Sqlсоединение таблиц с дополнительным условием


Содержание

Соединения SQL, урок 14 — соединение таблиц в одном запросе

Соединения SQL

Одно из важных способностей языка запросов SQL это определение связей между множеством таблиц и отображение их информации в рамках единственной команды. Операция такого рода называется соединением SQL или соединение таблиц. Наличие операции соединения SQL является главным отличием реляционной базы данных от других.

По синтаксису языка:

  • Соединения таблицы перечисляются в предложении запроса FROM;
  • Имена таблиц разделяются запятыми.
  • Предикат запроса может ссылаться на любой столбец любой из соединяемых таблиц и, следовательно, может использоваться для установления связей между ними.
  • Обычно предикат сравнивает значения в столбцах различных таблиц для того, чтобы определить, удовлетворяется ли условие WHERE.

Эквисоединение таблиц

Актуальные строки можно отобрать из декартово произведения путем ввода в запрос параметра WHERE, в котором устанавливается соответствие между полями, посредством которых каждая пара таблиц связана между собой.

Эквисоединение таблиц в предыдущем запросе выглядит следующим образом:

SELECT Students.*, St_Hobby.*

FROM Students, St_Hobby

WHERE Students.N_z= St_Hobby.N_z;

Естественное соединение таблиц

Естественным соединением таблиц называется такое соединение, из которого исключены дубликаты столбцов, по которым проводилось эквисоединение (Students.N_z и St_Hobby.N_z). Для исключения дубликатов в операторе SELECT необходимо явно указать только один из столбцов этих пар, принадлежащего главной таблице:

SELECT Students.N_z, Students.F_Name, Students.S_Name, Students.B_Data, ST_Hobby.Hobby_name

FROM Students, St_Hobby

WHERE Students.N_z= St_Hobby.N_z;

Композиция таблиц

Композицией таблиц называется соединение, из которого полностью исключены столбцы, по которым производилось соединение.

Соединение таблиц с дополнительным условием

Наравне с уловными выражениями, предназначенными для указания способа соединения таблиц между собой, в параметре WHERE можно дополнительно указывать все описанные выше дополнительные условия фильтрации, объединенные с условными выражениями соединения при помощи оператора AND. Например:

— получение информации о студентах из групп 2011,2012,3014 и их хобби

SELECT Students.N_z, Students.F_Name, Students.S_Name, Students.B_Data, ST_Hobby.Hobby_name

FROM Students, St_Hobby

WHERE Students.N_z= St_Hobby.N_z AND Students.N_gr IN (2011,2012,3014);

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10385 — | 7888 — или читать все.

188.64.174.135 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Как присоединить три таблицы в SQL запросе – Пример в MySQL

Главное меню » Базы данных » Учебное пособие по SQL » Как присоединить три таблицы в SQL запросе – Пример в MySQL

В случае присоединения трех таблиц, первая относится к таблице 2, а затем таблица 2 относится к таблице 3. Если вы посмотрите внимательно, то вы обнаружите , что таблица 2 представляет собой присоединенную таблицу, которая содержит первичный ключ из обеих таблиц 1 и 2. Как мы сказали, это может быть очень запутанным, чтобы понять объединение трех или более таблиц.

Мы обнаружили, что понимание отношение таблиц в качестве первичного ключа и внешнего ключа помогает облегчить задачу.

SQL Join также является очень популярной темой в SQL и там всегда были некоторые вопросы из соединений, как разница между INNER и OUTER JOIN, например SQL – запрос с JOIN Employee Department и разница между LEFT и RIGHT OUTER JOIN и т.д. Короче говоря это одна из самых важных тем в SQL как из опыта так и из точки зрения цели.

Единственный способ освоить SQL JOIN, это сделать как можно больше упражнений, насколько это возможно. Если бы вы могли решить большинство головоломок SQL из классической книги Джо Селко, SQL Puzzles and Answers, 2nd edition, вы были бы более уверены в работе с SQL JOIN, хоть это быть две, три или четыре таблицы.

Объединение трех таблиц, синтаксис в SQL

Вот общий синтаксис запроса SQL, чтобы присоединить три или более таблиц. Этот SQL-запрос должен работать во всех основных баз данных, например в базе данных MySQL, Oracle, Microsoft SQLServer, Sybase и PostgreSQL:

Мы сначала присоединим таблице 2 к таблице 1, которые создадут временную таблицу с комбинированными данными из table1 и table2, а затем присоединим к Table3. Эта формула может быть распространена на более чем 3 -х таблиц в N таблиц, Вам просто нужно убедиться, что SQL – запрос должен иметь N-1 join, чтобы присоединить N таблиц. Как для объединения двух таблиц мы требуем 1 join а для присоединения 3 таблиц нам нужно 2 join.

Вот хорошая схема, которая хорошо показывает, как применять различные типы присоединений, например как работают в SQL inner, left outer, right outer и cross joins:

SQL запрос по присоединению трех таблиц в MySQL

Для того, чтобы лучше понять присоединение 3 таблицы в SQL запросе, давайте рассмотрим пример. Рассмотрим популярный пример Employee и Department. В нашем случае мы использовали таблицу ссылок под названием Register, который связывает или имеет отношение Employee для Department. Первичный ключ таблицы Employee (emp_id) является внешним ключом в Register и аналогичным образом, первичный ключ таблицы Department (dept_id) является внешним ключом в таблице Register.

Для того , чтобы написать запрос SQL для печати имя сотрудника и название отдела мы должны присоединиться к трем таблицам. Первое присоединение Employee и Register и создают временную таблицу, с колонкой dept_id. Теперь второе присоединение таблицы Department к этой временной таблицы по колонке dept_id, чтобы получить желаемый результат. Вот полный SELECT, пример SQL – запроса, чтобы присоединиться к 3 таблицам, и она может быть расширена, чтобы присоединиться к более чем 3 или N таблицам.

Если вы хотите понять это лучше, попытайтесь объединить таблицы шаг за шагом. Таким образом, вместо того, чтобы присоединиться 3 таблицы за один раз, сначала соединить 2 таблицы и посмотреть, как будет выглядеть таблица результатов. Это все о том, как присоединить три таблицы в одном запросе SQL в реляционной базе данных. Кстати, в этом примере SQL JOIN, мы использовали ANSI SQL, и он будет работать в другой реляционной базы данных, а также, Oracle, SQL Server, Sybase, PostgreSQL и т.д. Дайте нам знать, если вы сталкивались с какой – либо проблемой во время объединения 3 таблицы запросом JOIN в любой другой базе данных.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Соединение таблиц или действие оператора SQL JOIN на примерах

Оператор JOIN используется для соединения двух или нескольких таблиц. Соединение таблиц может быть внутренним (INNER) или внешним (OUTER), причем внешнее соединение может быть левым (LEFT), правым (RIGHT) или полным (FULL). Далее на примере двух таблиц рассмотрим различные варианты их соединения.

Синтаксис соединения таблиц оператором JOIN имеет вид:

Предикат в этой конструкции определяет условие соединения строк из разных таблиц.

Допустим есть две таблицы (Auto слева и Selling справа), в каждой по четыре записи. Одна таблица содержит названия марок автомобилей (Auto), вторая количество проданных автомобилей (Selling):

Далее соединим эти таблицы по полю id несколькими различными способами. Совпадающие значения выделены красным для лучшего восприятия.

1. Внутреннее соединение (INNER JOIN) означает, что в результирующий набор попадут только те соединения строк двух таблиц, для которых значение предиката равно TRUE. Обычно используется для объединения записей, которые есть и в первой и во второй таблице, т. е. получения пересечения таблиц:

Красным выделена область, которую мы должны получить.

Итак, сам запрос:

Ключевое слово INNER в запросе можно опустить.

В итоге запрос отбирает и соединяет те записи, у которых значение поля id в обоих таблицах совпадает.

2. Внешнее соединение (OUTER JOIN) бывает нескольких видов. Первым рассмотрим полное внешнее объединение (FULL OUTER JOIN), которое объединяет записи из обоих таблиц (если условие объединения равно true) и дополняет их всеми записями из обоих таблиц, которые не имеют совпадений. Для записей, которые не имеют совпадений из другой таблицы, недостающее поле будет иметь значение NULL. Граф выборки записей будет иметь вид:

Переходим к запросу:

То есть мы получили все записи, которые есть в обоих таблицах. Записи у которых значение поля id совпадает соединяются, а у записей для которых совпадений не найдено недостающие поля заполняются значением NULL.

Ключевое слово OUTER можно опустить.

3. Левое внешнее объединение (LEFT OUTER JOIN). В этом случае получаем все записи удовлетворяющие условию объединения, плюс все оставшиеся записи из внешней таблицы, которые не удовлетворяют условию объединения. Граф выборки:

Запрос также можно писать без ключевого слова OUTER.

В итоге здесь мы получили все записи таблицы Auto. Записи для которых были найдены совпадения по полю id в таблице Selling соединяются, для остальных недостающие поля заполняются значением NULL.

Еще существует правое внешнее объединение (RIGHT OUTER JOIN). Оно работает точно также как и левое объединение, только в качестве внешней таблицы будет использоваться правая (в нашем случае таблица Selling или таблица Б на графе).

Далее рассмотрим остальные возможные выборки с использованием объединения двух таблиц.

4. Получить все записи из таблицы А, которые не имеют объединения из таблицы Б. Граф:

То есть в нашем случае, нам надо получить все автомобили из таблицы Auto, которые не имеют продаж в таблице Selling.

5. И последний вариант, получить все записи из таблицы А и Таблицы Б, которые не имеют объединений. Граф:

В нашем случае мы должны получить все записи из таблицы Auto, которые не связаны с таблицей Selling, и все записи из таблицы Selling, которые не имеют сопоставления из таблицы Auto.

На этом все, до новых встреч на страницах блога.

Использование в запросе нескольких источников записей

Как видно из приведенного в конце предыдущего раздела синтаксиса оператора SELECT, в предложении FROM допускается указание нескольких таблиц. Простое перечисление таблиц практически не используется, поскольку оно соответствует реляционной операции декартова произведения. Т.е. в результирующем наборе каждая запись из одной таблицы будет сочетаться с каждой записью в другой. Например, для таблиц

A B
a b c d
1 2 2 4
2 1 3 3

Результат запроса

SELECT * FROM A, B;

будет выглядеть следующим образом:

a b c d
1 2 2 4
1 2 3 3
2 1 2 4
2 1 3 3

Поэтому перечисление таблиц, как правило, используется совместно с условием соединения записей из разных таблиц, указываемым в предложении WHERE. Для приведенных выше таблиц таким условием может быть совпадение значений, скажем, в полях a и c:

SELECT * FROM A, B WHERE a=c;

Теперь результатом выполнения этого запроса будет следующая таблица:

a b c d
2 1 2 4

т.е. соединяются только те строки таблиц, у которых в указанных полях находятся равные значения (эквисоединение). Естественно, могут быть использованы любые условия, хотя эквисоединение используется чаще всего, поскольку эта операция воссоздает некую сущность, декомпозированную на две других в результате процедуры нормализации.

Если разные таблицы имеют столбцы с одинаковыми именами, то для однозначности требуется использовать точечную нотацию:

В тех случаях, когда это не вызывает неоднозначности, использование данной нотации не является обязательным.

Пример. Найти номер модели и производителя ПК, имеющих цену менее $600:

SELECT DISTINCT PC.model, maker
FROM PC, Product
WHERE PC.model = Product.model AND price model
maker
1232 A
1260 E

Иногда в предложении FROM требуется указать одну и ту же таблицу несколько раз. В этом случае обязательным является переименование.

Пример. Вывести пары моделей, имеющих одинаковые цены:

SELECT DISTINCT A.model AS model_1, B.model AS model_2
FROM PC AS A, PC B
WHERE A.price = B.price AND A.model model_1
model_2
1232 1233
1232 1260

Переименование также требуется, если в предложении FROM используется подзапрос. Так, первый пример можно переписать следующим образом:

Илон Маск рекомендует:  Атрибут autoplay в HTML
Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL
SELECT DISTINCT PC.model, maker
FROM PC,
(SELECT maker, model
FROM Product) AS prod
WHERE PC.model = prod.model AND price [INNER]
| <<LEFT | RIGHT | FULL > [OUTER]> JOIN
[ON ]

Соединение может быть либо внутренним (INNER), либо одним из внешних (OUTER). Служебные слова INNER и OUTER можно опускать, поскольку внешнее соединение однозначно определяется его типом — LEFT (левое), RIGHT (правое) или FULL (полное), а просто JOIN будет означать внутреннее соединение.

Предикат определяет условие соединения строк из разных таблиц. При этом INNER JOIN означает, что в результирующий набор попадут только те соединения строк двух таблиц, для которых значение предиката равно TRUE. Как правило, предикат определяет эквисоединение по внешнему и первичному ключам соединяемых таблиц, хотя это не обязательно.

Пример. Найти производителя, номер модели и цену каждого компьютера, имеющегося в базе данных:

SELECT maker, Product.model AS model_1, PC.model AS model_2, price
FROM Product INNER JOIN PC ON PC.model = Product.model
ORDER BY maker, PC.model;

В данном примере в результирующем наборе будут соединяться только те строки из таблиц PC и Product, у которых совпадают номера моделей.
Для контроля в результат включен как номер модели из таблицы PC, так и из таблицы Product:

maker model_1 model_2 price
A 1232 1232 600.0
A 1232 1232 400.0
A 1232 1232 350.0
A 1232 1232 350.0
A 1233 1233 600.0
A 1233 1233 950.0
A 1233 1233 980.0
B 1121 1121 850.0
B 1121 1121 850.0
B 1121 1121 850.0
E 1260 1260 350.0

Внешнее соединение LEFT JOIN означает, что помимо строк, для которых выполняется условие предиката, в результирующий набор попадут все остальные строки из первой таблицы (левой). При этом отсутствующие значения полей из правой таблицы будут заполнены NULL-значениями.

Пример. Привести все модели ПК, их производителей и цену:

SELECT maker, Product.model AS model_1, PC.model AS model_2, price
FROM Product LEFT JOIN PC ON PC.model = Product.model
WHERE type = ‘PC’
ORDER BY maker, PC.model;

Обратите внимание на то, что по сравнению с предыдущим примером, пришлось использовать предложение WHERE для отбора только производителей ПК. В противном случае в результирующий набор попали бы также и модели ПК-блокнотов и принтеров. В рассмотренном ранее примере это условие было бы излишним, т.к. соединялись только те строки, у которых совпадали номера моделей, и одной из таблиц была таблица PC, содержащая только ПК. В результате выполнения запроса получим:

maker model_1 model_2 price
A 1232 1232 600.0
A 1232 1232 400.0
A 1232 1232 350.0
A 1232 1232 350.0
A 1233 1233 600.0
A 1233 1233 950.0
A 1233 1233 980.0
B 1121 1121 850.0
B 1121 1121 850.0
B 1121 1121 850.0
E 2111 NULL NULL
E 2112 NULL NULL
E 1260 1260 350.0

Поскольку моделей 2111 и 2112 из таблицы Product нет в таблице PC, в полях из таблицы PC содержится NULL.
Соединение RIGHT JOIN обратно соединению LEFT JOIN, т.е. в результирующий набор попадут все строки из второй таблицы, которые будут соединяться только с теми строками из первой таблицы, для которых выполняется условие соединения. В нашем случае левое соединение

Product LEFT JOIN PC ON PC.model = Product.model

будет эквивалентно правому соединению

PC RIGHT JOIN Product ON PC.model = Product.model

Запрос же

SELECT maker, Product.model AS model_1, PC.model AS model_2, price
FROM Product RIGHT JOIN PC ON PC.model = Product.model
ORDER BY maker, PC.model;

даст те же результаты, что и внутреннее соединение, поскольку в правой таблице (PC) нет таких моделей, которые отсутствовали бы в левой таблице (Product), что вполне естественно для типа связи «один-ко-многим», которая имеется между таблицами PC и Product. Наконец, при полном соединении (FULL JOIN) в результирующую таблицу попадут не только те строки, которые имеют одинаковые значения в сопоставляемых столбцах, но и все остальные строки исходных таблиц, не имеющие соответствующих значений в другой таблице. В этих строках все столбцы той таблицы, в которой не было найдено соответствия, заполняются NULL-значениями. Полное соединение представляет собой комбинацию левого и правого внешних соединений.
Так запрос для таблиц A и B, приведенных в начале главы,

SELECT A.*, B.*
FROM A FULL JOIN B
ON A.a = B.c;

даст следующий результат:

a b c d
1 2 NULL NULL
2 1 2 4
NULL NULL 3 3

Заметим, что это соединение симметрично, т.е. «A FULL JOIN B» эквивалентно «B FULL JOIN A». Обратите также внимание на обозначение A.*, что означает «все поля таблицы А».

Соединение таблиц с дополнительными условиями/OR — sql

Я пытаюсь сделать левое внешнее соединение с несколькими условиями OR.

с этим кодом, я получаю:

Мне нужен список всех идентификаторов из исходной таблицы, а также сопоставленных из таблицы соединений.

    1 4
  • 3 ноя 2020 2020-11-03 23:28:17
  • Christa

4 ответа

Обновление на основе комментариев.

Ваше требование — «не хотите, чтобы разные, но не хотели дубликатов» — было бы противоречивым, используя стандартные определения «различный» и «дублированный». Итак, нам нужно определение «duplicate», поскольку вы используете термин.

То, что вы, кажется, говорите, заключается в том, что ID не уникален в исходном @table , но вам нужен единственный результат для каждой записи @table , если он соответствует хотя бы одной записи @join_table . Это можно сделать, но я ожидаю неприятностей по линии, если нет чего-то, чего мы не видим.

В принципе, как показывают запросы в настоящее время, нет возможности однозначно идентифицировать строку из @table или — больше, чтобы указать — указать, какая строка @table была источником строки в объединенном результате задавать.

Если @table имеет дополнительные записи, которые образуют уникальный ключ, тогда вы можете включить их в запрос, чтобы DISTINCT не рассматривал их как дубликаты.

Если нет, вы можете использовать row_number() для создания уникального идентификатора; но этот созданный идентификатор свойственен запросу и впоследствии не может использоваться для привязки к определенной строке из @table . Тем не менее, существует несколько вариантов, но здесь один:

или если вы действительно хотите только ID в конечном результате, оберните это в select ID from ( . )

Оригинальный ответ

Итак, соединение работает нормально, но, конечно, оно реплицирует строки (как и все соединения), когда есть несколько совпадений.

Но на самом деле проблема заключается в том, что вы запрашиваете все комбинации ID, когда хотите отличные значения первого идентификатора. Итак:

База данных может предоставить только то, что вы хотите, если вы спросите, что вы хотите.

Новые книги

Идеальный учебник для тех, кто не любит учиться по скучным талмудам!

«Инстаграм», как соцсеть, есть уже у очень многих, и вы сами часто, листая ленту, думаете о том, как круто было бы тоже начать продавать сумки, шляпы и многое другое, включая себя в виде успешного блогера.

Малый бизнес давно ушел в соцсети, и именно «Инстаграм» стал главной платформой для активных покупателей и рекламы. Так почему вы все еще не зарабатываете в «Инстаграме»: это страх, неуверенность в себе или в своих силах? Не стоит бояться, ведь тут вы узнаете основы основ и многое другое, что позволит вам стать успешным.

Инструкция по применению «Инстаграма» от «Госпожи Маркетолога» – Лилии Ниловой. Возьмите в руки книгу, перелистывайте страницы и впитывайте!

В книге рассмотрены основные приемы работы на компьютере Macintosh. Показаны особенности работы в операционной системе Mac OS X: пользовательский интерфейс, установка/удаление программ, прожиг CD/DVD, печать документов, подключение к сети Интернет и др. Описаны основные приложения, входящие в состав ОС: почтовый клиент Mail; web-браузер Safari; календарь-ежедневник iCal; приложение, управляющее виджетами, Dashboard; программа Photo Booth для работы со встроенной цифровой камерой; музыкальный редактор GarageBand; приложение Time Machine для резервного копирования и др. Рассмотрена работа с приложениями интегрированной среды iWork: текстовым редактором Pages, электронными таблицами Numbers, программой для создания презентаций Keynote. Показаны особенности клавиатуры Macintosh и проведены аналогии с клавиатурой компьютера IBM PC. Компакт-диск содержит задания для самостоятельной работы с Mac OS X и приложениями iWork, материалы для выполнения заданий, примеры презентаций.

Для начинающих пользователей.

Соединение таблиц с дополнительным условием

8 способов объединения (JOIN) таблиц в SQL. Часть 1

Можно смело сказать, что операция объединения (JOIN) является наиболее мощной функциональной особенностью языка SQL. Эта операция — предмет зависти для всех нереляционных СУБД, поскольку ее концепция очень проста, но при этом широко применима в случаях, когда нужно объединить два набора данных.

Простыми словами, объединение двух таблиц заключается в объединении каждой строки первой таблицы с каждой строкой второй таблицы, для которых истинно значение некоторого предиката. Иллюстрация из мастер-класса по SQL демонстрирует эту концепцию:

Обратите также внимание на следующую статью, посвященную использованию диаграмм Венна (Venn diagram) для объяснения операции JOIN.

На рисунке выше представлена схема операции внутреннего объединения (INNER JOIN) в сравнении с различными операциями внешнего объединения (OUTER JOIN), но это далеко не все возможные варианты. Далее мы рассмотрим каждый из них в отдельности.

Обратите внимание, когда в данной статье мы говорим «X следует перед Y», имеется в виду, что «X логически следует перед Y». То есть, оптимизатор СУБД может выполнить Y раньше, чем X, в целях обеспечения более высокой производительности при неизменном результате. Подробнее о синтаксическом и логическом порядке операций вы моете прочитать в следующей статье.

Итак, давайте последовательно рассмотрим все типы объединений!

Перекрестное объединение (CROSS JOIN)

CROSS JOIN является базовым вариантом объединения и представляет собой декартово произведение (Cartesian product). Эта операция просто объединяет каждую строку первой таблицы с каждой строкой второй таблицы. Лучший пример, иллюстрирующий декартово произведение, представлен в Википедии. В этом примере мы получаем колоду карт, выполнив «перекрестное объединение» таблицы достоинств и таблицы мастей.

В реальных сценариях операция CROSS JOIN может быть очень полезна при создании отчетов. Например, мы можем сгенерировать набор дат (например, дни в месяце) (days) и выполнить перекрестное объединение со всеми отделами (departments), имеющимися в базе данных. В результате мы получим полную таблицу день/отдел. Используя синтаксис PostgreSQL:

Представим себе, что мы имеем следующие данные:

Результат операции CROSS JOIN будет выглядеть следующим образом:

Теперь для каждой комбинации день/отдел мы можем вычислить дневную выручку для данного отдела или другие аналогичные показатели.

Свойства

Как мы уже сказали, операция CROSS JOIN представляет собой декартово произведение. Соответственно, в математической нотации для описания данной операции используется знак умножения: A × B, или в нашем случае days × departments.

Как и в случае «обычного» арифметического умножения, если одна из двух таблиц пустая (имеет нулевой размер), результат также будет пустым. Это абсолютно логично. Если мы объединим 31 день и 0 отделов, мы получим 0 комбинаций день/отдел. Аналогично, если мы объединим пустой диапазон дат с любым количеством отделов, мы также получим 0 комбинаций день/отдел. Другими словами:

Альтернативный синтаксис

До того, как синтаксис операции JOIN был стандартизирован ANSI, чтобы реализовать CROSS JOIN, программисты просто использовали список разделенных запятыми таблиц в предложении FROM. Рассмотренный выше запрос эквивалентен следующему:

В общем случае для выполнения перекрестного объединения настоятельно рекомендуется использовать ключевые слова CROSS JOIN вместо альтернативного синтаксиса. Благодаря этому, другой программист сможет легко понять назначение данного фрагмента кода! Кроме того, использование альтернативного синтаксиса на основе списка разделенных запятыми таблиц чревато появлением ошибок, например, может произойти ненамеренное перекрестное объединение. Нам же не нужны такие проблемы!

Внутреннее объединение (INNER JOIN) или тета-объединение (THETA JOIN)

Развивая идею предыдущей операции CROSS JOIN, операция INNER JOIN (или просто JOIN, иногда также THETA JOIN) позволяет выполнять фильтрацию результата декартова произведения на основе некоторого предиката. Как правило, мы помещаем этот предикат в предложение ON. Таким образом, запрос принимает следующий вид:

В большинстве СУБД ключевое слово INNER является необязательным, поэтому мы просто не указываем его.

Операция INNER JOIN позволяет нам использовать произвольные предикаты в предложении ON, что опять же очень удобно при создании отчетов. Аналогично CROSS JOIN мы объединяем все дни со всеми отделами, но потом оставляем только те комбинации день/отдел, для которых данный отдел уже существовал в данный день.

Используем те же исходные данные:

Получим следующий результат:

Результат операции содержит данные, начиная с 10 января. Более ранние даты были отфильтрованы.

Свойства

Операция INNER JOIN представляет собой операцию CROSS JOIN с фильтрацией. Это означает, что если одна из таблиц пустая, то результат также гарантированно будет пустым. По причине наличия предиката, результат операции INNER JOIN может быть меньшего объема, чем результат операции CROSS JOIN. Другими словами:

Альтернативный синтаксис

Несмотря на то, что предложение ON является обязательным для операции INNER JOIN, мы не обязаны указывать в нем предикат (хотя это крайне желательно в целях улучшения читаемости). Рассмотренный выше запрос эквивалентен следующему:

Безусловно, это просто запутывание кода, но ведь у нас могут быть свои причины, не так ли? Сделав еще один шаг, мы можем написать следующий запрос, который также является эквивалентным, поскольку большинство оптимизаторов способны распознать равнозначность и выполнить INNER JOIN:

Как мы уже говорили, CROSS JOIN это лишь удобный синтаксис для списка разделенных запятыми таблиц. Во фрагменте кода, представленном ниже, мы также используем предложение WHERE, чтобы сформировать запрос, которым программисты часто пользовались до того, как синтаксис JOIN был стандартизирован:

Все эти варианты альтернативного синтаксиса выполняют одну и ту же задачу, как правило, без потери производительности. Однако очевидно, что все они значительно хуже читаются по сравнению со стандартным синтаксисом INNER JOIN.

Объединение на основе равенства (EQUI JOIN)

Иногда в литературе встречается термин EQUI JOIN. На самом деле, «EQUI» не является ключевым словом SQL, а просто обозначает специальный вариант записи особого случая операции INNER JOIN.

Следует отметить, что не совсем правомерно называть EQUI JOIN особым случаем, поскольку эту операцию мы выполняем чаще всего в SQL и OLTP приложениях, когда просто объединяем таблицы на основе отношения первичного/внешнего ключа. Например:

Представленный выше запрос извлекает всех актеров и фильмы, в которых они снимались. В нем присутствуют две операции INNER JOIN. Первая из них объединяет таблицу актеров actor и соответствующие записи из таблицы film_actor, содержащей информацию об отношениях фильм/актер (поскольку каждый актер может играть во множестве фильмов, а в каждом фильме может играть множество актеров). Вторая операция INNER JOIN выполняет объединение с таблицей film, содержащей информацию о фильмах.

Свойства

Данная операция имеет те же свойства, что и «обычная» операция INNER JOIN. То есть EQUI JOIN также является декартовым произведением (CROSS JOIN) с отфильтрованным результатом. В частности, в нашем случае результат содержит только те комбинации актер/фильм, для которых данный актер действительно играл в данном фильме. Таким образом, мы снова имеем соотношение:

Объем результата может быть равен полному декартову произведению таблиц actor и film только в том случае, если каждый актер играл в каждом фильме, что маловероятно.

Альтернативный синтаксис: USING

Опять же, мы могли бы записать операцию EQUI JOIN, используя CROSS JOIN или список разделенных запятыми таблиц, но это уже не интересно. Значительно больший интерес представляют два варианта альтернативного синтаксиса, представленные ниже, один из которых является очень полезным.

Предложение USING заменяет предложение ON и позволяет указать набор столбцов, которые должны присутствовать в обеих объединяемых таблицах. Если наша база данных была хорошо спроектирована (как, например, база данных Sakila), то есть, если каждый внешний ключ имеет такое же имя, как и соответствующий первичный ключ (например, actor.actor_ >

  • Derby
  • Firebird
  • HSQLDB
  • Ingres
  • MariaDB
  • MySQL
  • Oracle
  • PostgreSQL
  • SQLite
  • Vertica

Следующие СУБД, к сожалению, не поддерживают данный синтаксис:

  • Access
  • Cubrid
  • DB2
  • H2
  • HANA
  • Informix
  • SQL Server
  • Sybase ASE
  • Sybase SQL Anywhere

Запрос с предложением USING (почти) идентичен запросу с предложением ON, однако значительно более удобен для написания и восприятия. Мы сказали «почти», потому что согласно спецификации некоторых СУБД (и стандарту SQL) столбец, используемый в предложении USING, не должен иметь квалификатор. Например:

Безусловно, этот синтаксис также имеет свои ограничения. Иногда в таблице может быть внешний ключ, имя которого не соответствует первичному ключу. Например:

Если мы хотим выполнить объединение по original_language_id, нам придется использовать предложение ON.

Альтернативный синтаксис: Естественное объединение (NATURAL JOIN)

Более экстремальным и значительно менее полезным вариантом синтаксиса операции EQUI JOIN является синтаксис на основе предложения NATURAL JOIN. Рассмотренный выше синтаксис на основе USING можно «улучшить», заменив USING на NATURAL JOIN следующим образом:

Обратите внимание, в этом запросе нет необходимости указывать какие-либо критерии объединения, поскольку предложение NATURAL JOIN автоматически определяет столбцы, имеющие одинаковые имена в обеих объединяемых таблица, и помещает их в «скрытое» предложение USING. Если первичные и внешние ключи имеют одинаковые имена, этот подход может показаться полезным, однако это не так.

В базе данных Sakila, каждая таблица имеет столбец last_update, который автоматически используется предложением NATURAL JOIN. Таким образом, запрос NATURAL JOIN эквивалентен следующему запросу, который, конечно же, не имеет никакого смысла:

Итак, сразу же забудьте о NATURAL JOIN и никогда не используйте этот вариант (за исключением очень редких случаев, таких как объединение диагностических представлений Oracle, например, v$sql NATURAL JOIN v$sql_plan, в целях специализированной аналитики).

Внешнее объединение (OUTER JOIN)

Мы рассмотрели операцию INNER JOIN, возвращающую только те комбинации строк левой/правой таблицы, для которых значение предиката в предложении ON является истинным.

Операция OUTER JOIN позволяет нам включить в результат строки одной таблицы, для которых не были найдены соответствующие строки в другой таблице.

Левое внешнее объединение (LEFT OUTER JOIN)


Давайте вернемся к примеру с датами и отделами:

Ключевое слово «OUTER» является необязательным, поэтому мы его не указываем.

Этот запрос отличается от подобного запроса INNER JOIN лишь тем, что всегда будет возвращать хотя бы одну строку для каждого дня, даже если в данный день еще не существовало ни одного отдела. В частности, в нашем примере все отделы были созданы не ранее 10 января, но запрос все равно вернет строки, соответствующие 1–9 января.

Кроме строк, которые мы получили бы с помощью запроса INNER JOIN, в результате запроса LEFT OUTER JOIN также присутствуют строки, соответствующие 1–9 января, с пустыми (NULL) значениями отделов:

Как видите, каждый день хотя бы один раз присутствует в результате запроса. LEFT OUTER JOIN выполняет данную операцию для левой таблицы, то есть возвращает все строки левой таблицы.

Формально, операцию LEFT OUTER JOIN можно выразить операцией INNER JOIN с предложением UNION:

Мы обсудим NOT EXISTS далее в этой статье, когда будем рассматривать операцию SEMI JOIN.

Правое внешнее объединение (RIGHT OUTER JOIN)

Операция RIGHT OUTER JOIN выполняет ту же задачу, что и LEFT OUTER JOIN, но для правой таблицы, то есть возвращает в результате все строки правой таблицы. Немного модифицируем наши данные, добавив пару отделов:

Новые отделы 4 и 5 не попали бы в результат запроса INNER JOIN, поскольку были созданы после 31 января. Однако эти отделы появятся в результате запроса RIGHT OUTER JOIN, поскольку эта операция возвращает все строки правой таблицы.

Выполним следующий запрос:

Получим следующий результат:

В большинстве случаев (я еще не сталкивался с ситуацией, для которой это утверждение не верно), выражение LEFT OUTER JOIN можно преобразовать в эквивалентное выражение RIGHT OUTER JOIN, и наоборот. Поскольку RIGHT OUTER JOIN обеспечивает меньшее удобство восприятия, большинство программистов используют только LEFT OUTER JOIN.

Полное внешнее объединение (FULL OUTER JOIN)

Существует также операция FULL OUTER JOIN, которая возвращает в результате все строки как левой, так и правой таблицы. Для нашего примера это означает, что каждый день и каждый отдел хотя бы один раз появляются в результате запроса.

Используем те же данные:

Выполним следующий запрос:

Получим следующий результат:

Формально, операцию FULL OUTER JOIN можно выразить операцией INNER JOIN с предложением UNION:

Альтернативный синтаксис: Внешнее объединение на основе равенства (EQUI OUTER JOIN)

Рассмотренные выше операции опять же представляют собой объединения типа «декартово произведение с фильтрацией». Однако более распространенным является подход EQUI OUTER JOIN, в рамках которого мы выполняем объединение на основе отношения первичного/внешнего ключа. Используем для примера базу данных Sakila. Некоторые актеры не снялись ни в одном фильме. Мы можем извлечь их следующим образом:

В результате этого запроса каждый актер будет присутствовать хотя бы один раз, независимо от того, принимал ли он участие в каком-либо фильме. Если мы также хотим извлечь все фильмы, в которых не снимался ни один из данных актеров, мы можем применить FULL OUTER JOIN:

Безусловно, в качестве альтернативы можно было бы использовать NATURAL LEFT JOIN, NATURAL RIGHT JOIN, NATURAL FULL JOIN, но, как мы уже говорили ранее, в таком случае в объединении автоматически был бы учтен столбец last_update, присутствующий во всех таблицах базы данных Sakila (т.е. USING (…, last_update)), что лишает операцию всякого смысла.

Альтернативный синтаксис: Внешнее объединение (OUTER JOIN) в стиле Oracle и SQL Server

До введения стандартного синтаксиса СУБД Oracle и SQL Server поддерживали операцию внешнего объединения в следующем виде:

Можно смело сказать, что этот синтаксис является устаревшим.

Разработчики SQL Server поступили правильно, вначале объявив этот синтаксис нежелательным, и в дальнейшем отказавшись от него. Oracle по-прежнему поддерживает его для обратной совместимости.

Нет никаких аргументов в пользу данного альтернативного синтаксиса. Используйте вместо него стандартный синтаксис ANSI.

Внешнее объединение с разделением (PARTITIONED OUTER JOIN)

Эта операция поддерживается только Oracle. На самом деле, просто удивительно, что другие СУБД до сих пор не реализовали ее. Помните операцию CROSS JOIN, которую мы использовали, чтобы получить все комбинации день/отдел? Так вот, иногда мы хотим получить следующий результат: все комбинации, а также, если выполняется условие, поместить в данную строку соответствующее значение.

Эту операцию трудно объяснить словами. Намного легче сделать это на примере. Ниже представлен запрос, использующий синтаксис Oracle:

Предложение PARTITION BY используется в различных контекстах для решения различных задач (например, для реализации оконных функций (window function)). В нашем случае PARTITION BY означает, что мы «разделяем» наши данные по значениям столбца departments.department, создавая таким образом «подгруппу» для каждого отдела. Затем каждая «подгруппа» получает копию всех дней, независимо от того, выполняется ли условие предиката (в отличие от обычной операции LEFT OUTER JOIN, в результате которой, часть дней имели пустые значения отделов). Представленный выше запрос даст следующий результат:

Как видите, мы имеем 5 «подгрупп», соответствующих 5 отделам. Каждая «подгруппа» объединяет данный отдел с каждым днем, но в отличие от CROSS JOIN, мы получаем результат LEFT OUTER JOIN .. ON .. в том случае, когда выполняется условие предиката. Это действительно полезная функциональность для создания отчетов в Oracle!

Содержание

Глава 3. Запросы с использованием нескольких таблиц

3.1. О средствах одновременной работы с множеством таблиц

Затрагивая вопросы проектирования баз данных [2], мы выяснили, что базы данных — это множество взаимосвязанных сущностей или отношений (таблиц) в терминологии реляционных СУБД. При проектировании стремятся создавать таблицы, в каждой из которых содержалась бы информация об одном и только об одном типе сущностей. Это облегчает модификацию базы данных и поддержание ее целостности. Но такой подход тяжело усваивается начинающими проектантами, которые пытаются привязать проект к будущим приложениям и так организовать таблицы, чтобы в каждой из них хранилось все необходимое для реализации возможных запросов. Типичен вопрос: как же получить сведения о том, где купить продукты для приготовления того или иного блюда и определить его калорийность и стоимость, если нужные данные «рассыпаны» по семи различным таблицам? Не лучше ли иметь одну большую таблицу, содержащую все сведения базы данных ПАНСИОН ?

Даже при отсутствии средств одновременного доступа ко многим таблицам нежелателен проект, в котором информация о многих типах сущностей перемешана в одной таблице. SQL же обладает великолепным механизмом для одновременной или последовательной обработки данных из нескольких взаимосвязанных таблиц. В нем реализованы возможности «соединять» или «объединять» несколько таблиц и так называемые «вложенные подзапросы». Например, чтобы получить перечень поставщиков продуктов, необходимых для приготовления Сырников, возможен запрос

Продукт Цена Название Статус
Яйца 1.8 ПОРТОС кооператив
Яйца 2. КОРЮШКА кооператив
Сметана 3.6 ПОРТОС кооператив
Сметана 2.2 ОГУРЕЧИК ферма
Творог 1. ОГУРЕЧИК ферма
Мука 0.5 УРОЖАЙ коопторг
Сахар 0.94 ТУЛЬСКИЙ универсам
Сахар 1. УРОЖАЙ коопторг

Он получен следующим образом: СУБД последовательно формирует строки декартова произведения таблиц, перечисленных во фразе FROM, проверяет, удовлетворяют ли данные сформированной строки условиям фразы WHERE, и если удовлетворяют, то включает в ответ на запрос те ее поля, которые перечислены во фразе SELECT.

Следует подчеркнуть, что в SELECT и WHERE (во избежание двусмысленности) ссылки на все (*) или отдельные столбцы могут (а иногда и должны) уточняться именем соответствующей таблицы, например, Поставки.ПС, Поставщики.ПС, Меню.*, Состав.БЛ, Блюда.* и т.п.

Очевидно, что с помощью соединения несложно сформировать запрос на обработку данных из нескольких таблиц. Кроме того, в такой запрос можно включить любые части предложения SELECT, рассмотренные в главе 2 (выражения с использованием функций, группирование с отбором указанных групп и упорядочением полученного результата). Следовательно, соединения позволяют обрабатывать множество взаимосвязанных таблиц как единую таблицу, в которой перемешана информация о многих типах сущностей. Поэтому начинающий проектант базы данных может спокойно создавать маленькие нормализованные таблицы, так как он всегда может получить из них любую «большую» таблицу.

Кроме механизма соединений в SQL есть механизм вложенных подзапросов, позволяющий объединить несколько простых запросов в едином предложении SELECT. Иными словами, вложенный подзапрос — это уже знакомый нам подзапрос (с небольшими огра-ничениями), который вложен в WHERE фразу другого вложенного подзапроса или WHERE фразу основного запроса.

Для иллюстрации вложенного подзапроса вернемся к предыдущему примеру и попробуем получить перечень тех поставщиков продуктов для Сырников, которые поставляют нужные продукты за минимальную цену.

Результат запроса имеет вид

Продукт Цена Название Статус
Яйца 1.8 ПОРТОС кооператив
Сахар 0.94 ТУЛЬСКИЙ универсам
Мука 0.5 УРОЖАЙ коопторг
Сметана 2.2 ОГУРЕЧИК ферма
Творог 1. ОГУРЕЧИК ферма

Здесь с помощью подзапроса, размещенного в трех последних строках запроса, описывается процесс определения минимальной цены каждого продукта для Сырников и поиск поставщика, предлагающего этот продукт за такую цену. Механизм реализации подзапросов будет подробно описан в п.3.3. Там же будет рассмотрено, как и для чего вводится псевдоним X для имени таблицы Поставки.

3.2. Запросы, использующие соединения

3.2.1. Декартово произведение таблиц

В литературе [2] показано, что соединения — это подмножества декартова произведения. Так как декартово произведение n таблиц — это таблица, содержащая все возможные строки r, такие, что r является сцеплением какой-либо строки из первой таблицы, строки из второй таблицы, . и строки из n-й таблицы (а мы уже научились выделять с помощью SELECT любое подмножество реляционной таблицы), то осталось лишь выяснить, можно ли с помощью SELECT получить декартово произведение. Для получения декартова произведения нескольких таблиц надо указать во фразе FROM перечень перемножаемых таблиц, а во фразе SELECT – все их столбцы.

Так, для получения декартова произведения Вид_блюд и Трапезы надо выдать запрос

Получим таблицу, содержащую 5 х 3 = 15 строк:

В Вид Т Трапеза
З Закуска 1 Завтрак
З Закуска 2 Обед
З Закуска 3 Ужин
С Суп 1 Завтрак
С Суп 2 Обед
С Суп 3 Ужин
Г Горячее 1 Завтрак
Г Горячее 2 Обед
Г Горячее 3 Ужин
Д Десерт 1 Завтрак
Д Десерт 2 Обед
Д Десерт 3 Ужин
Н Напиток 1 Завтрак
Н Напиток 2 Обед
Н Напиток 3 Ужин

В другом примере, где перемножаются таблицы Меню, Трапезы, Вид_блюд, Блюда:

образуется таблица (рис 3.1), содержащая 21 х 3 х 5 х 33 = 10395 строк.

Из первых 39 строк этой таблицы лишь две актуальных (отмечены «*»): в них совпадают номера блюд таблиц Меню и Блюда. В остальных – полная чепуха: к закускам отнесены супы и напитки, на завтрак предлагается незапланированный суп и т.д.

3.2.2. Эквисоединение таблиц

Если из декартова произведения убрать ненужные строки и столбцы, то можно получить актуальные таблицы, соответствующие любому из соединений.

Меню Трапезы Вид_блюд Блюда
Т В БЛ Т Трапеза В Вид БЛ Блюдо В Основа Выход Труд
1 З 3 1 Завтрак З Закуска 1 Салат летний З Овощи 200. 3
1 З 3 1 Завтрак З Закуска 2 Салат мясной З Мясо 200. 4
1 З 3 1 Завтрак З Закуска 3 Салат витаминный З Овощи 200. 4 *
. . .
1 З 3 1 Завтрак З Закуска 12 Суп молочный С Молоко 500. 3
1 З 3 1 Завтрак З Закуска 13 Бастурма Г Мясо 300. 5
. . .
1 З 3 1 Завтрак З Закуска 32 Кофе черный Н Кофе 100. 1
1 З 3 1 Завтрак З Закуска 33 Кофе на молоке Н Кофе 200. 2
1 З 6 1 Завтрак З Закуска 1 Салат летний З Овощи 200. 3
1 З 6 1 Завтрак З Закуска 2 Салат мясной З Мясо 200. 4
1 З 6 1 Завтрак З Закуска 3 Салат витаминный З Овощи 200. 4
1 З 6 1 Завтрак З Закуска 4 Салат рыбный З Рыба 200. 4
1 З 6 1 Завтрак З Закуска 5 Паштет из рыбы З Рыба 120. 5
1 З 6 1 Завтрак З Закуска 6 Мясо с гарниром З Мясо 250. 3 *
. . .

Рис. 3.1. Иллюстрация декартова произведения

Очевидно, что отбор актуальных строк обеспечивается вводом в запрос WHERE фразы, в которой устанавливается соответствие между:

  • кодами трапез (Т) в таблицах Меню и Трапезы (Меню.Т = Трапезы.Т),
  • кодами видов блюд (В) в таблицах Меню и Вид_блюд (Меню.В = Вид_блюд.В),
  • номерами блюд (БЛ) в таблицах Меню и Блюда (Меню.БЛ = Блюда.БЛ).

Такой скорректированный запрос

позволит получить эквисоединение таблиц Меню, Трапезы, Вид_блюд и Блюда:

Т В БЛ Т Трапеза В Вид БЛ Блюдо В Основа Выход Труд
1 З 3 1 Завтрак З Закуска 3 Салат витаминный З Овощи 200. 4
1 З 6 1 Завтрак З Закуска 6 Мясо с гарниром З Мясо 250. 3
1 Г 19 1 Завтрак Г Горячее 19 Омлет с луком Г Яйца 200. 5
. . .
3 Г 16 3 Ужин Г Горячее 16 Драчена Г Яйца 180. 4
3 Н 30 3 Ужин Н Напиток 30 Компот Н Фрукты 200. 2
3 Н 31 3 Ужин Н Напиток 31 Молочный напиток Н Молоко 200. 2

3.2.3. Естественное соединение таблиц

Легко заметить, что в эквисоединение таблиц вошли дубликаты столбцов, по которым проводилось соединение (Т, В и БЛ). Для исключения этих дубликатов можно создать естественное соединение тех же таблиц:

Реализация естественного соединения таблиц имеет вид

Т В БЛ Трапеза Вид Блюдо Основа Выход Труд
1 З 3 Завтрак Закуска Салат витаминный Овощи 200. 4
1 З 6 Завтрак Закуска Мясо с гарниром Мясо 250. 3
1 Г 19 Завтрак Горячее Омлет с луком Яйца 200. 5
.
3 Г 16 Ужин Горячее Драчена Яйца 180. 4
3 Н 30 Ужин Напиток Компот Фрукты 200. 2
3 Н 31 Ужин Напиток Молочный напиток Молоко 200. 2

3.2.4. Композиция таблиц

Для исключения всех столбцов, по которым проводится соединение таблиц, надо создать композицию

Трапеза Блюдо Вид Основа Выход Труд
Завтрак Салат витаминный Закуска Овощи 200. 4
Завтрак Мясо с гарниром Закуска Мясо 250. 3
Завтрак Омлет с луком Горячее Яйца 200. 5
. . .
Ужин Драчена Горячее Яйца 180. 4
Ужин Компот Напиток Фрукты 200. 2
Ужин Молочный напиток Напиток Молоко 200. 2

3.2.5. Тета-соединение таблиц

В базе данных ПАНСИОН трудно подобрать несложный пример, иллюстрирующий тета-соединение таблиц. Поэтому сконструируем такой надуманный запрос:

позволяющий выбрать из полученного в п.3.2.1 декартова произведения таблиц Вид_блюд и Трапезы лишь те строки, в которых значение трапезы «меньше» (по алфавиту) значения вида блюда:

В Вид Т Трапеза
З Закуска 1 Завтрак
С Суп 1 Завтрак
С Суп 2 Обед
Н Напиток 1 Завтрак

3.2.6. Соединение таблиц с дополнительным условием

При формировании соединения создается рабочая таблица, к которой применимы все операции, рассмотренные в главе 2: отбор нужных строк соединения (WHERE фраза), упорядочение получаемого результата (ORDER BY фраза) и агрегатирование данных (SQL-функции и GROUP BY фраза).

Например, для получения перечня блюд, предлагаемых в меню на завтрак, можно сформировать запрос на основе композиции (п. 3.2.4):

Вид Блюдо Основа Выход ‘Номер -‘ БЛ
Закуска Салат витаминный Овощи 200. Номер — 3
Закуска Мясо с гарниром Мясо 250. Номер — 6
Горячее Омлет с луком Яйца 200. Номер — 19
Горячее Пудинг рисовый Крупа 160. Номер — 21
Напиток Молочный напиток Молоко 200. Номер — 31
Напиток Кофе черный Кофе 100. Номер — 32

В п.3.6 можно познакомиться с достаточно полным примером соединения таблиц с различными дополнительными фразами.

3.2.7. Соединение таблицы со своей копией

В ряде приложений возникает необходимость одновременной обработки данных какой-либо таблицы и одной или нескольких ее копий, создаваемых на время выполнения запроса.

Например, при создании списков студентов (таблица Студенты) возможен повторный ввод данных о каком-либо студенте с присвоением ему второго номера зачетной книжки. Для выявления таких ошибок можно соединить таблицу Студенты с ее временной копией, установив в WHERE фразе равенство значений всех одноименных столбцов этих таблиц кроме столбцов с номером зачетной книжки (для последних надо установить условие неравенства значений).

Временную копию таблицы можно сформировать, указав имя псевдонима за именем таблицы во фразе FROM. Так, с помощью фразы

будут сформированы три копии таблицы Блюда с именами X, Y и Z.

В качестве примера соединения таблицы с ней самой сформируем запрос на вывод таких пар блюд таблицы Блюда, в которых совпадает основа, а название первого блюда пары меньше (по алфавиту), чем номер второго блюда пары. Для этого можно создать запрос с одной копией таблицы Блюда (Копия):

или двумя ее копиями (Первая и Вторая):

Получим результат вида

Первая.Блюдо Вторая.Блюдо Основа
Морковь с рисом Помидоры с луком Овощи
Морковь с рисом Салат летний Овощи
Морковь с рисом Салат витаминный Овощи
Помидоры с луком Салат витаминный Овощи
Помидоры с луком Салат летний Овощи
Салат витаминный Салат летний Овощи
Бастурма Бефстроганов Мясо
Бастурма Мясо с гарниром Мясо
Бефстроганов Мясо с гарниром Мясо

3.3. Вложенные подзапросы

3.3.1. Виды вложенных подзапросов

Вложенный подзапрос — это подзапрос, заключенный в круглые скобки и вложенный в WHERE (HAVING) фразу предложения SELECT или других предложений, использующих WHERE фразу. Вложенный подзапрос может содержать в своей WHERE (HAVING) фразе другой вложенный подзапрос и т.д. Нетрудно догадаться, что вложенный подзапрос создан для того, чтобы при отборе строк таблицы, сформированной основным запросом, можно было использовать данные из других таблиц (например, при отборе блюд для меню использовать данные о наличии продуктов в кладовой пансионата).

Существуют простые и коррелированные вложенные подзапросы. Они включаются в WHERE (HAVING) фразу с помощью условий IN, EXISTS или одного из условий сравнения ( = | <> | | >= ). Простые вложенные подзапросы обрабатываютя системой «снизу вверх». Первым обрабатывается вложенный подзапрос самого нижнего уровня. Множество значений, полученное в результате его выполнения, используется при реализации подзапроса более высокого уровня и т.д.

Запросы с коррелированными вложенными подзапросами обрабатываются системой в обратном порядке. Сначала выбирается первая строка рабочей таблицы, сформированной основным запросом, и из нее выбираются значения тех столбцов, которые используются во вложенном подзапросе (вложенных подзапросах). Если эти значения удовлетворяют условиям вложенного подзапроса, то выбранная строка включается в результат. Затем выбирается вторая строка и т.д., пока в результат не будут включены все строки, удовлетворяющие вложенному подзапросу (последовательности вложенных подзапросов).

Следует отметить, что SQL обладает большой избыточностью в том смысле, что он часто предоставляет несколько различных способов формулировки одного и того же запроса. Поэтому во многих примерах данной главы будут использованы уже знакомые нам по предыдущей главе концептуальные формулировки запросов. И несмотря на то, что часть из них успешнее реализуется с помощью соединений, здесь все же будут приведены их варианты с использованием вложенных подзапросов. Это связано с необходимостью детального знакомства с созданием и принципом выполнения вложенных подзапросов, так как существует немало задач (особенно на удаление и изменение данных), которые не могут быть реализованы другим способом. Кроме того, разные формулировки одного и того же запроса требуют для своего выполнения различных ресурсов памяти и могут значительно отличаться по времени реализации в разных СУБД.

3.3.2. Простые вложенные подзапросы

Простые вложенные подзапросы используются для представления множества значений, исследование которых должно осуществляться в каком-либо предикате IN, что иллюстрируется в следующем примере: выдать название и статус поставщиков продукта с номером 11, т.е. помидоров.

Результат:
Название Статус
СЫТНЫЙ рынок
УРОЖАЙ коопторг
ЛЕТО агрофирма
КОРЮШКА кооператив

Как уже отмечалось в п.3.3.1, при обработке полного запроса система выполняет прежде всего вложенный подзапрос. Этот подзапрос выдает множество номеров поставщиков, которые поставляют продукт с кодом ПР = 11, а именно множество (1, 5, 6, 8). Поэтому первоначальный запрос эквивалентен такому простому запросу:

Подзапрос с несколькими уровнями вложенности можно проиллюстрировать на том же примере. Пусть требуется узнать не поставщиков продукта 11, как это делалось в предыдущих запросах, а поставщиков помидоров, являющихся продуктом с номером 11. Для этого можно дать запрос

В данном случае результатом самого внутреннего подзапроса является только одно значение (11). Как уже было показано выше, подзапрос следующего уровня в свою очередь дает в результате множество (1, 5, 6, 8). Последний, самый внешний SELECT, вычисляет приведенный выше окончательный результат. Вообще допускается любая глубина вложенности подзапросов.

Тот же результат можно получить с помощью соединения

При выполнении этого компактного запроса система должна одновременно обрабатывать данные из трех таблиц, тогда как в предыдущем примере эти таблицы обрабатываются поочередно. Естественно, что для их реализации тебуются различные ресурсы памяти и времени, однако этого невозможно ощутить при работе с ограниченным объемом данных в иллюстративной базе ПАНСИОН.

3.3.3. Использование одной и той же таблицы во внешнем и вложенном подзапросе

Выдать номера поставщиков, которые поставляют хотя бы один продукт, поставляемый поставщиком 6.

Результат:
ПС
1
3
5
6
8

Отметим, что ссылка на Поставки во вложенном подзапросе означает не то же самое, что ссылка на Поставки во внешнем запросе. В действительности, два имени Поставки обозначают различные значения. Чтобы этот факт стал явным, полезно использовать псевдонимы, например, X и Y:

Здесь X и Y – произвольные псевдонимы таблицы Поставки, определяемые во фразе FROM и используемые как явные уточнители во фразах SELECT и WHERE. Напомним, что псевдонимы определены лишь в пределах одного запроса.

3.3.4. Вложенный подзапрос с оператором сравнения, отличным от IN

Выдать номера поставщиков, находящихся в том же городе, что и поставщик с номером 6.

Результат:
ПС
1
4
6

В подобных запросах можно использовать и другие операторы сравнения (<>, = или >), однако, если вложенный подзапрос возвращает более одного значения и не используется оператор IN, будет возникать ошибка.

3.3.5. Коррелированные вложенные подзапросы

Выдать название и статус поставщиков продукта с номером 11.

Такой подзапрос отличается от рассмотренного в п.3.3.2 тем, что вложенный подзапрос не может быть обработан прежде, чем будет обрабатываться внешний подзапрос. Это связано с тем, что вложенный подзапрос зависит от значения Поставщики.ПС а оно изменяется по мере того, как система проверяет различные строки таблицы Поставщики. Следовательно, с концептуальной точки зрения обработка осуществляется следующим образом:

  1. Система проверяет первую строку таблицы Поставщики. Предположим, что это строка поставщика с номером 1. Тогда значение Поставщики.ПС будет в данный момент имеет значение, равное 1, и система обрабатывает внутренний запрос получая в результате множество (9, 11, 12, 15). Теперь система может завершить обработку для поставщика с номером 1. Выборка значений Название и Статус для ПС=1 (СЫТНЫЙ и рынок) будет проведена тогда и только тогда, когда ПР=11 будет принадлежать этому множеству, что, очевидно, справедливо.
  2. Далее система будет повторять обработку такого рода для следующего поставщика и т.д. до тех пор, пока не будут рассмотрены все строки таблицы Поставщики.

Подобные подзапросы называются коррелированными, так как их результат зависит от значений, определенных во внешнем подзапросе. Обработка коррелированного подзапроса, следовательно, должна повторяться для каждого значения извлекаемого из внешнего подзапроса, а не выполняться раз и навсегда.

Рассмотрим пример использования одной и той же таблицы во внешнем подзапросе и коррелированном вложенном подзапросе.

Выдать номера всех продуктов, поставляемых только одним по-ставщиком.

Результат:
X.ПР
17

Действие этого запроса можно пояснить следующим образом: «Поочередно для каждой строки таблицы Поставки, скажем X, выделить значение номера продукта (ПР), если и только если это значение не входит в некоторую строку, скажем, Y, той же таблицы, а значение столбца номер поставщика (ПС) в строке Y не равно его значению в строке X».

Отметим, что в этой формулировке должен быть использован по крайней мере один псевдоним — либо X, либо Y.

3.3.6. Запросы, использующие EXISTS

Квантор EXISTS (существует) — понятие, заимствованное из формальной логики. В языке SQL предикат с квантором существования представляется выражением EXISTS (SELECT * FROM . ).

Такое выражение считается истинным только тогда, когда результат вычисления «SELECT * FROM . » является непустым множеством, т.е. когда существует какая-либо запись в таблице, указанной во фразе FROM подзапроса, которая удовлетворяет условию WHERE подзапроса. (Практически этот подзапрос всегда будет коррелированным множеством.)

Рассмотрим примеры. Выдать названия поставщиков, поставляющих продукт с номером 11.

Результат:
Название
СЫТНЫЙ
УРОЖАЙ
КОРЮШКА
ЛЕТО

Система последовательно выбирает строки таблицы Поставщики, выделяет из них значения столбцов Название и ПС, а затем проверяет, является ли истинным условие существования, т.е. су-ществует ли в таблице Поставки хотя бы одна строка со значением ПР=11 и значением ПС, равным значению ПС, выбранному из таблицы Поставщики. Если условие выполняется, то полученное значение столбца Название включается в результат.

Предположим, что первые значения полей Название и ПС равны, соответственно, ‘СЫТНЫЙ’ и 1. Так как в таблице Поставки есть строка с ПР=11 и ПС=1, то значение ‘СЫТНЫЙ’ должно быть включено в результат.

Хотя этот первый пример только показывает иной способ формулировки запроса для задачи, решаемой и другими путями (с помощью оператора IN или соединения), EXISTS представляет собой одну из наиболее важных возможностей SQL. Фактически любой запрос, который выражается через IN, может быть альтернативным образом сформулирован также с помощью EXISTS. Однако обратное высказывание несправедливо.

Выдать название и статус поставщиков, не поставляющих продукт с номером 11.

Результат:
Название Статус
ПОРТОС кооператив
ШУШАРЫ совхоз
ТУЛЬСКИЙ универсам
ОГУРЕЧИК ферма

3.3.7. Функции в подзапросе

Теперь, после знакомства с различными формулировками вложенных подзапросов и псевдонимами легче понять текст и алгоритм реализации запроса (п. 3.1) на получение тех поставщиков продуктов для Сырников, которые поставляют эти продукты за минимальную цену:

Естественно, что это коррелированный подзапрос: здесь сначала определяется минимальная цена продукта, входящего в состав Сырников, и только затем выясняется его поставщик.

На этом примере мы закончим знакомство с вложенными подзапросами, предложив попробовать свои силы в составлении ряда запросов, с помощью механизма таких подзапросов:

  1. Выдать названия всех мясных блюд.
  2. Выдать количество всех блюд, в состав которых входят помидоры.
  3. Выдать блюда, продукты для которых поставляются агрофирмой ЛЕТО.

3.4. Объединение (UNION)

В литературе [2] рассматривалась реляционная операция «Объединение», позволяющая получить отношение, состоящее из всех строк, входящих в одно или оба объединяемых отношения. Но при этом исходные отношения или их объединяемые проекции должны быть совместимыми по объединению. Для SQL это означает, что две таблицы можно объединять тогда и только тогда, когда:

  1. они имеют одинаковое число столбцов, например, m;
  2. для всех i (i = 1, 2, . m) i-й столбец первой таблицы и i-й столбец второй таблицы имеют в точности одинаковый тип данных.

Например, выдать названия продуктов, в которых нет жиров, либо входящих в состав блюда с кодом БЛ = 1:

Результат: Продукт
Майонез
Лук
Помидоры
Зелень
Яблоки
Сахар

Из этого простого примера видно, что избыточные дубликаты всегда исключаются из результата UNION. Поэтому, хотя в рассматриваемом примере Помидоры, Зелень и Яблоки выбираются обеими из двух составляющих предложения SELECT, в окончательном результате они появляются только один раз.

Предложением с UNION можно объединить любое число таблиц (проекций таблиц). Так, к предыдущему запросу можно добавить (перед точкой с запятой) конструкцию

позволяющую добавить к списку продуктов Масло, Рис, Мука и Кофе. Однако тот же результат можно получить простым изменением фразы WHERE первой части исходного запроса

3.5. Реализация операций реляционной алгебры предложением SELECT

С помощью предложения SELECT можно реализовать любую операцию реляционной алгебры [2].

Селекция (горизонтальное подмножество) таблицы создается из тех ее строк, которые удовлетворяют заданным условиям. Пример:

Проекция (вертикальное подмножество) таблицы создается из указанных ее столбцов (в заданном порядке) с последующим исключением избыточных дубликатов строк. Пример:

Объединение двух таблиц содержит те строки, которые есть либо в первой, либо во второй, либо в обеих таблицах. Пример:

Пересечение двух таблиц содержит только те строки, которые есть и в первой, и во второй. Пример:

Разность двух таблиц содержит только те строки, которые есть в первой, но отсутствуют во второй. Пример:

Декартово произведение таблиц и различные виды соединений были подробно рассмотрены в п. 3.2.1-3.2.6.

Здесь опущено лишь достаточно нудное описание редко встречаемой операция деления, которая также может быть реализована предложением SELECT с коррелированными вложенными подзапросами.

3.6. Резюме

Краткое знакомство с возможностями предложения SELECT показало, что с его помощью можно реализовать все реляционные операции. Кроме того, в предложении SELECT выполняются разнообразные вычисления, агрегирование данных, их упорядочение и ряд других операций, позволяющих описать в одном предложении ту работу, для выполнения которой потребовалось бы написать несколько страниц программы на алгоритмических языках Си, Паскаль или на внутренних языках ряда распространенных СУБД.

Например, пусть требуется получить калорийность и стоимость тех блюд, для которых:

  • есть все составляющие их продукты;
  • калорийность не превышает 400 ккал;
  • стоимость не превышает 1.5 рубля, а результат надо упорядочить по возрастанию калорийности блюд в рамках их видов.

Для этого можно дать запрос, показанный на рис. 3.2, позволяющий получить искомый результат в виде таблицы

Вид Блюдо
Горячее Помидоры с луком калорий — 244.6 0.44 руб
Горячее Бефстроганов калорий — 321.3 0.53 руб
Горячее Драчена калорий — 333.9 0.33 руб
Горячее Каша рисовая калорий — 339.2 0.27 руб
Горячее Омлет с луком калорий — 354.9 0.36 руб
Десерт Яблоки печеные калорий — 170.2 0.30 руб
Десерт Крем творожный калорий — 394.3 0.27 руб
Закуска Салат летний калорий — 155.5 0.32 руб
Закуска Салат витаминный калорий — 217.4 0.37 руб
Закуска Творог калорий — 330.0 0.22 руб
Закуска Мясо с гарниром калорий — 378.7 0.62 руб
Напиток Кофе черный калорий — 7.1 0.05 руб
Напиток Компот калорий — 74.4 0.14 руб
Напиток Кофе на молоке калорий — 154.8 0.11 руб
Напиток Молочный напиток калорий — 264.9 0.34 руб
Суп Суп молочный калорий — 396.6 0.22 руб

Рис. 3.2. Пример сложного запроса

Такой результат, нестрого говоря, строился следующим образом.

  1. FROM. Эта фраза инициирует создание в рабочей памяти таблицы, являющейся декартовым произведением таблиц Блюда, Вид_блюд, Состав, Продукты и Наличие.
  2. WHERE. Эта фраза нужна для преобразования полученного декартова произведения в естественное соединение и удаления из последнего строк с кодами блюд, не обеспеченных продуктами. Естественное соединение образуется путем вычеркивания строк, где не совпадают: код блюда из таблицы Блюда с кодом блюда из таблицы Состав, код продукта из таблицы Состав с кодом продукта из таблицы Продукты и т.д. Обеспеченность блюда всеми продуктами проверяется с помощью последовательности подзапросов. Внутренний подзапрос выдает перечень кодов продуктов, которых нет в кладовой пансионата. Следующий подзапрос выдает коды тех блюд, в состав которых должны входить «отсутствующие» продукты. И, наконец, из естественного соединения вычеркиваются строки с кодами полученных блюд (точнее оставляются строки «Где код блюда не принадлежит перечню кодов блюд, полученному в подзапросе».
  3. SELECT. Из полученного соединения удаляются столбцы, не используемые в выражениях SELECT или других фразах. Если в списке SELECT есть выражения (константы), то для хранения их значений формируются дополнительные столбцы и инициируются операции по их заполнению. В рассматриваемом примере будут сохранены столбцы Вид, Блюдо, Белки, Углев, Жиры, Вес, Стоимость, К_во и созданы дополнительные столбцы для формирования и хранения значений стоимости и калорийности составляющих каждого блюда, а также для хранения текстовых констант ‘калорий -‘ и ‘руб’. Обратите внимание на прием, использованный при суммировании стоимостей продуктов, входящих в состав блюда, и стоимости его приготовления (Труд): можно ли заменить MIN на MAX или AVG?
  4. GROUP BY. Отредактированное естественное соединение группируется по видам блюд и их названиям. Создаются группы горячих блюд, десертов и т.д., а внутри каждой группы создаются подгруппы строк со сведениями о продуктах, относящихся к конкретному блюду группы.
  5. SELECT. Каждая подгруппа строк, полученная на предыдущем шаге, преобразуется в единственную строку для результата. В нее заносится вид блюда (общий для всех подгрупп группы), название блюда (общее для всех строк подгруппы), две текстовых константы (‘калорий -‘ и ‘руб’) и две суммы. Последние формируются путем суммирования тех значений дополнительных столбцов, которые принадлежат подгруппе.
  6. HAVING. Сформированные строки, не удовлетворяющие условиям фразы HAVING исключаются из результата предыдущего шага.
  7. ORDER BY. Результат шага 6 упорядочивается в соответствии со списком фразы ORDER BY для получения окончательного результата. Сначала строки группируются по видам блюд (в алфавитном порядке), а затем – по значению элемента данных, указанного на четвертом месте фразы SELECT, т.е. по калорийности.

Конечно, рассмотренный запрос весьма сложен, но попробуйте написать на любом знакомом вам языке программу, реализующую те же действия, и оцените сложность ее написания и отладки.

Поддерживаемые Oracle типы соединений в SQL: JOIN и другие

В Oracle поддерживается несколько типов соединений, отличающихся способом, которым производится объединение строк из двух или более таблиц или представлений. В этой заметке моего блога будут описаны типы соединений, применяемые в Oracle наиболее часто.

Эквисоединение

При эквисоединении (equi-join) две или более таблиц соединяются на основании условия равенства между столбцами. Другими словами, один и тот же столбец имеет одинаковое значение во всех соединяемых таблицах. Ниже приведен пример применения эквисоединения:

Для показанного выше оператора соединения также можно использовать и следующий новый синтаксис:

При желании соединить несколько столбцов, можно перечислить их имена в виде разделенного запятыми списка, например: USING ( dept_id , emp_name ).

Естественное соединение

Естественным соединением (natural join) называется эквисоединение, при котором столбцы, которые должны сопоставляться для выполнения соединения, специально не указываются. Oracle автоматически определяет подлежащие соединению столбцы на основании совпадающих столбцов в двух таблицах. Ниже приведен пример применения естественного соединения:

В этом примере условием для выполнения соединения служит наличие идентичных значений в столбце last_name в таблицах emp и dept .

Рефлексивное соединение

Под рефлексивным соединением (self join) подразумевается соединение таблицы с самой собой за счет использования псевдонимов. В следующем примере осуществляется соединение таблицы employees с самой собой при помощи псевдонима с удалением всех дублированных строк.

Внутреннее соединение

Внутреннее соединение (inner join), также называемое простым соединением (simple join), предусматривает возврат всех строк, которые удовлетворяют указанному условию соединения. Раньше в синтаксисе внутреннего соединения для указания того, каким образом должны соединяться таблицы, нужно было использовать конструкцию WHERE , например, так:

Теперь Oracle позволяет задавать критерии соединения в синтаксисе внутреннего (или простого) соединения за счет применения новой конструкции ON или USING , например:

Внешнее соединение

Внешнее соединение (outer join) применяется для возврата всех строк, которые удовлетворяют указанному условию соединения, плюс некоторых или всех строк из таблицы, в которой нет подходящих строк, удовлетворяющих указанному условию соединения. Существуют три вида внешнего соединения: левое внешнее соединение (left outer join), правое внешнее соединение (right outer join) и полное внешнее соединение (full outer join). В операторе полного внешнего соединения слово OUTER обычно опускается.

Oracle позволяет использовать операцию внешнего соединения, подразумевающую применение знака плюс (+) для обозначения недостающих значений в одной таблице, но рекомендует лучше использовать вместо нее более новый синтаксис соединения ISO/ANSI. Ниже приведен пример типичного запроса с оператором полного внешнего соединения: