOLE>function recfunc(x, depth: integer) : integer; begin dec(x); if x > 5 then begin write(‘Current recursion depth is: ‘); write(depth); write(‘, current x value is: ‘); writeln(x); inc(depth); depth:=recfunc(x, depth); end else writeln(‘End of recursive calls. ‘); write(‘Current recursion depth is: ‘); write(depth); write(‘, current x value is: ‘); writeln(x); dec(depth); result := depth; end; begin recfunc(8,0); readln; end.

Исходный код находится в Demo\Part1\Recurse, там же находится и исполняемый файл recurse.exe, результат работы которого вы можете увидеть на своем экране.

Использование параметров

Параметры в процедурах и функциях могут применяться не только по своему прямому предназначению — для передачи данных подпрограмме, но так же могут быть использованы для возвращения значений. Подобное их использование может быть вызвано, например, необходимостью получить более одного значения на выходе функции. Синтаксис объявления параметров в таком случае несколько отличается от стандартного — перед именем параметра следует использовать ключевое слово var:

procedure Circle (square: real; var radius, length: real);

Данная процедура принимает «на обработку» одно значение — площадь (square), а возвращает через свои параметры два — радиус (radius) и длину окружности (length). Практическая ее реализация может выглядеть таким образом:

procedure Circle (square: real; var radius, length: real); begin radius := sqrt(square / pi); // функция pi возвращает значение числа ? length := pi * radius * 2; end;

Теперь, чтобы воспользоваться этой функцией, следует объявить в программе 2 переменные, которые будут переданы в качестве аргументов этой процедуре и получат результаты. Их имена не важны, важно лишь, чтобы они были такого же, или совместимого типа, т.е. вещественные, например:

var r,l: real; . Circle(100,r,l);

После вызова функции Circle, переменные r и l получат значения радиуса и длины окружности. Остается их вывести при помощи writeln. Исходный код программы приведен в листинге 6.3.

Листинг 6.3. Процедура с параметрами

program params; <$APPTYPE CONSOLE>procedure Circle (square: real; var radius, length: real); begin //функция sqrt извлекает корень, а функция pi возвращает значение числа ? radius := sqrt(square / pi); length := pi * radius * 2; end; var r,l: real; begin Circle(100,r,l); writeln(r); writeln(l); readln; end.

Запустив такую программу, можно убедиться, что она работает и выводит верные результаты, однако вид у них получается довольно-таки неудобочитаемый, например, длина окружности будет представлена как «3,54490770181103E+0001». Чтобы сделать вывод более удобным для восприятия, нам понадобится функция FloatToStrF. С ее помощью мы можем определить вывод числа на свое усмотрение, например:

Кроме того, не помешало бы указать, где радиус, а где — длина окружности. Для этого модернизируем строки вывода результатов следующим образом:

writeln(‘Radius is: ‘+FloatToStrF(r,ffFixed,12,8)); writeln(‘Length is: ‘+FloatToStrF(l,ffFixed,12,8));

Наконец, не помешало бы сделать программу более полезной, для чего предусмотрим возможность ввода значения площади круга пользователем. В этих целях нам понадобится еще одна переменная (назовем ее s) и выражение для считывания ввода. Не помешает так же приглашение, объясняющее пользователю, что надо делать. В итоге основной блок программы получит следующий вид:

. var s,r,l: real; begin write(‘Input square: ‘); readln(s); Circle(s,r,l); writeln(‘Radius is: ‘+FloatToStrF(r,ffFixed,12,8)); writeln(‘Length is: ‘+FloatToStrF(l,ffFixed,12,8)); readln; end.

В принципе, это уже лучше, однако не помешало бы добавить обработку возможных ошибок ввода. Скажем, площадь должна быть больше 0. Проверку на то, является ли значение s больше нуля, можно производить непосредственно в основном коде программы, но в целях создания более универсального кода, вынесем ее в подпрограмму. Для этого первой инструкцией процедуры Circle должна быть проверка значения площади:

Таким образом, в случае, если введенное пользователем значение окажется нулевым или отрицательным, выполнение процедуры будет прекращено. Но возникает другой вопрос: как сообщить программе о том, что вычисления не были выполнены? Пожалуй, в данном случае следовало бы заменить процедуру функцией, которая возвращала бы истину, если вычисления произведены, и ложь в противном случае. Вот что у нас получится:

function Circle(square: real; var radius, length: real) : boolean; begin result := false; if (square

В начале функции мы определили возвращаемое значение как ложь. В результате, если параметр square не проходит проверку, то функция будет завершена и возвратит именно это значение. Если же проверка будет пройдена, то функция выполнится до конца, т.е. как раз до того момента, когда ее результатом станет истина.

Поскольку программа теперь может получить сведения о том, выполнились ли преобразования на основании возвращаемого функцией Circle булевского значения, остается добавить такую проверку в тело программы. В качестве условия для условного оператора в таком случае подойдет сама функция Circle (на самом деле, условием будет выступать не функция, а как раз возвращаемое ей значение):

if Circle(s,r,l) then begin // вывод end else // сообщить об ошибке

Результатом проделанной работы будет программа, приведенная в листинге 6.4. Она же находится в Demo\Part1\Params.

Листинг 6.4. Функция с параметрами

program params; <$APPTYPE CONSOLE>uses sysutils; //этот модуль соджержит функцию FloatToStrF function Circle(square: real; var radius, length: real) : boolean; begin result := false; if (square

Итак, при помощи ключевого слова var в списке параметров подпрограммы мы можем добиться использования передаваемых аргументов в том блоке, где был произведен вызов данной подпрограммы. В несколько другом аспекте используется ключевое слово const. Фактически, оно объявляет локальную константу, т.е. значение, которое нельзя изменять внутри данной процедуры или функции. Это бывает полезным в том случае, когда такое изменение недопустимо по логике программы и служит гарантией того, что такое значение не будет изменено.

При этом открывается еще одна возможность, связанная с константами, а именно — использование предопределенных значений. Например, можно определить функцию следующим образом:

function MyBetterFunc(val1: integer; const val2: integer = 2); begin result := val1*val2; end;

Обращение же к такой функции может иметь 2 варианта: с указанием только одного аргумента (для параметра val1), или же с указанием обоих:

x := MyBetterFunc(5); // получим 10 x := MyBetterFunc(5,4); // получим 20

Оба вызова будут верными, просто в первом случае для второго параметра будет использовано значение, заданное по умолчанию.

Области видимости

Еще одной важной деталью, касающейся использования подпрограмм, является видимость переменных. Само понятие видимости подразумевает под собой тот факт, что переменная, объявленная в одном месте программы может быть доступна, или наоборот, недоступна, в другом. Прежде всего, это касается подпрограмм: как мы уже успели отметить, переменные, объявленные в заголовке процедур или функций, только в данной процедуре (функции) и будут доступны — на то они и называются локальными:

program Project1; procedure Proc1; var a: integer; begin a := 5; //верно. Локальная переменная a здесь видна end; begin a := 10; //Ошибка! Объявленная в процедуре Proc1 переменнаая здесь не видна end.

В то же время переменные, объявленные в основном заголовке программы, доступны во всех входящих в нее подпрограммах. Потому они и называются глобальными. Единственное замечание по этому поводу состоит в том, что глобальная переменная должна быть объявлена до функции, т.е. выше ее по коду программы:

program Project2; var a: integer; // глобальная переменная a procedure Proc1; begin a := 5; // верно b := 10; // Ошибка! Переменая b на этот момент еще не объявлена end; var b: integer; // глобальная переменная b begin a := 10; // верно b := 5; // тоже верно. Здесь видны все г var a: integer; // глобальная переменная end.

Теперь рассмотрим такой вариант, когда у нас имеются 2 переменных с одним и тем же именем. Разумеется, компилятор еще на стадии проверки синтаксиса не допустит, чтобы в программе были объявлены одноименные переменные в рамках одного диапазона видимости (скажем, 2 глобальных переменных X, или 2 локальных переменных X в одной и той же подпрограмме). Речь в данном случае идет о том, что произойдет, если в одной и той же программе будет 2 переменных X, одна — глобальная, а другая — локальная (в какой-либо подпрограмме). Если с основным блоком программы все ясно — в нем будет присутствовать только глобальная X, то как быть с подпрограммой? В таком случае в действие вступает правило близости, т.е. какая переменная ближе (по структуре) к данному модулю, та и есть верная. Применительно к подпрограмме ближней оказывается локальная переменная X, и именно она будет задействована внутри подпрограммы.

program Project3; var X: integer; procedure Proc1; var X: integer; begin X := 5; // Здесь значение будет присвоено локальной переменной X end; begin X := 10; // Здесь же значение будет присвоено голобальной переменной X end.

Таким образом, мы внесли ясность в вопрос видимости переменных. Что касается видимости подпрограмм, то она определяется аналогичным образом: подпрограммы, объявленные в самой программе, видны всюду. Те же подпрограммы, которые объявлены внутри процедуры или функции, доступны только внутри нее:

program Project1; procedure Proc1; procedure SubProc; begin end; begin SubProc; // Верно. Вложенная процедура здесь видна. end; begin Proc1; // Верно. Процедура Proc1 объявлена в зоне глобальной видимости SubProc; // Ошибка! Процедура SubProc недоступна за пределами Proc1. end.

Наконец в том случае, когда имена встроенной и некой глобальной процедуры совпадают, то, по аналогии с переменными, в области видимости встроенной процедуры, именно она и будет выполнена.

Видимость в модулях

Все то, что мы уже рассмотрели, касалось программ, умещающихся в одном единственном файле. На практике же, особенно к тому моменту, когда мы перейдем к визуальному программированию, программы будут включать в себя множество файлов. В любом случае, программа на Object Pascal будет иметь уже изученный нами файл проекта — dpr, или основной модуль программы. Все прочие файлы будут располагаться в других файлах, или модулях (units), с типичным для Pascal расширением pas. При объединении модулей в единую программу возникает вопрос видимости переменных, а так же процедур и функций в различных модулях.

Для начала вернемся к рассмотрению структуры модуля, которая имеет ряд отличий от структуры программы. Итак, в простейшем случае, модуль состоит из названия, определяемого при помощи ключевого слова unit, и 2 секций — interface и implementation. Так вот как раз первая секция, interface, и служит для определения (декларации) типов данных, переменных, функций и процедур данного модуля, которые должны быть доступны за пределами данного модуля.

Чтобы лучше в этом разобраться, создадим программу, состоящую из 2 модулей — основного (dpr) и дополнительного (pas). Для этого сначала создайте новый проект типа Console Application, а затем добавьте к нему модуль, для чего из подменю File ‘ New выберите пункт Unit. После этого сохраните проект, щелкнув по кнопке Save All (или File ‘ Save All). Обратите внимание, что первым будет предложено сохранить не файл проекта, а как раз файл дополнительного модуля. Назовем его extunit.pas, а сам проект — miltiunits (см. Demo\Part1\Visibility). При этом вы увидите, что в части uses файла проекта произошло изменение: кроме постоянно добавляемого модуля SysUtils, появился еще один модуль — extunit, т.е. код стал таким:

uses SysUtils, extunit in ‘extunit.pas’;

Мы видим, что Delphi автоматически добавила пояснение, в каком файле находится подключаемый модуль. Это вызвано тем, что если о расположении собственных модулей Delphi все известно, то пользовательские модули могут находиться где угодно на жестком диске ПК. Но в данном случае мы сохранили и файл программы, и подключаемый модуль в одном каталоге, следовательно, их пути совпадают, и данное указание можно было бы опустить:

uses SysUtils, extunit;

Тем не менее, оставим код как есть, и приступим к разработке модуля extunit. В нем, в части implementation, напишем 2 процедуры — ExtProc1 и ExtProc2. Обе они будут делать одно и то же — выводить строку со своим названием. Например, для первой:

Теперь вернемся к главному модулю программы и попробуем обратиться к процедуре ExtProc1:

. begin ExtProc1; end.

Попытка компиляции или запуска такой программы приведет к ошибке компилятора «Undeclared identifier», что означает «неизвестный идентификатор». И действительно, одного лишь описания процедуры недостаточно, чтобы она была доступна вне своего модуля. Так что перейдем к редактированию extunit и в секции interface напишем строку:

Такая строка, помещенная в секцию interface, является объявлением процедуры ExtProc1, и делает ее видимой вне данного модуля. Отметим, что в секции interface допускается лишь объявлять процедуры, но не определять их (т.е. тело процедуры здесь будет неуместно). Еще одним полезным эффектом от объявления процедур является то, что таким образом можно обойти такое ограничение, как необходимость определения подпрограммы до ее вызова. Иначе говоря, поскольку в нашем файле уже есть 2 процедуры, ExtProc1и ExtProc2, причем они описаны именно в таком порядке — сначала ExtProc, а потом ExtProc2, то выведя объявление ExtProc2 в interface, мы сможем обращаться к ExtProc2 из ExtProc1, как это показано в листинге 6.5:

Листинг 6.5. Объявление процедур в модуле

unit extunit; interface procedure ExtProc1; procedure ExtProc2; implementation procedure ExtProc1; begin writeln(‘ExtProc1’); ExtProc2; // Если объявления не будет, то компилятор выдаст ошибку end; procedure ExtProc2; begin writeln(‘ExtProc2’); end; end.

Отметим, что теперь процедуры ExtProc2, так же, как и ExtProc1, будет видна не только по всему модулю extunit, но и во всех использующей этот модуль программе multiunits.

Разумеется, все, что было сказано о процедурах, верно и для функций. Кроме того, константы и переменные, объявленные в секции interface, так же будут видны как во всем теле модуля, так и вне него. Остается лишь рассмотреть вопрос пересечения имен, т.е. когда имя переменной (константы, процедуры, функции) в текущем модуле совпадает с таковым в подключенном модуле. В этом случае вновь вступает в силу правило «кто ближе, тот и прав», т.е. будет использоваться переменная из данного модуля. Например, если в extunit мы объявим типизированную константу Z, равную 100, а в multiunits — одноименную константу, равную 200, то обратившись к Z из модуля extunit, мы получим значение 100, а из multiunits — 200.


Если же нам в multiunits непременно понадобится именно та Z, которая находится в модуле extunit, то мы все-таки можем к ней обратиться, для чего нам пригодится точечная нотация. При этом в качестве имени объекта указывают название модуля:

Именно таким образом можно явно ссылаться на переменные, функции и процедуры, находящиеся в других модулях.

Некоторые стандартные функции

В Object Pascal, как уже отмечалось, имеются огромное количество стандартных процедур и функций, являющихся составной частью языка, и с некоторыми мы уже знакомы (например, приведенные в табл. 5.1 и 5.2 функции преобразования). Детальное описание всех имеющихся в Object Pascal процедур и функций можно получить в справочной системе Delphi, однако мы все-таки рассмотрим здесь некоторые из них, чтобы составить общее представление — см. таблицу 6.1.

Таблица 6.1. Некоторые стандартные процедуры и функции Delphi

Синтаксис Группа Модуль Описание
function Abs(X); арифметические System Возвращает абсолютное значение числа
procedure ChDir(const S: string); управления файлами System Изменяет текущий каталог
function Concat(s1 [, s2. sn]: string): string; строковые System Объединяет 2 и более строк в 1
function Copy(S; Index, Count: Integer): string; строковые System Возвращает часть строки
function Cos(X: Extended): Extended; тригонометрические System Вычисляет косинус угла
procedure Delete(var S: string; Index, Count: Integer); строковые System Удаляет часть строки
function Eof(var F): Boolean; ввод-вывод System Проверяет, достигнут ли конец файла
procedure Halt [ ( Exitcode: Integer) ]; управления System Инициирует досрочное прекращение программы
function High(X); диапазона System Возвращает максимальное значение из диапазона
procedure Insert(Source: string; var S: string; Index: Integer); строковые System Вставляет одну строку в другую
function Length(S): Integer; строковые System Возвращает длину строки или количество элементов массива
function Ln(X: Real): Real; арифметические System Возвращает натуральный логарифм числа (Ln(e) = 1)
function Low(X); диапазона System Возвращает минимальное значение из диапазона
procedure New(var P: Pointer); размещения памяти System Создает новую динамическую переменную и назначает указатель для нее
function ParamCount: Integer; командной строки System Возвращает количество параметров командной строки
function ParamStr(Index: Integer): string; командной строки System Возвращает указанный параметр из командной строки
function Pos(Substr: string; S: string): Integer; строковые System Ищет вхождение указанной подстроки в строку и возвращает порядковый номер первого совпавшего символа
procedure RmDir(const S: string); ввод-вывод System Удаляет указанный подкаталог (должен быть пустым)
function Slice(var A: array; Count: Integer): array; разные System Возвращает часть массива
function UpCase(Ch: Char): Char; символьные System Преобразует символ в верхний регистр
function LowerCase(const S: string): string; строковые SysUtils Преобразует ASCII-строку в нижний регистр
procedure Beep; разные SysUtils Инициирует системный сигнал
function CreateDir(const Dir: string): Boolean; управления файлами SysUtils Создает новый подкаталог
function CurrentYear: Word; даты и времени SysUtils Возвращает текущий год
function DeleteFile(const FileName: string): Boolean; управления файлами SysUtils Удаляет файл с диска
function ExtractFileExt(const FileName: string): string; имен файлов SysUtils Возвращает расширение файла
function FileExists(const FileName: string): Boolean; управления файлами SysUtils Проверяет файл на наличие
function IntToHex(Value: Integer; Digits: Integer): string; форматирования чисел SysUtils Возвращает целое в шестнадцатеричном представлении
function StrPCopy(Dest: PChar; const Source: string): PChar; строковые SysUtils Копирует Pascal-строку в C-строку (PChar)
function Trim(const S: string): string; строковые SysUtils Удаляет начальные и конечные пробелы в строке
function TryStrToInt(const S: string; out Value: Integer): Boolean; преобразования типов SysUtils Преобразует строку в целое
function ArcCos(const X: Extended): Extended; тригонометрические Math Вычисляет арккосинус угла
function Log2(const X: Extended): Extended; арифметические Math Возвращает логарифм по основанию 2
function Max(A,B: Integer): Integer; арифметические Math Возвращает большее из 2 чисел
function Min(A,B: Integer): Integer; арифметические Math Возвращает меньшее из 2 чисел

Те функции, которые имеются в модуле System, являются основными функциями языка, и для их использования не требуется подключать к программе какие-либо модули. Все остальные функции и процедуры можно назвать вспомогательными, и для их использования следует подключить тот или иной модуль, указав его в uses, например, как это делает Delphi уже при создании новой программы с SysUtils:

Что касается практического применения той или иной функции, то оно определяется, прежде всего, той группой, к которой данная функция относится. Например, арифметические функции используются для различных математических расчетов, строковые используются для манипуляций со строками и т.д. Разумеется, в каждой категории имеется множество других функций, помимо тех, что приведены в таблице 6.1, однако по ней можно получить общее представление о том, что есть в распоряжении Delphi-программиста.

Функции в действии

В целом мы уже ознакомились с несколькими десятками предопределенных процедур и функций, а так же умеем создавать собственные. Пора применить полученные знания на практике, для чего вновь вернемся к программе, рассмотренной в главе, посвященной операторам — игре «Угадай-ка». В ней, по сути, был реализован только один из рассмотренных в самом начале книги алгоритмов — угадывания числа. Что касается алгоритма управления, то на тот момент мы оставили его без внимания.

Но прежде, чем вносить в программу изменения, определимся с тем, что мы все-таки хотим получить в итоге. Допустим, что мы хотим сделать следующие вещи:

  1. Реализовать-таки возможность повторного прохождения игры без перезапуска программы;
  2. Добавить немного «геймплея». Иначе говоря, введем уровни сложности и подсчет очков. Новые уровни можно реализовать как повторное прохождение игры с увеличением сложности (скажем, за счет расширения диапазона загадываемых значений);
  3. В продолжение п. 2 добавить еще и таблицу рекордов, которая будет сохраняться на диске.

Поскольку часть работы уже выполнена, то для того, чтобы приступить к разработке новой версии игры (назовем ее «Угадай-ка 2.0»), мы не будем как обычно создавать новый консольный проект в Delphi, а откроем уже существующий (Ugadaika) и сохраним его под новым именем, скажем, Ugadaika2, и в новом каталоге. Таким образом, мы уже имеем часть исходного кода, отвечающую за угадывание, в частности, цикл while (см. листинг 4.5). Этот фрагмент логичнее всего выделить в отдельную процедуру, вернее даже функцию, которая будет возвращать число попыток, сделанное пользователем. Для этого создадим функцию, которая будет принимать в качестве аргумента число, которое следует угадать, а возвращаемым значением будет целое, соответствующее числу попыток. Ее объявление будет таким:

function GetAttempts(a: integer):integer;

Данная функция так же должна иметь в своем распоряжении переменную, необходимую для ввода пользователем своего варианта ответа. Еще одна переменная нужна для подсчета результата, т.е. количества попыток. В качестве первой можно было бы использовать глобальную переменную (b), однако во избежание накладок, для локального использования в функции следует использовать локальную же переменную. Что касается переменной-счетчика, то для нее как нельзя лучше подходит автоматическая переменная result. Еще одним изменением будет использование цикла repeat вместо while. Это вызвано тем, что с одной стороны, тем, что хотя бы 1 раз пользователь должен ввести число, т.е. условие можно проверять в конце цикла, а с другой мы можем избавиться от присвоения лишнего действия, а именно — присвоения заведомо ложного значения переменной b. Ну и еще одно дополнение — это второе условие выхода, а именно — ограничение на число попыток, которое мы установим при помощи константы MAXATTEMPTS:

const MAXATTEMPTS = 10;

В результате код функции получится таким, как представлено в листинге 6.6.

Листинг 6.6. Функция GetAttempts

function GetAttempts(a: integer):integer; var b: integer; begin Result:=0; repeat inc(Result); // увеличиваем счетчик числа попыток write(#13+#10+’?:’); read(b); if (b>a) then begin write(‘Too much!’); continue; end; if (b

Теперь, когда подготовительная работа сделана, можно браться за реализацию намеченных изменений. Прежде всего, в теле программы нам потребуется цикл, который как раз и будет обеспечивать логику исполнения программы. Для него нам так же понадобятся переменные. В частности, нужны счетчик цикла, устанавливающий текущий уровень сложности, так же нужны переменные для хранения набранных очков и числа попыток, и, кроме того, не помешает заранее определить файловую переменную для таблицы рекордов и строковую — для ввода имени «рекордсмена». Итого мы получаем следующий список переменных перед основным блоком программы:

var level, score, attempt: integer; f: TextFile; s: string;

Теперь инициализируем счетчик псевдослучайных чисел (т.е. оставим randomize на месте) и инициализируем нулем значения счета и уровня:

Наконец, напишем цикл для основного блока программы. Этот цикл должен быть выполнен хотя бы один раз и будет продолжать выполняться до тех пор, пока число попыток в последнем уровне было меньше максимально допустимого. В результате получаем цикл repeat со следующим условием:

В самом цикле нам потребуется, прежде всего, выводить информацию о текущем уровне, а так же о диапазоне отгадываемых чисел. После этого надо будет получить число попыток при помощи функции GetAttempts, вычислить набранные очки и сообщить о них пользователю, после чего увеличить счетчик цикла на 1 и перейти к следующей его итерации. В результате мы получим следующий фрагмент кода:

repeat writeln(‘Level ‘+IntToStr(level)+’:’); writeln(‘From 0 to ‘+IntToStr(level*100)); attempt:=GetAttempts(random(level*100+1)); score:=score+(MAXATTEMPTS-attempt)*level; writeln(#10+’You current score is: ‘+IntToStr(score)); inc(level); until attempt>MAXATTEMPTS;

После завершения работы цикла, т.е. когда пользователь хоть раз истратит на отгадывание все 10 попыток, следует сообщить итоговый результат и сравнит его с предыдущим значением, которое следует считать из файла. Файл мы назовем records.txt, и сопоставим с переменной f:

Но прежде, чем попытаться что-либо прочитать из этого файла, необходимо убедиться, что такой файл уже есть, а если нет — то создать его, записав в него некий минимальный результат.

if not FileExists(‘record.txt’) then begin Rewrite(f); writeln(f,’0′); // первая строка содержит число-рекорд writeln(f,’None’); // а вторая — имя последнего победителя CloseFile(f); end;

Теперь можно считать этот файл. Правда, мы упустили из виду, что нам здесь тоже нужна переменная — для считывания предыдущего рекорда. В то же время, на данный момент мы уже имеем 2 ненужных для дальнейшей работы программы переменных — attempt и level, так что вполне можно воспользоваться любой из них для этих целей. Таким образом, мы получим следующий код:

Reset(f); readln(f, attempt); readln(f,s); writeln(#10+’BEST SCORE: ‘+IntToStr(attempt)+’ by ‘+s); CloseFile(f);

Ну и последнее, чего нам остается — это проверить, является ли новое значение выше рекорда, и если да — то записать новый рекорд в файл, не забыв спросить имя игрока:

Вот, собственно, и все. Полный код получившейся программы можно увидеть на листинге 6.7, или же в файле проекта в каталоге Demo\Part1\Ugadaika2.

Листинг 6.7. Программа угадай-ка, окончательный вариант

В завершение отметим, что эта программа использует использование не только функций, но и констант, глобальных и локальных переменных, а так же циклов и операций файлового ввода-вывода. Таким образом, на текущий момент мы познакомились со всеми основами обычного, процедурного программирования. Пора двигаться дальше — к объектно-ориентированному программированию в Object Pascal!

прикладная математика

Вычисление числа Пи (Delphi)

Пример. Вычисление числа Пи с заданной точностью

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm1 = class(TForm)
Edit1: TEdit; // точность вычисления
Button1: TButton; // кнопка Вычислить
Label1: TLabel;
Label2: TLabel; // поле выода результата
procedure Button1Click(Sender: TObject);
private
< Private declarations >
public
< Public declarations >
end;

var
Form1: TForm1;

procedure TForm1.Button1Click(Sender: TObject);

var
pi:real; // вычисляемое значение ПИ
t:real; // точность вычисления
n:integer; // номер члена ряда
elem:real; // значение члена ряда

begin
pi:=0;
n:=1;
t:=StrToFloat(edit1.text);
elem:=1; // чтобы начать цикл
while elem >= t do
begin
elem:=1/(2*n-1);
if n MOD 2 = 0
then pi:=pi-elem
else pi:=pi+elem;
n:=n+1;
end;
pi:=pi*4;
label1.caption:= ‘ПИ равно ‘+ FloatToStr(pi) + #13
+ ‘Просуммировано ‘+IntTostr(n)+’ членов ряда.’;
end;

Математические функции в Delphi

Занимаясь программированием, невозможно обойтись без использования математических функций. Большинство алгоритмических задач, вычисления требуют умения пользоваться ими. Конечно, некоторые из этих функций можно заменить какими-то наборами операторов, но такие решения всегда будут громоздкими, содержать дополнительные условия и выглядеть как изобретенный велосипед. Гораздо проще посвятить немного времени изучению готовых функций и разобраться в их использовании.

Для работы с этими функциями, в разделе описания uses нужно указать математическую библиотеку Math:

В таблице приведены наиболее часто используемые функции.

DelphiComponent.ru — бесплатно видеоуроки по Delphi, статьи, исходники

Процедуры и функции в Delphi

Посмотрите видеоурок по процедурам и функциям (подпрограммы):

Скачайте бесплатно видеокурс Мастер Delphi Lite прямо сейчас — в нем больше видеоуроков — СКАЧАТЬ БЕСПЛАТНО!

Процедуры и функции — это наиболее важный материал, который необходимо усвоить, прежде чем можно будет называть себя программистом. Объектно-ориентированное программирование в целом и программирование в Delphi в частности в огромной степени основано на использовании процедур и функций.

Использование процедур Write и WriteLn действительно не представляет особой сложности, поскольку они встроены в компилятор Delphi. Компилятор содержит лишь небольшое количество встроенных процедур. Большинство процедур и функций можно найти в отдельных исходных файлах, называемых модулями. Все модули Delphi имеют расширение . pas.

Прежде чем процедуру можно будет использовать в приложении, следует знать имя процедуры, модуль, в котором она объявлена, и принимаемые процедурой параметры. Имя процедуры и список параметров — составные части заголовка процедуры. Заголовок простой процедуры выглядит следующим образом:

После зарезервированного слова procedure всегда указывается имя процедуры, которым может быть любой допустимый идентификатор. В приведенном примере процедура не имеет параметров. Заголовок процедуры со списком параметров выглядит следующим образом:

Список параметров — это механизм передачи значений процедурам (равно как и функциям). Список параметров может содержать один или более параметров. Если список содержит более одного параметра, они разделяются точкой с запятой. Ниже приведен пример заголовка процедуры, которая принимает единственное строковое значение:

Показать скрытое содержание
unit Unit1;
interface
implementation
end.

Использование процедур и функций в Delphi

Скобки

Добавление скобок при вызове процедур и функций без параметров уже давно не является новинкой в Delphi, тем не менее, эта возможность мало известна. Эту возможность оценят по достоинству те программисты, которым приходится работать на двух языках (C++ и Delphi), так как им не нужно будет постоянно помнить о разнице в синтаксисе при вызове процедур и функций в разных языках. В Delphi оба варианта, приведенные ниже, считаются корректными.

Возможность перегрузки

Впервые концепция перегрузки процедур и функций была реализована в Delphi 4. Она позволяет иметь несколько различных процедур и функций с одинаковыми именами, но с разными списками параметров. Такие процедуры и функции должны быть описаны с применением директивы overload.

procedure Test (I: integer); overload;
procedure Test (S: string); overload;
procedure Test (D: double); overload;

При вызове процедуры Test, Delphi сама решит, какую из трех процедур необходимо выполнить, в зависимости от передаваемого ей параметра. Но нужно отметить, что это не самая безопасная возможность языка. Применение перегружаемых процедур и функций может стать неиссякаемым источником трудноуловимых ошибок в программе. Поэтому пользуйтесь этой возможностью осторожно.

Передача параметров

Pascal позволяет передавать параметры в функции и процедуры либо по значению, либо по ссылке. Передаваемый параметр может иметь любой встроенный или пользовательский тип либо являться открытым массивом. Параметр также может быть константой, если его значение в процедуре или функции не меняется.

Передача параметров по значению

Этот режим передачи параметров применяется по умолчанию. Если параметр передается по значению, создается локальная копия данной переменной, которая и предоставляется для обработки в процедуру или функцию. Посмотрите на следующий пример:

procedure Test(s: string);

При вызове указанной процедуры будет создана копия передаваемой ей в качестве параметра строки s, с которой и будет работать процедура Test. При этом все внесенные в строку изменения никак не отразятся на исходной переменной s.

Однако это не относится к объектам. Например, если в функцию передается переменная (а точнее экземпляр объекта) TStringList, то в данном случае произойдет передача по ссылке (даже если это не указано явно). Этот способ передачи является у большинства самым излюбленным, но в тоже время является и самым не практичным, т.к. для выполнения метода выделяется дополнительная память для создания точной копией передаваемой переменой. Для решения этой проблемы следует использовать один из способов описанных ниже.

Передача параметров по ссылке

Pascal позволяет также передавать параметры в функции или процедуры по ссылке — такие параметры называются параметрами-переменными. Передача параметра по ссылке означает, что функция или процедура сможет изменить полученные значения параметров. Для передачи параметров по ссылке используется ключевое слово var, помещаемое в список параметров вызываемой процедуры или функции.

procedure ChangeMe(var x: longint);
begin
x := 2; // Параметр х изменен вызванной процедурой
end;

Вместо создания копии переменной x, ключевое слово var требует передачи адреса самой переменной x, что позволяет процедуре непосредственно изменять ее значение.

Передача параметров констант

Если нет необходимости изменять передаваемые функции или процедуре данные, можно описать параметр как константу. Ключевое слово const не только защищает параметр от изменения, но и позволяет компилятору сгенерировать более оптимальный код передачи строк и записей. Вот пример объявления параметра-константы:

procedure Test(const s: string );

Передача открытых массивов

Открытый массив параметров позволяет передавать в функцию или процедуру различное количество параметров. В качестве параметров можно передать либо открытый массив элементов одинакового типа, либо массивы констант различного типа. В приведенном ниже примере объявляется функция, которой в качестве параметра должен передаваться открытый массив целых чисел.

function AddEmUp(A: array of integer): integer;

В открытом массиве можно передавать переменные, константы или выражения из констант.

Для получения информации о фактически передаваемом массиве параметров в функции или процедуре могут использоваться функции High, Low и SizeOf.

Object Pascal также поддерживает тип array of const, который позволяет передавать в одном массиве данные различных типов. Синтаксис объявления функций или процедур, использующих такой массив для получения параметров, следующий:

procedure WhatHaveIGot( A: array of const );

Вызвать объявленную выше функцию можно, например, с помощью такого оператора:

procedure WhatHaveIGot( [‘Text’, 10, 5.5, @WhatHaveIGot, 3.14, true, ‘c’] );

При передаче функции или процедуре массива констант все передаваемые параметры компилятор неявно конвертирует в тип TVarRec. Тип данных TVarRec объявлен в модуле System следующим образом:

PVarRec = ^TVarRec;
TVarRec = record
case Byte of
vtInteger: (VInteger: Integer; VType: Byte);
vtBoolean: (VBoolean: Boolean);
vtChar: (VChar: Char);
vtExtended: (VExtended: PExtended);
vtString: (VString: PShortString);
vtPointer: (VPointer: Pointer);
vtPChar: (VPChar: PChar);
vtObject: (VObject: TObject);
vtClass: (VClass: TClass);
vtWideChar: (VWideChar: WideChar);
vtPWideChar: (VPWideChar: PWideChar);
vtAnsiString: (VAnsiString: Pointer);
vtCurrency: (VCurrency: PCurrency);
vtVariant: (VVariant: PVariant);
vtInterface: (VInterface: Pointer);
vtWideString: (VWideString: Pointer);
vtInt64: (VInt64: PInt64);
end;

Поле VType определяет тип содержащихся в данном экземпляре записи TVarRec данных и может принимать одно приведенных значений.

Поскольку массив констант способен передавать данные разных типов, это может вызвать определенные затруднения при создании обрабатывающей полученные параметры функции или процедуры. В качестве примера работы с таким массивом рассмотрим реализацию процедуры WhatHaveIGot, которая просматривает элементы полученного массива параметров и выводит их тип.

procedure WhatHaveIGot( A: array of const );
var
i: integer;
TypeStr: string;
begin
for i := Low(A) to High(A) do
begin
case A[i].VType of
vtInteger : TypeStr := ‘Integer’;
vtBoolean : TypeStr := ‘Boolean’;
vtChar : TypeStr := ‘Char’;
vtExtended : TypeStr := ‘Extended’;
vtString : TypeStr := ‘String’;
vtPointer : TypeStr := ‘Pointer’;
vtPChar : TypeStr := ‘PChar’;
vtObject : TypeStr := ‘Object’;
vt ;
vtW ;
vtPW ;
vtAnsiString : TypeStr := ‘AnsiString’;
vtCurrency : TypeStr := ‘Currency’;
vtVariant : TypeStr := ‘Variant’;
vtInterface : TypeStr := ‘Interface’;
vtW ;
vtInt64 : TypeStr := ‘Int64’;
end;
ShowMessage( Format( ‘Array item %d is a %s’, [i, TypeStr] ) );
end;
end;

Значения параметров по умолчанию

В Delphi есть одна очень полезная возможность — использование значений параметров по умолчанию. Она позволяет установить принимаемое по умолчанию значение параметра процедуры или функции. Это значение будет использоваться в тех случаях, когда вызов процедуры или функции производится без указания значения данного параметра. В объявлении процедуры или функции принимаемое по умолчанию значение параметра указывается после знака равенства, следующего после его имени. Поясним это на следующем примере:

procedure HasDefVal( s: string; i: integer = 0 );

Подобное объявление означает, что процедура HasDefVal может быть вызвана двумя путями. В первом случае — как обычно, с указанием обоих параметров:

procedure HasDefVal( ‘Hello’, 26 );

Во втором случае можно задать только значение параметра s, а для параметра i использовать значение, установленное по умолчанию:

procedure HasDefVal( ‘Hello’ );

При использовании значении параметров по умолчанию следует помнить о нескольких приведенных ниже правилах:

  • Параметры, имеющие значения по умолчанию, должны располагаться в конце списка параметров. Параметр без значения по умолчанию не должен встречаться в списке после параметра, имеющего значение по умолчанию.
  • Значения по умолчанию могут присваиваться только параметрам обычных типов, указателям или множествам.
  • Значение по умолчанию может передаваться только по значению либо с модификатором const. Оно не может быть ссылкой или нетипизированным параметром.

Одним из важных преимуществ применения значений параметров по умолчанию является простота расширения функциональных возможностей уже имеющихся процедур и функции с соблюдением обратной совместимости. Предположим, на рынок программных продуктов была выпущена программа, ключевым звеном которой является функция сложения двух целых величин:

function Add( I1, I2: integer ): integer;
begin
Result := I1 + I2;
end;

Предположим также, что исследования показали целесообразность добавления в программу возможности сложения трех чисел. Однако замена имеющейся функции функцией сложения трех чисел приведет к тому, что вам придется переправлять немало текста, который перестанет компилироваться из-за внесения в функцию еще одного параметра. Однако при использовании значений параметров по умолчанию проблема решается легко и просто. Достаточно изменить объявление функции так, как показано ниже.

function Add( I1, I2: integer; I3: integer = 0 ): integer;
begin
Result := I1 + I2 + I3;
end;

Директива

Директива <$X->запрещает вызов функций как процедур (с игнорированием возвращаемого результата). По умолчанию этот режим включен (<$X+>). Так вот, запомните, использование переменной Result недопустимо при сброшенном флажке опции Extended Syntax, расположенном во вкладке Compiler диалогового окна Project Options, или при указании директивы компилятора <$X->.

В каждой функции языка Objecl Pascal существует локальная переменная с именем Result, предназначенная для размещения возвращаемого значения. Кроме того, вернуть значение из функции можно также путем присвоения значения переменной, имеющей то же имя, что и данная функция. Это стандартный синтаксис языка Pascal, сохранившийся от его предыдущих версий. При использовании в теле функции переменной с ее именем не забывайте, что существуют большие отличия в обработке этого имени — все зависит от того, где она расположена — в левой части оператора присвоения или же в любом другом месте текста функции. Если имя функции указано в левой части оператора присвоения, то предполагается, что назначается возвращаемое функцией значение. Во всех других случаях предполагается, что осуществляется рекурсивный вызов этой функции.

Процедура и функция — это ключевые понятия в любом языке программирования, без которых не обходится ни одна серьезная программа. И поэтому очень важно иметь полное понимание о механизме их работы.

Построение графиков функций в Delphi

Компонент TChart может строить самые различные графики и диаграммы.

Рассмотрим задачу построения графика на примере синусоиды (y=sin(x)).

Данные для построения графика представляют собой набор точек (X,Y). Поэтому для того чтобы его сформировать необходимо вычислить значение функции для каждой точки того диапазона, в котором требуется построить график.

Местоположение промежуточных точек рассчитывается как положение предыдущей точки плюс некоторый интервал (шаг). Для первой промежуточной точки предыдущей точкой является граница диапазона.

Построим график синусоиды для диапазона от 0 до 2π.

Вначале создадим ряд данных компонента TChart, который, собственно, и будет отображать график, а также зададим нижнюю границу диапазона и шаг.

Типы данных Delphi и работа с ними

К встроенным типам данных в языке Delphi относятся типы целые, действительные, символы, строки, указатели, булевы.

Порядковые типы. Порядковыми (ordinal) типами называются те, в которых значения упорядочены, и для каждого из них можно указать предшествующее и последующее значения.

Структурные типы. К структурным типам относятся множества, массивы, записи, файлы, классы, интерфейсы.

Целые типы данных. В переменных целых типов информация представляется в виде целых чисел, т.е. чисел не имеющих дробной части.

Таблица 1 Операции над порядковыми типами

Минимальное значение порядкового типа Т

Максимальное значение порядкового типа Т

Порядковый номер значения выражения порядкового типа. Для целого выражения — просто его значение. Для остальных порядковых типов Ord возвращает физическое представление результата выражения, трактуемое как целое число. Возвращаемое значение всегда принадлежит одному из целых типов

Предыдущее по порядку значение. Для целых выражений эквивалентно Х-1


Следующее по порядку значение. Для целых выражений эквивалентно Х+1

Уменьшает значение переменной на 1. Эквивалентно V := Pred(V)

Увеличивает значение переменной на 1. Эквивалентно V := Succ(V)

8 битов, беззнаковый

16 битов, беззнаковый

32 бита, беззнаковый

Также существует такой тип, как Integer, который эквивалентен типу LongInt. Его диапазон от -2147483648 до 21474836478. Занимает 4 байта в пямяти. Основными являются Integer и Cardinal, так что в большинстве случаев желательно использовать эти типы.

Над целыми данными выполняются все операции, определенные для порядковых типов. Операции над целыми типами:

Возвращает абсолютное целое значение Х

Возвращает целую часть частного деления Х на Y

Возвращает остаток частного деления Х на Y

Возвращает булево True (истина), если Х — нечетное целое, и False (ложь) — в противном случае

Действительные типы данных. В переменных действительных типов содержатся числа, состоящие из целой и дробной частей.

Количество значащих цифр

Основным, обеспечивающим максимальную производительность, является тип Real, который в настоящий момент эквивалентен типу Double.

Таблица 5 Функции действительных типов

Абсолютная величина х

Косинус х (х выражается в радианах, а не в градусах)

Экспоненциальная функция от х

Дробная часть х

Целая часть х. Несмотря на название, возвращает действительное значение (с плавающей запятой), т.е. просто устанавливает нуль в дробной части

Натуральный логарифм от х

Ближайшее к х целое значение. Возвращает значение целого типа. Условие «ближайшее к х» не работает, если верхнее и нижнее значения оказываются равноудаленными (например, если дробная часть точно равна 0,5). В этих случаях Delphi перекладывает решение на операционную систему. Обычно процессоры Intel решают эту задачу в соответствии с рекомендацией IEEE округлять в сторону ближайшего четного целого числа. Иногда такой подход называют «банкирским округлением»

Квадрат х, т.е. X*X

Квадратный корень от х

Целая часть х. В отличие от Int, возвращающей

Символьные типы данных. Символьные типы предназначены для хранения одного символа.

Однобайтовые символы, упорядоченные в соответствии с расширенным набором символов ANSI

Символы объемом в слово, упорядоченные в соответствии с международным набором символов UNICODE. Первые 256 символов совпадают с символами ANSI

Булевы типы данных. Переменные булевых типов данных представляют логические значения, например, true (истина) и false (ложь).

Таблица 7 Размеры переменных булевых типов

2 байт (объем Word)

4 байт (объем Longint)

Массив — это структура данных, представляющая собой набор переменных одинакового типа, имеющих общее имя. Массивы удобно использовать для хранения однородной по своей природе информации, например, таблиц и списков.

Массив, как и любая переменная программы, перед использованием должен быть объявлен в разделе объявления переменных. В общем виде инструкция объявления массива выгладит следующим образом:

Имя: [нижний_индекс..верхний_индекс] of тип

где: имя — имя массива;

array — зарезервированное слово языка Delphi, обозначающее, что объявляемое имя является именем массива;

нижний_индекс и верхний_индекс — целые константы, определяющие диапазон изменения индекса элементов массива и, неявно, количество элементов (размер) массива;

Pi — Функция Delphi

Пример создания многопоточного приложения в Delphi

Этот раздел содержит описание шагов, необходимых для создания простого, но показательного примера многопоточного приложения. Мы будем пытаться вычислить число «пи» с максимальной точностью после запятой. Конечно, встроенная в Delphi константа Pi имеет достаточную точность, правильнее сказать — максимальную, допускаемую самым точным 10-байтным форматом для вещественных чисел Extended . Так что превзойти ее нам не удастся. Но этот пример использования потоков может послужить прологом для решения реальных задач.

Первый пример будет содержать два потока: главный (обрабатывающий ввод пользователя) и вычислительный; мы сможем изменять их свойства и наблюдать за реакцией. Итак, выполните следующую последовательность действий:

1. В среде Delphi откройте меню File и выберите пункт New Application.

2. Расположите на форме пять меток и один переключатель, как показано на рис. 29.2.

Переименуйте главную форму в fmMain .

3. Откройте меню File и выберите пункт Save Project As. Сохраните модуль как uMain , а проект — как Threads 1.

Рис. 29.2. Внешний вид формы для приложения Threads’1

4. Откройте меню File и выберите пункт New. Затем дважды щелкните на объекте типа поток (значок Thread Object). Откроется диалоговое окно New Items, показанное на рис. 29.3.

Рис. 29.3. Диалоговое окно New Items с выбранным объектом типа «поток»

Рис. 29.4. Диалоговое окно New Thread Object

5. Когда появится диалоговое окно для именования объекта поток, введите TPiThread и нажмите клавишу (рис. 29.4). Помимо этого, при желании, вы можете присвоить создаваемому потоку имя, установив флажок Named Thread и задав имя в поле Thread Name. Так как имя потока используется только для удобства обозначения, эту возможность мы использовать не будем.

Delphi создаст новый модуль и поместит в него шаблон для нового потока.

6. Код, вносимый в метод Execute , вычисляет число я, используя сходимость бесконечного ряда Лейбница:

Разумеется, отображать новое значение после каждой итерации — это то же самое, что стрелять из пушки по воробьям. На отображение информации система потратит в десятки раз больше времени, чем на собственно вычисления. Поэтому мы ввели константу updatePeriod , которая регулирует периодичность отображения текущего значения.

Код метода Execute показан ниже:

// Лучше использовать нечетное число для того, чтобы избежать эффекта // мерцания UpdatePeriod = 1000001;

procedure TPiThread.Execute; var sign : Integer;

PiValue, PrevValue : Extended; i : Int64;

< Place thread code here >PiValue := 4; sign := -1; i := 0; repeat Inc(i);

PiValue := PiValue + sign * 4 / (2*i+l); sign := -sign;

if i mod UpdatePeriod = 0 then

GlobalPi := PiValue; GlobalCounter := i; Synchronize(fmMain.UpdatePi);

until Terminated or (Abs(PiValue — PrevValue)

7. Откройте меню File и выберите пункт Save As. Сохраните модуль с потоком как uPiThread .pas.

8. Отредактируйте главный файл модуля uMain.pas и добавьте модуль uPiThread к списку используемых модулей в секции интерфейса. Он должен выглядеть так:

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, StdCtrls, uPiThread;

9. В секции public формы TfmMain добавьте ссылку на создаваемую нить: PiThread : TPiThread;

10. Добавьте в модуль uMain две глобальные переменные

и метод UpdatePi:

if Islconic(Application.Handle) then

LaValue.Caption := FloatToStrF(GlobalPi, ffFixed, 18, 18);

lalterNum.Caption := IntToStr(GlobalCounter) + ‘ iterations’;

Этот метод, если вы обратили внимание, вызывается из потока посредством процедуры Synchronize . Он отображает текущее значение приближения к числу «пи» и количество итераций.

В случае, если главное окно приложения свернуто, отображение не производится; так что после его развертывания вам, возможно, придется подождать некоторое время для обновления.

11. Выполните двойной щелчок на свободном месте рабочей области формы, при этом создастся шаблон метода FormCreate . Здесь мы отобразим значение системной константы р±:

procedure TfmMain.FormCreate(Sender: TObject);

laBuiltln.Caption := FloatToStrF(Pi, ffFixed, 18, 18); end;

12. Выберите на форме переключатель (его название cbcalcuiate ) и назначьте событию Onclick код, создающий и уничтожающий вычислительный поток в зависимости от состояния переключателя:

procedure TfmMain.cbCalculateClick(Sender: TObject);

begin if cbCalculate.Checked then

PiThread.Resume; end else begin

if Assigned(PiThread) then PiThread.Terminate;

Таким образом, многопоточное приложение готово к запуску. Если все пройдет нормально, вы увидите картинку, подобную той, которая приведена на рис. 29.5.

Рис. 29.5. Выполняющееся приложение Threads1

Пока один из авторов писал текст этого раздела, запущенное одновременно приложение Threadsl выполнило пять миллиардов итераций и приблизилось к встроенному значению Pi в десятом разряде. Интересно, насколько хватит терпения у вас?

Этот простой пример — первый шаг в усвоении того, как от базового класса rrhread можно порождать собственные классы. Из-за своей простоты он не лишен недостатков; более того — если бы вычислительных нитей было не одна, а более, кое-какие приемы были бы даже ошибочными. Но — об этом ниже.

НОВОСТИ ФОРУМА
Рыцари теории эфира
01.10.2020 — 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]69vJGqDENq4[/Youtube][/center]
[center]14:36[/center]
Osievskii Global News
29 сент. Отправлено 05:20, 01.10.2020 г.’ target=_top>Просвещение от Вячеслава Осиевского — Карим_Хайдаров.
30.09.2020 — 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Ok]376309070[/Ok][/center]
[center]11:03[/center] Отправлено 12:51, 30.09.2020 г.’ target=_top>Просвещение от Дэйвида Дюка — Карим_Хайдаров.
30.09.2020 — 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
[center][Youtube]VVQv1EzDTtY[/Youtube][/center]
[center]10:43[/center]

интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
мой телеграмм https://t.me/peshekhonovandrei
мой твиттер https://twitter.com/Andrey54708595
мой инстаграм https://www.instagram.com/andreipeshekhonow/

[b]Мой комментарий:
Андрей спрашивает: Краснодарская синагога — это что, военный объект?
— Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

[center][Youtube]CLegyQkMkyw[/Youtube][/center]
[center]10:22 [/center]

Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
http://av-inf.blogspot.com/2013/12/dalles.html

[center][b]Сон разума народа России [/center]

Pi — Функция Delphi

Данные в компьютере можно рассматривать как ячейки памяти, имеющие свои имена (идентификаторы). Все данные в программе на языке Delphi должны быть описаны до их первого использования. И компилятор следит, чтобы в программе они использовались в соответствии с этим описанием, что позволяет избежать ошибок.

Любая величина в Delphi может быть постоянной или переменной. Её имя (идентификатор) может состоять из комбинации латинских букв, цифр и знака подчёркивания, и начинаться не с цифры. При этом регистр символов значения не имеет.

Место описания данных в программе — вне логических блоков begin / end. В модуле перед ключевым словом implementation есть блок описания:

Именно здесь, начиная со следующей строки, удобно объявлять глобальные переменные и константы. Как видим, одна (Form1) уже есть!

Команда объявления переменных в языке Delphi:

var имя_переменной : тип_переменной ;

Слово var — ключевое. Именем может быть любой идентификатор, если он не был описан ранее и не является одним из ключевых или зарезервированных слов языка Delphi. Если нужно описать несколько переменных одного типа, то их перечисляют, отделяя запятой:

Если несколько описаний следуют друг за другом, то ключевое слово var повторно можно не указывать:

Постоянную величину иначе называют константой. Конечно, в программе можно использовать числа и строки непосредственно: 3.1415 или ‘Это значение числа пи’ , но иногда удобнее присвоить их идентификатору. Описание констант аналогично описанию переменных, но используется ключевое слово const, за именем идентификатора следует тип, затем знак равенства и его значение. Причём тип константы допускается не указывать:

const pi= 3.1415 ;
ZnakPi : String = ‘Это значение числа пи’ ;

К слову, константа Pi встроенная в Delphi, то есть для того чтобы использовать в Delphi число 3,1415. в расчётах, нужно просто присвоить встроенную константу Pi переменной типа Real или просто использовать непосредственно в выражениях.

Теперь пришло время узнать о типах данных, используемых в Delphi. Прежде всего это строки и числа.

Строкой называется последовательность символов, заключённая в одиночные кавычки:
‘это текстовая строка’ Если текст должен содержать сам символ кавычки, то его надо повторить дважды:
‘это » — символ одиночной кавычки’ Строка может быть и пустой, не содержащей символов. Тогда она состоит из двух идущих друг за другом без пробела кавычек. Естественно, строка может состоять и только из одних пробелов.
Самый популярный строковый тип — String. Строка типа String может содержать переменное количество символов объёмом до 2 Гбайт. Если нужно ограничить размер строки фиксированным значением, то после ключевого слова String в квадратных скобках указывается число, определяющее количество символов в строке: String[50]. Более полно работа со строками Delphi описывается далее.
Одиночный символ имеет тип Char и записывается в виде знака в одиночных кавычках: ‘a’. Есть символы, которые на экране отобразить невозможно, например, символ конца строки (равен #13), символ переноса строки (равен #10). Такие символы записываются в виде их числового кода (в кодировке ANSI), перед которым стоит знак #. Например, #0.
Наконец, существуют так называемые нуль-терминированные строки. Отсчёт символов в таких строках начинается с нуля, а заканчивается символом с кодом (#0). Такие строки имеют тип PChar.

Числа бывают целые и дробные.
В следующей таблице перечислены стандартные типы целых чисел и соответствующие им дипазоны допустимых значений.

Integer -2147483648 .. +2147483647
Cardinal 0 .. 4294967295
Shortint -128 .. +127
Smallint -32768 .. +32767
Int64 -2 63 .. +2 63 -1
Byte 0 .. +255
Word 0 .. +65535
Наиболее удобным для использования в программах является тип Delphi Integer. Другие целые типы используются для уменьшения места, занимаемого данными в памяти компьютера.

Дробные числа имеют дробную часть, отделяемую десятичной точкой. Допускается использование символа e (или E), за которым следует число, указывающее, что левую часть нужно умножить на 10 в соответствующей степени: 5e25 — пять умножить на десять в двадцать пятой степени.
Ниже приведены стандартные типы дробных чисел и соответствующие им диапазоны допустимых значений. Для большинства типов указан диапазон положительных значений, однако допустимым является аналогичный диапазон отрицательных значений, а также число .

Real 5*10 -324 .. 1.7*10 308
Real48 2.9*10 -39 .. 1.7*10 38
Singl 1.5*10 -45 .. 3.4*10 38
Double 5*10 -324 .. 1.7*10 308
Extended 3.6*10 -4951 .. 1.1*10 4932 -1
Comp -2 63 .. +2 63 -1
Currency 922337203685477.5807
Наиболее удобным для использования в программах является тип Delphi Real. Ему эквивилентен тип Double, но в будущем это может быть изменено. Вычисления с дробными числами выполняются приближённо, за исключением типа Currency (финансовый), который предназначен для минимизации ошибок округления в бухгалтерских расчётах.

Следующим типом данных является логический Boolean, состоящий всего из двух значений: True (Истина) и False (Ложь). При этом True > False.

Теперь, используя компоненты, их свойства и события, вводя собственные переменные, можно конструировать программы, содержащие вычисления. Осталось узнать, как вычисленное значение вывести на экран.
Про консольные программы я здесь не говорю! А в нормальных оконных Windows-приложениях это значение нужно поместить в какой-нибудь компонент, имеющий свойства Text или Caption. Это, например, такие компоненты как Label и Edit, да и сама Форма имеет свойство Caption, куда тоже можно выводить информацию. Однако, в Delphi информацию перед выводом, как правило, необходимо преобразовывать. Так как присвоение возможно только между переменными одного типа, то такая программа (не пытайтесь её исполнять):

var A, B, C: Integer ;
begin
A := 5 ;
B := 10 ;
C := A+B ;
Label1.Caption := C ;
end ;

вызовет ошибку, так как свойство Caption имеет текстовый тип String, а использованные переменные — цифровой тип Integer. Значит, нужно преобразовать значение переменной C в текстовый тип. Для этого есть встроенная функция IntToStr. Строка в нашей «программе», вызывавшая ошибку, должна выглядеть так:

Такая программа, кроме показа числа 15, ни на что не способна. Мы должны научиться вводить в программу другие числа. Используем компоненты Edit. Введённые числа будут содержаться в свойстве Text этих компонентов. Расположим на форме два компонента Edit, один компонент Label и кнопку Button, по нажатию на которую и будем проводить вычисления. В компоненты Edit1 и Edit2 будем вводить числа для суммирования. Чтобы переместиться в редактор кода, щёлкнем дважды по нашей кнопке Button1. Мы попадём прямо в сформированную для нас средой Delphi заготовку обработчика нажатия на кнопку, непосредственно между операторами begin и end. Напишем такой простой код:

procedure TForm1.Button1Click(Sender: TObject);
var A, B, C: Integer; //Не забудьте описание переменных
begin
//Начало кода:
A := Edit1.Text;
B := Edit2.Text;
C := A+B;
Label1.Caption := IntToStr(C);
//Конец кода
end ;

При попытке исполнить этот код Delphi покажет ошибки по аналогичной причине — переменные A и B имеют цифровой тип Integer, а свойство Text — текстовый тип String. Исправить ошибки поможет встроенная функция StrToInt, выполняющая обратное преобразование — текст в целое число. Операторы присвоения переменным A и B должны выглядеть так:

A := StrToInt(Edit1.Text);
B := StrToInt(Edit2.Text);

В данном случае переменные A, B, C использовались для наглядности. Можно обойтись одной строчкой:

Аналогично, имеются функции и для преобразования в строку и обратно действительных чисел c плавающей (Floating англ.) запятой, имеющих тип Real. Для преобразования в строку — FloatToStr, обратно — StrToFloat.
Часто результаты вычислений, имеющие тип Delphi Real, имеют после запятой длинный «хвост» цифр. При выводе такой переменной в текстовом виде необходимо ограничить количество цифр после запятой. Как это можно сделать, описывается также в Уроке Delphi Работа со строками Delphi.

Илон Маск рекомендует:  Что такое код fbsql_connect
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL