Sqlзапросы, использующие соединения


Содержание

Связанные подзапросы

Подзапросы мы кратко рассмотрели в статье Подзапросы и временные таблицы. Здесь мы более подробно рассмотрим связанный тип подзапросов. Подзапрос называется связанным (correlated), если любые значения вложенного запроса зависят от внешнего запроса. В примере ниже показано использование связанного подзапроса:

В этом примере вложенный запрос должен логически выполниться несколько раз, поскольку он содержит столбец Id, который принадлежит таблице Employee во внешнем запросе, и значение столбца Id изменяется каждый раз, когда проверяется другая строка таблицы Employee во внешнем запросе.

Давайте проследим, как система может выполнять запрос в этом примере. Сначала система выбирает первую строку таблицы Employee (для внешнего запроса) и сравнивает табельный номер сотрудника в этом столбце (25348) со значениями столбца Works_on.EmpId вложенного запроса. Поскольку для этого сотрудника имеется только одно значение ProjectNumber равное p2, вложенный запрос возвращает значение p2. Это единственное значение результирующего набора вложенного запроса не равно значению p3 внешнего запроса, условие внешнего запроса (WHERE ‘p3’ IN. ) не удовлетворяется и, следовательно, внешний запрос не возвращает никаких строк для этого сотрудника.

Далее система берет следующую строку таблицы Employee и снова сравнивает номера сотрудников в обеих таблицах. Для этой строки в таблице Works_on есть две строки, для которых значение ProjectNumber равно p1 и p3 соответственно. Следовательно, вложенный запрос возвращает результат p1 и p3. Значение одного из элементов этого результирующего набора равно константе p3, поэтому условие удовлетворяется, и отображается соответствующее значение второй строки столбца LastName (‘Фролов’). Такой же обработке подвергаются все остальные строки таблицы Employee, и в конечном результате возвращается набор из трех строк.

В следующем разделе приводятся дополнительные примеры по связанным подзапросам.

Подзапросы и функция EXISTS

Функция EXISTS принимает вложенный запрос в качестве аргумента и возвращает значение false, если вложенный запрос не возвращает строк и значение true в противном случае. Рассмотрим работу этой функции на нескольких примерах, начиная со следующего примера:

В этом примере происходит выборка фамилий всех сотрудников, работающих над проектом p1. Вложенный запрос функции EXISTS почти всегда зависит от переменной с внешнего запроса. Поэтому функция EXISTS обычно определяет связанный подзапрос.

Давайте проследим, как Database Engine может обрабатывать запрос в этом примере. Сначала внешний запрос рассматривает первую строку таблицы Employee (сотрудник Фролов). Далее функция EXISTS определяет, есть ли в таблице Works_on строки, чьи номера сотрудников совпадают с номером сотрудника в текущей строке во внешнем запросе и чей ProjectNumber равен p1. Поскольку сотрудник Фролов не работает над проектом p1, вложенный запрос возвращает пустой набор, вследствие чего функция EXISTS возвращает значение false. Таким образом, сотрудник Фролов не включается в конечный результирующий набор. Этому процессу подвергаются все строки таблицы Employee, после чего выводится конечный результирующий набор.

В примере ниже показано использование функции NOT EXISTS:

В этом примере происходит выборка фамилий сотрудников, чей отдел не расположен в Санкт-Петербурге.

Список выбора инструкции SELECT во внешнем запросе с функцией EXISTS не обязательно должен быть в форме SELECT *, как в предыдущем примере. Можно использовать альтернативную форму SELECT colum_list, где column_list представляет список из одного или нескольких столбцов таблицы. Обе формы равнозначны, потому что функция EXISTS только проверяет на наличие (или отсутствие) строк в результирующем наборе. По этой причине в данном случае правильнее использовать форму SELECT *.

Что использовать, соединения или подзапросы?

Почти все инструкции SELECT для соединения таблицы посредством оператора соединения JOIN можно заменить инструкциями подзапроса и наоборот. Конструкция инструкции SELECT с использованием оператора соединения часто более удобно читаемая и легче понимаемая, а также может помочь компоненту Database Engine найти более эффективную стратегию для выборки требуемых данных. Но некоторые задачи легче поддаются решению посредством подзапросов, а другие при помощи соединений.

Преимущества подзапросов

Подзапросы будет более выгодно использовать в таких случаях, когда требуется вычислить агрегатное значение «на лету» и использовать его в другом запросе для сравнения. Это показано в примере ниже:

В этом примере происходит выборка табельных номеров сотрудников и дат начала их работы над проектом (EnterDate) для всех сотрудников, у которых дата начала работы равна самой ранней дате. Решить эту задачу с помощью соединения будет нелегко, поскольку для этого нужно поместить агрегатную функцию в предложении WHERE, а это не разрешается. (Эту задачу можно решить, используя два отдельных запроса по отношении к таблице Works_on.)

Преимущества соединений

Использовать соединения вместо подзапросов выгоднее в тех случаях, когда список выбора инструкции SELECT в запросе содержит столбцы более чем из одной таблицы. Это показано в примере ниже:

В этом примере происходит выборка информации о всех сотрудниках (табельный номер, фамилия и должность), которые начали участвовать в работе над проектом с 15 апреля 2007 г. Список выбора инструкции SELECT в запросе содержит столбцы Id и LastName из таблицы Employee и столбец Job из таблицы Works_on. По этой причине решение с применением подзапроса возвратило бы ошибку, поскольку подзапросы могут отображать информацию только из внешней таблицы.

Соединение таблиц или действие оператора SQL JOIN на примерах

Оператор JOIN используется для соединения двух или нескольких таблиц. Соединение таблиц может быть внутренним (INNER) или внешним (OUTER), причем внешнее соединение может быть левым (LEFT), правым (RIGHT) или полным (FULL). Далее на примере двух таблиц рассмотрим различные варианты их соединения.

Синтаксис соединения таблиц оператором JOIN имеет вид:

Предикат в этой конструкции определяет условие соединения строк из разных таблиц.

Допустим есть две таблицы (Auto слева и Selling справа), в каждой по четыре записи. Одна таблица содержит названия марок автомобилей (Auto), вторая количество проданных автомобилей (Selling):

Далее соединим эти таблицы по полю id несколькими различными способами. Совпадающие значения выделены красным для лучшего восприятия.

1. Внутреннее соединение (INNER JOIN) означает, что в результирующий набор попадут только те соединения строк двух таблиц, для которых значение предиката равно TRUE. Обычно используется для объединения записей, которые есть и в первой и во второй таблице, т. е. получения пересечения таблиц:

Красным выделена область, которую мы должны получить.

Итак, сам запрос:

Ключевое слово INNER в запросе можно опустить.

В итоге запрос отбирает и соединяет те записи, у которых значение поля id в обоих таблицах совпадает.

2. Внешнее соединение (OUTER JOIN) бывает нескольких видов. Первым рассмотрим полное внешнее объединение (FULL OUTER JOIN), которое объединяет записи из обоих таблиц (если условие объединения равно true) и дополняет их всеми записями из обоих таблиц, которые не имеют совпадений. Для записей, которые не имеют совпадений из другой таблицы, недостающее поле будет иметь значение NULL. Граф выборки записей будет иметь вид:

Переходим к запросу:

То есть мы получили все записи, которые есть в обоих таблицах. Записи у которых значение поля id совпадает соединяются, а у записей для которых совпадений не найдено недостающие поля заполняются значением NULL.

Ключевое слово OUTER можно опустить.

3. Левое внешнее объединение (LEFT OUTER JOIN). В этом случае получаем все записи удовлетворяющие условию объединения, плюс все оставшиеся записи из внешней таблицы, которые не удовлетворяют условию объединения. Граф выборки:

Запрос также можно писать без ключевого слова OUTER.

В итоге здесь мы получили все записи таблицы Auto. Записи для которых были найдены совпадения по полю id в таблице Selling соединяются, для остальных недостающие поля заполняются значением NULL.

Еще существует правое внешнее объединение (RIGHT OUTER JOIN). Оно работает точно также как и левое объединение, только в качестве внешней таблицы будет использоваться правая (в нашем случае таблица Selling или таблица Б на графе).

Далее рассмотрим остальные возможные выборки с использованием объединения двух таблиц.

4. Получить все записи из таблицы А, которые не имеют объединения из таблицы Б. Граф:

То есть в нашем случае, нам надо получить все автомобили из таблицы Auto, которые не имеют продаж в таблице Selling.

5. И последний вариант, получить все записи из таблицы А и Таблицы Б, которые не имеют объединений. Граф:

В нашем случае мы должны получить все записи из таблицы Auto, которые не связаны с таблицей Selling, и все записи из таблицы Selling, которые не имеют сопоставления из таблицы Auto.

На этом все, до новых встреч на страницах блога.

Соединения SQL, урок 14 — соединение таблиц в одном запросе

Соединения SQL

Одно из важных способностей языка запросов SQL это определение связей между множеством таблиц и отображение их информации в рамках единственной команды. Операция такого рода называется соединением SQL или соединение таблиц. Наличие операции соединения SQL является главным отличием реляционной базы данных от других.

По синтаксису языка:

  • Соединения таблицы перечисляются в предложении запроса FROM;
  • Имена таблиц разделяются запятыми.
  • Предикат запроса может ссылаться на любой столбец любой из соединяемых таблиц и, следовательно, может использоваться для установления связей между ними.
  • Обычно предикат сравнивает значения в столбцах различных таблиц для того, чтобы определить, удовлетворяется ли условие WHERE.

Вложенные запросы в T-SQL – описание и примеры

Приветствую Вас на сайте Info-Comp.ru! В этой заметке мы рассмотрим вложенные запросы языка SQL, я расскажу, что такое вложенные запросы, где и в каких конструкциях их можно использовать, покажу примеры их использования, а также расскажу про особенности и некоторые ограничения вложенных SQL запросов или, как еще их иногда называют, подзапросов SQL.

Что такое вложенные запросы SQL?

Вложенный SQL запрос – это отдельный запрос, который используется внутри SQL инструкции. Вложенный запрос также называют внутренним SQL запросом или подзапросом, а инструкцию, в которой используется вложенный запрос, называют внешним SQL запросом.

Вложенные SQL запросы могут быть использованы везде, где разрешено использовать SQL выражения, это может быть и секция SELECT, и FROM, и WHERE, и даже JOIN, чуть ниже я покажу примеры использования вложенных запросов в каждой из перечисленных выше секций.

Использовать вложенные запросы иногда бывает очень удобно, но обязательно стоит отметить и то, что в некоторых случаях использование вложенного SQL запроса может снизить производительность, т.е. замедлить работу всей SQL инструкции. Тем более что не редко вложенный SQL запрос можно заменить простым объединением.

Кроме того, вложенные запросы могут быть вложены друг в друга (в некоторых случаях вплоть до 32-го уровня), но тем самым значительно снижается читабельность SQL инструкций и ее понятность, а также повышается ее сложность.

Кстати, о том, как писать хорошие понятные SQL инструкции на языке T-SQL, которые будут понятны и Вам спустя время, и другим программистам, я подробно рассказал в своей книге – «Стиль программирования на T-SQL – основы правильного написания кода». Если Вы новичок и хотите освоить T-SQL с нуля, то рекомендую почитать другую мою книгу «Путь программиста T-SQL», в ней я подробно рассказываю про все конструкции языка T-SQL (включая вложенные запросы), и последовательно перехожу от простого к сложному, рекомендую ее для комплексного изучения языка T-SQL.

Особенности вложенных запросов

Вложенные SQL запросы имеют несколько важных особенностей, про которые не стоит забывать при конструировании SQL инструкций:

  • Вложенный запрос всегда заключен в скобки;
  • Вложенный запрос не может содержать предложения COMPUTE, INTO и FOR BROWSE;
  • Вложенный запрос может содержать конструкцию сортировки ORDER BY, только если он содержит оператор TOP, т.е. без TOP, ORDER BY в подзапросе использовать не получится;
  • Если вложенный запрос используется в операции сравнения (за исключением операторов EXISTS и IN), он должен возвращать одно значение и один столбец;
  • Типы данных ntext, text и image не могут участвовать в списке выбора вложенных запросов.

Примеры вложенных SQL запросов в Microsoft SQL Server

Ну а теперь пора переходить к практике, сейчас мы рассмотрим несколько примеров использования вложенных SQL запросов, при этом я, как и обещал, покажу применение вложенных запросов в разных конструкциях языка T-SQL.

Примечание! Все примеры тестовые, они сконструированы исключительно для демонстрации работы вложенных запросов.

Исходные данные для примеров

Сначала давайте определимся с исходными данными, чтобы Вы понимали, какие именно данные у нас есть, и наглядно видели, каким образом в примерах ниже получаются те или иные результаты.

Также сразу скажу, что в качестве SQL сервера у меня выступает версия Microsoft SQL Server 2020 Express.

Следующая инструкция создает таблицы, которые мы будет использовать в примерах, и добавляет в них данные.

Подробно останавливаться на том, что делает представленная выше инструкция, в этой статье я не буду, так как это совершенно другая тема, но если эта SQL инструкция Вам не понятна, и Вам интересно узнать, что конкретно она делает, можете почитать следующие статьи, а для комплексного изучения языка T-SQL — книгу, которую я уже упоминал:

Пример 1 – Вложенный запрос в секции SELECT

В этом примере мы рассмотрим стандартную ситуацию использования вложенного запроса в списке выборки оператора SELECT.

Допустим, что нам нужно получить список товаров с названием категорий, а так как названия категории в таблице Goods у нас нет, это название мы будем получать из таблицы Categories.

Это можно сделать с помощью вложенного запроса, в котором будет происходить объединение с внешним запросом в секции WHERE, посредством уточняющих псевдонимов. В данном случае вложенный запрос обязательно должен возвращать одно значение и один столбец.

А также это можно реализовать и с помощью объединения JOIN, что на самом деле предпочтительней, и в подобных случаях я рекомендую использовать именно JOIN, тем самым SQL запрос становится более читабельным и простым для понимания. Ниже я представлю оба SQL запроса.

Пример 2 – Вложенный запрос в секции FROM

Сейчас давайте я покажу, как можно использовать вложенный запрос в секции FROM в качестве источника данных. Такие вложенные запросы обычно называют – Производные таблицы, так как они возвращают табличные данные.

В данном примере в качестве источника данных в секции FROM мы указали вложенный запрос, который возвращает идентификатор и наименование товаров из первой категории.

Пример 3 – Вложенный запрос в секции JOIN

В этом примере мы используем вложенный запрос в конструкции объединения JOIN, такие вложенные запросы также называют производными таблицами, так как в этом случае они возвращают табличные данные.

Здесь во вложенном запросе мы получаем идентификатор и наименование первой категории, а затем полученные табличные данные объединяем с таблицей Goods.

Пример 4 – Вложенный запрос в секции WHERE

Очень часто вложенные запросы используют в условии WHERE, при этом здесь стоит понимать, с каким именно оператором сравнения используется вложенный запрос, так как это важно.

Например, если использовать вложенный запрос с оператором равно (=), то он не может возвращать больше одного значения, т.е. если он вернет больше одного значения, выйдет ошибка, и SQL запрос не выполнится. Однако если использовать вложенный запрос с оператором IN (включая NOT IN) или EXISTS (включая NOT EXISTS), то вложенный запрос уже может возвращать список значений.

Вложенный запрос с оператором = (равно)

В этом запросе мы выводим все товары из таблицы Goods, у которых идентификатор категории равен значению, которое возвращает вложенный запрос, а он возвращает идентификатор категории с наименованием «Комплектующие ПК», таким образом, в нашем случае вложенный запрос возвращает только одно значение.

Вложенный запрос с оператором IN

Здесь мы используем для сравнения оператор IN, поэтому вложенный запрос в таком случае может уже возвращать несколько значений, для примера мы просто уберем условие WHERE во вложенном запросе.

Пример 5 – Множественная вложенность SQL запросов

Как я уже отмечал, вложенный запрос может быть вложен в другой вложенный SQL запрос, тем самым получается множественная вложенность.

В этом примере мы в качестве источника данных укажем вложенный SQL запрос, т.е. производную таблицу, который в свою очередь также будет содержать еще один вложенный запрос.

Дополнительные примеры использования вложенных запросов, например, с использованием оператора EXISTS, можете посмотреть в статье – Логический оператор EXISTS в T-SQL – Описание и примеры.

На сегодня у меня все, надеюсь, материал был Вам полезен, пока!

Илон Маск рекомендует:  Что такое код asp appdeleterecursive

14 наиболее часто используемых запросов SQL на собеседовании (вопрос/ответ)

Главное меню » Базы данных » Учебное пособие по SQL » 14 наиболее часто используемых запросов SQL на собеседовании (вопрос/ответ)

Эти запросы проверят ваши SQL навыки на работу, как внутреннее и внешнее соединение, фильтрация записей с помощью условий WHERE и HAVING, группировка записей с помощью предложения GROUP BY, вычисление суммы, среднего и подсчета записей с помощью совокупной функции как AVG(), SUM () и COUNT (), поиск записей с помощью символов подстановки в операторе LIKE, поиска записей в связанном с использованием BETWEEN и IN, запросы DATE и TIME и т.д. Если вы столкнулись с каким – либо интересным запросом в SQL или у вас есть какие – либо проблемы и поиск решения, вы можете разместить его здесь на благо каждого.

SQL Query. Вопросы и ответы

Вопрос 1: SQL-запрос, чтобы найти вторую самую высокую зарплату работника

Ответ: Есть много способов найти вторую самую высокую зарплату работника в SQL, вы можете использовать либо в SQL объединение или подзапрос, чтобы решить эту проблему. Вот SQL-запрос с использованием подзапроса:

См как найти вторую самую высокую зарплату в SQL с большим количеством способов решения этой проблемы.


Вопрос 2: SQL-запрос, чтобы найти максимальную зарплату от каждого отдела.

Ответ: Вы можете найти максимальную зарплату для каждого отдела, группируя все записи по DeptId, а затем с помощью функции MAX(), чтобы вычислить максимальную зарплату в каждой группе или каждого отдела.

Эти вопросы становятся более интересными, если Интервьюер попросит вас напечатать название отдела вместо отдела ID, в этом случае, вам нужно соединить таблицу Employee с Department с использованием внешнего ключа DeptID, убедитесь, что вы используете LEFT or RIGHT OUTER JOIN включая отделов без каких – либо сотрудников. Вот запрос

В этом запросе мы использовали RIGHT OUTER JOIN, потому что нам нужно название отдела из таблицы Department, который находится на правой стороне JOIN, даже если нет никакого упоминания о dept_id в таблице сотрудников.

Вопрос 3: Написать SQL – запрос для отображения текущей даты.

Ответ: SQL имеет встроенную функцию под названием GetDate(), которая возвращает текущую временную метку. Это будет работать в Microsoft SQL Server, другие производители, такие как Oracle и MySQL также имеет эквивалентные функции.


Вопрос 4: Напишите SQL запрос, чтобы проверить дату в передаваемом запросе, является ли дата данного формата или нет .

Ответ: SQL имеет функцию IsDate(), которая используется для проверки переданное значение, является дата или не указанного формата, он возвращает 1 (истина) или 0 (ложь), соответственно. Помните IsDate() является функцией MSSQL и он может не работать на Oracle, MySQL или любой другой базе данных, но не было бы что – то подобное.

Она возвращает 0, потому что прошло дата не в правильном формате.


Вопрос 5: Напишите SQL запрос, чтобы напечатать имя отдельного работника у которого поле DOB составляет от 01/02/1965 до 31/11/1970.

Ответ: Этот SQL-запрос является сложным, но вы можете использовать BETWEEN, чтобы получить все записи, у которых дата выпадает между двумя датами.

Вопрос 6: написать SQL запрос, где найти количество сотрудников в зависимости от пола , чье поле DOB между 01/02/1965 до 31/11/1970.

Вопрос 7: Напишите SQL запрос, чтобы найти сотрудника, чья зарплата равна или превышает 20000.

Вопрос 8: Напишите SQL запрос, чтобы найти имя сотрудника, чье имя начинается с ‘M’

Вопрос 9: Найти все записи о сотрудниках, содержащие слово “Роман”, независимо от того, был ли он, как РОМАН, Роман, или роман.

Вопрос 10: Напишите SQL запрос, чтобы найти год от даты.

Ответ: Вот как вы можете найти год от даты в SQL Server 2008

Вопрос 11: Написать SQL – запрос для поиска дубликатов строк в базе данных? а затем написать SQL запрос, чтобы удалить их?
Ответ: Вы можете использовать следующий запрос для выбора различных записей:

Вопрос 12: Существует таблица, которая содержит два столбца Student и Marks, вам нужно найти всех студентов, чьи оценки являются больше, чем средние оценки, т.е. список студентов выше среднего.

Ответ: Этот запрос можно записать с помощью подзапросов, как показано ниже:


Вопрос 13: Как вы находите всех сотрудников, которые являются также менеджерами?
Вы дали стандартную таблицу сотрудников с дополнительной колонкой mgr_id , которая содержит идентификатор сотрудника менеджера.

Ответ: Вы должны знать о автообъединение, чтобы решить эту проблему. В автообъединение, вы можете присоединить два экземпляра одной и той же таблицы, чтобы выяснить дополнительные подробности, как показано ниже

Запрос покажет имя сотрудника и имя менеджера в два столбца, например

Один из последующих изменит этот запрос, чтобы включать в себя сотрудников, которые не имеют статус менеджера. Для того, чтобы решить, что, вместо этого использовать inner join, просто используйте left outer join, он также будет включать сотрудников без менеджеров.

Вопрос 14: У вас есть композитный индекс из трех колонок, как вы обеспечиваете значение двух столбцов в WHERE на выборку? Будет ли индекс использоваться для этой операции?

Например, если индекс находится на EmpId, EmpFirstName и EmpSecondName и вы пишете запрос типа

Если данные в две колонки являются вторичными индексами столбца, то индекс не будет ссылаться, но если данные 2 колонок содержат первичный индекс (первый столбец при создании индекса), то индекс будет ссылаться. В этом случае индекс будет использоваться, поскольку EmpId и EmpFirstName являются первичные столбцы.

Надеюсь, что эта статья поможет вам принять быструю практику всякий раз, когда вы собираетесь присутствовать на любом собеседовании и нет так много времени на чтение книг.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Создаём запрос на языке SQL, чтобы узнать информацию об активных подключениях к MSSQL серверу

Данный запрос будет успешно выполняться и на SQL Server версии 2005 — 2012. В запросе sys.sysprocesses — системная таблица SQL Server 2000. Если Вы используете SQL Server 2005 или старше, то рекомендуется использовать системные представления SQL Server. Ниже приведен пример запроса, в котором используется системное представление sys.dm_exec_sessions реализованное в SQL Server 2008 R2.

В функцию db_name(session_id) в качестве параметра передается не идентификатор базы данных, а идентификатор сеанса, связанный со всеми активными первичными соединениями. Что приятно, функция возвращает имя базы данных, которая связана с подключением. В SQL Server 2012 в представлении sys.dm_exec_sessions добавлено новое поле database_id — идентификатор текущей базы данных для каждого сеанса.

Представленный алгоритм написания запросов можно использовать при определении активных подключений к серверу в системе TDMS.

10 простых шагов к полному пониманию SQL

Очень многие программисты смотрят на SQL, как на страшного зверя. SQL — один из немногих декларативных языков, и его поведение в корне отличается от того, как работают императивные, объектно-ориентированные и даже функциональные языки программирования. Хотя многие рассматривают SQL в некоторой степени функциональным.

Поэтому я чувствую себя обязанным донести прелести SQL до умов тех, кто все еще испытывает трудности с его пониманием. Этот урок посвящен тем, кто:

  • Уже работает с SQL, но не до конца его понимает
  • Неплохо знает SQL, но никогда серьезно не задумывался над его структурой
  • Хочет обучать SQL других

В этом руководстве мы сосредоточимся только на операторах SELECT. Другие DML-операторы будут подробно рассмотрены в следующий раз.


Примечание. Этот урок раньше публиковался только на
Tech.Pro (оригинальная версия находится здесь). К сожалению, материал Tech.Pro стал недоступным. С разрешения Tech.Pro мы снова публикуем его контент в блоге jOOQ.

SQL является декларативным

Все понятно. И вас не волнует, откуда эти записи о сотруднике (employee) берутся. Вам лишь нужны те, у которых достойная зарплата (salary).

  • Что мы из этого узнаем?

Если все так просто, в чем же проблема? Проблема в том, что большинство из нас интуитивно мыслит рамками императивного программирования. Вроде: «машина, сделай это, затем то, но сначала проверь то и се.» А значит, нужно хранить временные результаты в переменных, составлять циклы, вызывать функции и т. д. и т. п.

Забудьте обо всем этом. Думайте о том, как объявлять вещи. Не о том, как сказать машине, вычислить что-либо.

2. Код SQL не является упорядоченным

Обычно путаница происходит из-за того, что элементы кода SQL не расположены в том порядке, в каком они выполняются. Лексический порядок выглядит так:

  • SELECT [ DISTINCT ]
  • FROM
  • WHERE
  • GROUP BY
  • HAVING
  • UNION
  • ORDER BY

Для простоты перечислены не все предложения SQL. Этот словесный порядок принципиально отличается от логического порядка (который в свою очередь может отличаться от порядка выполнения в зависимости от выбора оптимизатора):

Три пункта, которые следует отметить:

  1. Первое предложение здесь FROM, а не SELECT. Сначала происходит загрузка данных с диска в память, чтобы с ними можно было работать.
  2. SELECT выполняется после большинства других предложений. Главное, после FROM и GROUP BY. Это важно понимать, если думаете, что можете ссылаться на элементы, которые объявляете в предложении SELECT из предложения WHERE. Следующее невозможно:

Есть два варианта повторно использовать z. Либо повторить выражение:

… либо прибегнуть к производным таблицам, общим табличным выражениям или представлениям данных, чтобы избежать повторения кода. Смотрите примеры ниже.

3. UNION ставится перед ORDER BY в лексическом и логическом порядках. Многие думают, что каждый подзапрос UNION можно упорядочить, но по стандарту SQL и в большинстве диалектов SQL это не так. Хотя в некоторых диалектах позволяется упорядочивание подзапросов или производных таблиц, нет никакой гарантии, что такой порядок будет сохранен после выполнения операции UNION.

Обратите внимание, что не все базы данных реализуют вещи одинаковым образом. Правило номер 2, например, не применяется в точности, как описано выше, для MySQL, PostgreSQL, и SQLite.

Что мы из этого узнаем?

Чтобы избежать распространенных ошибок, всегда следует помнить о лексическом и логическом порядках предложений SQL. Если вы усвоили эти отличия, становится понятным, почему одни вещи работают, другие нет.

Конечно, неплохо, если бы язык был спроектирован таким образом, когда лексическая последовательность фактически отражает логический порядок, как это реализовано в Microsoft LINQ.

3. Вся суть SQL заключается в ссылках на таблицы

Из-за разницы между лексическим упорядочением и логическим упорядочением большинство новичков, вероятно, думают, что значения столбцов являются объектами первого класса в SQL. Но, нет. Наиболее важными являются ссылки на таблицы.

Стандарт SQL определяет предложение FROM следующим образом:

Вывод предложения FROM — это объединенная ссылка на таблицу объединенного значения всех ссылок. Попробуем это переварить.

Указанная выше запись производит комбинированную ссылку на таблицу значений a и b. Если a имеет 3 колонки и b 5 колонок, тогда выходная таблица “output table” будет состоять из 8 (3 + 5) столбцов.

Записи, содержащиеся в этой комбинированной табличной ссылке являются перекрестным / декартовым произведением a x b. Иными словами, каждая запись a образует пару с записью b. Если a имеет 3 записи, а b 5 записей, описанная выше ссылка на таблицу производит 15 записей (3 x 5).

Этот вывод переводится в предложение GROUP BY (после фильтрации в предложении WHERE), где преобразуется в новый вывод. Разберемся с этим позже.

Если мы посмотрим на эти примеры в свете реляционной алгебры / теории множества, то таблица SQL — это отношение или набор кортежей. Каждое предложение SQL преобразует одно или несколько отношений, чтобы создать новые отношения.

Что мы из этого узнаем?

Всегда думайте категориями ссылок на таблицы, чтобы понять, как данные передаются в предложениях SQL.

4. Ссылки на таблицы SQL могут быть довольно функциональными

Ссылка на таблицу — мощная штука. Примером их силы является ключевое слово JOIN, которое в действительности не является выражением SELECT, а частью специальной ссылки на таблицу. Объединенная таблица, как определено в стандарте SQL (упрощенный):

Вернемся к нашему примеру:

a может по сути быть объединенной таблицей:

Развивая предыдущее выражение, получим:

Хотя не рекомендуется объединять синтаксис, где приводится разделенный запятыми список ссылок на таблицы, с синтаксисом объединенных таблиц, но так можно делать. В результате, объединенная ссылка будет содержать величины a1+a2+b.

Производные таблицы еще мощнее, чем объединенные таблицы. Мы до этого еще дойдем.

Что мы из этого узнаем?

Всегда нужно думать категориями ссылок на таблицы. Это поможет не только понять, как данные переходят в предложениях SQL, (смотрите предыдущий раздел), но и как создаются сложные ссылки на таблицы.

И, что важно, понять, JOIN является ключевым словом для построения соединенных таблиц. А не частью оператора SELECT. Некоторые базы данных позволяют использование JOIN в операторах INSERT, UPDATE, DELETE

5. В SQL следует использовать таблицы JOIN, вместо разделенных запятыми

Ранее мы видели это предложение:

Продвинутые разработчики SQL, вероятно, скажут, что не следует вообще использовать список с разделителями-запятыми, и всегда отображать таблицы JOIN. Это улучшит читаемость инструкции SQL, и тем самым предотвратить ошибки.

Одна очень распространенная ошибка заключается в том, чтобы где-то забыть предикат JOIN. Подумайте о следующем:

Синтаксис соединенных таблиц:

  • Безопаснее, так как предикаты join можно размещать вблизи соединенных таблиц, тем самым предотвращая ошибки.
  • Более выразительные, так как можно различать OUTER JOIN, INNER JOIN и т. д.

Что мы из этого узнаем?

Всегда применяйте JOIN. Никогда не используйте ссылки на таблицы, разделенные запятыми, в предложениях FROM.

6. Различные операции JOIN в SQL

Операции JOIN состоят, в основном, из следующих пяти видов:

  • EQUI JOIN
  • SEMI JOIN
  • ANTI JOIN
  • CROSS JOIN
  • DIVISION

Эти термины обычно используются в реляционной алгебре. SQL задействует другие термины для вышеуказанных понятий, если они вообще существуют. Давайте рассмотрим их поближе:

EQUI JOIN

Это наиболее распространенная операция JOIN. Содержит два подвида:

  • INNER JOIN (или просто JOIN)
  • OUTER JOIN (далее подразделяется на LEFT, RIGHT, FULL OUTER JOIN)

Разницу лучше объяснить на примере:

SEMI JOIN

Эта реляционная концепция в SQL может быть выражена двумя способами: С помощью предиката IN или с использованием предиката EXISTS. «Semi» на латыни означает «половина». Этот тип соединения используется для объединения только «половины» ссылки на таблицу. Что это значит? Рассмотрим вновь вышеуказанное объединение автора и книги. Представим, что нам не нужны комбинации автор — книга, а только авторы, у которых есть книги. Тогда можно написать:

Хотя нет общего правила, следует предпочесть IN или EXISTS, но можно сказать примерно так:

  • Предикаты IN легче читать, чем предикаты EXISTS
  • Предикаты EXISTS более выразительные, чем предикаты IN (т. е. их проще выразить, чем сложные предикаты SEMI JOIN)
  • В производительности нет какой-либо заметной разницы. Но большая разница в производительности может быть в некоторых базах данных.

Поскольку INNER JOIN также выдают результаты авторов, у которых есть книги, многие начинающие подумают, что можно удалить дубликаты с помощью ключевого слова DISTINCT. Им кажется, что SEMI JOIN можно выразить следующим образом:

Так делать не рекомендуется по двум причинам:

  • Замедляется производительность, так как база данных только для того, чтобы удалить дубликаты, должна загрузить в память множество данных.
  • Такой способ решения не совсем правильный, хотя и приводит к верным результатам в этом примере. Но если вы соединяете больше ссылок на таблицы, удаление дубликатов превращается в реальную проблему.

Подробную информацию о злоупотреблении DISTINCT можно найти в этом посте.

ANTI JOIN

Эта реляционная концепция является полной противоположностью SEMI JOIN. Ее можно образовать, просто добавив ключевое слово NOT в предикатах IN или EXISTS. Пример, где мы выберем тех авторов, у которых нет книг:

Применяются те же правила в отношении производительности, читаемости и выразительности. Однако есть небольшой нюанс в отношении NULL при использовании NOT IN, но эта тема выходит за рамки нашего урока.

CROSS JOIN

Этот оператор создает перекрестное произведение двух соединенных ссылок на таблицу, комбинируя каждую запись первой ссылки с записью второй ссылки на таблицу. Мы уже видели раньше, что это может быть достигнуто посредством ссылок на таблицы с разделителями-запятыми в предложении FROM. В редких случаях, когда это действительно необходимо, в большинстве диалектов SQL перекрестное соединение CROSS JOIN можно написать явным образом:

DIVISION

Реляционное деление — вот кто настоящий зверь. В кратце, если JOIN это умножение, division (деление) — противоположность операции JOIN. Реляционные деления очень трудно выразить в SQL. Поскольку этот урок для начинающих, деление мы не рассматриваем. Для самых храбрых информация находится здесь, здесь и здесь.

Что мы из этого узнаем?

Много чего. Давайте запихнем это в наши головы. В SQL повсюду ссылки на таблицы. Соединяемые таблицы представляют собой довольно сложные ссылки на таблицы. Но между реляционными выражениями и выражениями SQL есть разница. Не все операции реляционного соединения также являются формальными операциями соединения SQL. Имея немного практики и знаний в реляционной теории, вы всегда сможете выбрать верный тип реляционного соединения JOIN и правильно представить его на языке SQL.

7. Производные таблицы SQL похожи на табличные переменные

Раньше мы узнали, что SQL является декларативным языком, и не имеет переменных (хотя в некоторых диалектах SQL они существуют). Но можно написать нечто похожее на переменные. Эти звери называются производными таблицами.

Производная таблица — это не что иное, как вложенный запрос, заключенный в круглые скобки.

Обратите внимание, что некоторые диалекты SQL требуют, чтобы производные таблицы имели корреляционное имя (также называемое псевдонимом).

Производные таблицы великолепны, если необходимо обойти проблемы, вызванные логическим упорядочением предложений SQL. Например, если вы хотите повторно использовать выражение столбца в предложении SELECT и WHERE, просто напишите (диалект Oracle):

Обратите внимание, что некоторые базы данных и стандарт SQL:1999 подняли производные таблицы на следующий уровень введением обобщенных табличных выражений. Это позволит повторно использовать одну и ту же производную таблицу несколько раз в одной инструкции SQL SELECT. Приведенный выше запрос будет переведен на (почти) эквивалент:

Очевидно, что «a» можно также вывести в отдельное представление для более широкого использования общих подзапросов SQL. Подробнее о представлениях здесь.

Что мы из этого узнаем?

Снова, снова и снова. В SQL все завязано на ссылках, а не столбцах. Как этим воспользоваться. Не бойтесь написания производных таблиц или других сложных ссылок на таблицы.

8. SQL GROUP BY преобразует прежние ссылки на таблицу

Давайте вновь обсудим наше предложение FROM:

А теперь к соединенной ссылке (см. выше) применим предложение GROUP BY

Предложение производит новую ссылку на таблицу только с тремя оставшимися столбцами (!). Попробуем это переварить. С применением GROUP BY, уменьшается число доступных столбцов во всех последующих логических предложениях, включая SELECT. Ссылаться только на столбцы из предложения GROUP BY в предложении SELECT можно по синтаксической причине.

  • Обратите внимание, что другие столбцы могут по-прежнему быть доступными в качестве аргументов агрегатных функций:
  • Следует заметить, что MySQL, к сожалению, не придерживается этого стандарта, отчего получается только путаница. Не попадайтесь на уловки в MySQL. GROUP BY преобразует ссылки на таблицу Таким образом, можно ссылаться только на столбцы, также упоминаемые в предложении GROUP BY.
Илон Маск рекомендует:  Что такое код createdc

Что мы из этого узнаем?

GROUP BY, опять же, работает с табличными ссылками, преобразовывая их в новую форму.

9. SQL SELECT в реляционной алгебре называется проекцией

Мне лично нравится термин «проекция», так как он используется в реляционной алгебре. После того как вы создали ссылку на таблицу, отфильтровали и преобразовали ее, можете переходить к проецированию в другую форму. Предложение SELECT подобно проектору. Табличная функция использующет выражение значения строки для преобразования каждой записи из ранее созданной ссылки на таблицу в конечный результат.

В предложении SELECT можно работать со столбцами, создавая сложные выражения столбцов как части записи/строки.

Есть много специальных правил в отношении характера доступных выражений, функций и т.д. Главное, нужно помнить следующее:

  1. Можно использовать только ссылки на столбцы, полученные из ссылки на таблицу в «output».
  2. Если у вас есть предложение GROUP BY, вы можете ссылаться только на столбцы из этого предложения или агрегатные функции.
  3. Если нет предложения GROUP BY вместо агрегатных можно использовать оконные функции.
  4. Если нет предложения GROUP BY, нельзя сочетать агрегатные и неагрегатные функции.
  5. Существуют некоторые правила, касающиеся переноса регулярных функций в агрегатные функции и наоборот.
  6. Есть…

Много сложных правил. Которыми можно заполнить еще один урок. Например, причина почему нельзя комбинировать агрегатные функции с неагрегатными функциями в проекции инструкции SELECT без предложения GROUP BY (правило № 4), такова:

  1. Это не имеет смысла. Интуитивно.
  2. Если не помогает интуиция (например, новичкам в SQL), выручают синтаксические правила. В SQL:1999 реализован оператор GROUPING SETS, а в SQL:2003 — пустой оператор grouping sets: GROUP BY (). Всякий раз, когда присутствует агрегатная функция и нет явного предложения GROUP BY, применяется неявный пустой GROUPING SET (правило №2). Следовательно, исходные правила о логическом упорядочении больше не являются верными, и проекция (SELECT) влияет на результат логически предшествующего, но лексически последовательного предложения (GROUP BY).

Запутались? Да. Я тоже. Давайте вернемся к более простым вещам.

Что мы из этого узнаем?

Предложение SELECT может быть одним из самых сложных предложений в SQL, даже если оно выглядит просто. Все другие предложения только переносят ссылки на таблицы от одного к другому. Предложение SELECT портит всю красоту этих ссылок, полностью их преобразовывая путем применения к ним правил.

Чтобы понять SQL, перед использованием оператора SELECT нужно усвоить все остальное. Даже если SELECT является первым предложением в лексической упорядоченности, он должен быть последним.

10. SQL DISTINCT, UNION, ORDER BY и OFFSET — намного проще

После сложного SELECT мы можем снова вернуться к простым истинам:

  • Операции Set (DISTINCT и UNION)
  • Операции упорядочивания (ORDER BY, OFFSET .. FETCH)

Операции Set

Операции set работают с наборами, которые на самом деле являются таблицами. Почти. Теоретически, это несложно понять.

  • DISTINCT удаляет дубликаты после проекции.
  • UNION объединяет два подзапроса и удаляет дубликаты
  • UNION ALL объединяет два подзапроса, сохраняя дубликаты
  • EXCEPT удаляет записи из первого подзапроса, которые также содержатся во втором подзапросе (и затем удаляет дубликаты)
  • INTERSECT сохраняет только записи, содержащиеся в обоих поздапросах (а затем удаляет дубликаты)

Удаление дубликатов во всех этих случаях не имеет смысла. Для объединения подзапросов чаще всего следует применять UNION ALL.

Операции упорядочивания

Упорядочение не является реляционной функцией. Это функция, предназначенная только для SQL. Она применяется в самом конце лексического упорядочения и логического упорядочения инструкции SQL. Использование ORDER BY и OFFSET.. FETCH — это единственный способ гарантировать, что записи могут быть доступны по индексу надежным способом. Все остальные способы упорядочивания всегда произвольны и случайны, даже если они могут показаться воспроизводимыми.

OFFSET .. FETCH — это только один вариант синтаксиса. Другие варианты включают LIMIT, OFFSET в MySQL и PostgreSQL .. или TOP и START AT в SQL Server и Sybase. Хороший обзор различных способов реализации OFFSET.. FETCH можно увидеть здесь.

Приступаем к работе

Как и в каждом языке, чтобы освоить SQL, требуется практика. 10 вышеупомянутых простых шагов помогут вам понять обычные операции SQL. С другой стороны, неплохо учиться также на распространенных ошибках.

Содержание

Глава 3. Запросы с использованием нескольких таблиц

3.1. О средствах одновременной работы с множеством таблиц

Затрагивая вопросы проектирования баз данных [2], мы выяснили, что базы данных — это множество взаимосвязанных сущностей или отношений (таблиц) в терминологии реляционных СУБД. При проектировании стремятся создавать таблицы, в каждой из которых содержалась бы информация об одном и только об одном типе сущностей. Это облегчает модификацию базы данных и поддержание ее целостности. Но такой подход тяжело усваивается начинающими проектантами, которые пытаются привязать проект к будущим приложениям и так организовать таблицы, чтобы в каждой из них хранилось все необходимое для реализации возможных запросов. Типичен вопрос: как же получить сведения о том, где купить продукты для приготовления того или иного блюда и определить его калорийность и стоимость, если нужные данные «рассыпаны» по семи различным таблицам? Не лучше ли иметь одну большую таблицу, содержащую все сведения базы данных ПАНСИОН ?

Даже при отсутствии средств одновременного доступа ко многим таблицам нежелателен проект, в котором информация о многих типах сущностей перемешана в одной таблице. SQL же обладает великолепным механизмом для одновременной или последовательной обработки данных из нескольких взаимосвязанных таблиц. В нем реализованы возможности «соединять» или «объединять» несколько таблиц и так называемые «вложенные подзапросы». Например, чтобы получить перечень поставщиков продуктов, необходимых для приготовления Сырников, возможен запрос

Продукт Цена Название Статус
Яйца 1.8 ПОРТОС кооператив
Яйца 2. КОРЮШКА кооператив
Сметана 3.6 ПОРТОС кооператив
Сметана 2.2 ОГУРЕЧИК ферма
Творог 1. ОГУРЕЧИК ферма
Мука 0.5 УРОЖАЙ коопторг
Сахар 0.94 ТУЛЬСКИЙ универсам
Сахар 1. УРОЖАЙ коопторг

Он получен следующим образом: СУБД последовательно формирует строки декартова произведения таблиц, перечисленных во фразе FROM, проверяет, удовлетворяют ли данные сформированной строки условиям фразы WHERE, и если удовлетворяют, то включает в ответ на запрос те ее поля, которые перечислены во фразе SELECT.

Следует подчеркнуть, что в SELECT и WHERE (во избежание двусмысленности) ссылки на все (*) или отдельные столбцы могут (а иногда и должны) уточняться именем соответствующей таблицы, например, Поставки.ПС, Поставщики.ПС, Меню.*, Состав.БЛ, Блюда.* и т.п.

Очевидно, что с помощью соединения несложно сформировать запрос на обработку данных из нескольких таблиц. Кроме того, в такой запрос можно включить любые части предложения SELECT, рассмотренные в главе 2 (выражения с использованием функций, группирование с отбором указанных групп и упорядочением полученного результата). Следовательно, соединения позволяют обрабатывать множество взаимосвязанных таблиц как единую таблицу, в которой перемешана информация о многих типах сущностей. Поэтому начинающий проектант базы данных может спокойно создавать маленькие нормализованные таблицы, так как он всегда может получить из них любую «большую» таблицу.

Кроме механизма соединений в SQL есть механизм вложенных подзапросов, позволяющий объединить несколько простых запросов в едином предложении SELECT. Иными словами, вложенный подзапрос — это уже знакомый нам подзапрос (с небольшими огра-ничениями), который вложен в WHERE фразу другого вложенного подзапроса или WHERE фразу основного запроса.

Для иллюстрации вложенного подзапроса вернемся к предыдущему примеру и попробуем получить перечень тех поставщиков продуктов для Сырников, которые поставляют нужные продукты за минимальную цену.

Результат запроса имеет вид

Продукт Цена Название Статус
Яйца 1.8 ПОРТОС кооператив
Сахар 0.94 ТУЛЬСКИЙ универсам
Мука 0.5 УРОЖАЙ коопторг
Сметана 2.2 ОГУРЕЧИК ферма
Творог 1. ОГУРЕЧИК ферма

Здесь с помощью подзапроса, размещенного в трех последних строках запроса, описывается процесс определения минимальной цены каждого продукта для Сырников и поиск поставщика, предлагающего этот продукт за такую цену. Механизм реализации подзапросов будет подробно описан в п.3.3. Там же будет рассмотрено, как и для чего вводится псевдоним X для имени таблицы Поставки.

3.2. Запросы, использующие соединения

3.2.1. Декартово произведение таблиц

В литературе [2] показано, что соединения — это подмножества декартова произведения. Так как декартово произведение n таблиц — это таблица, содержащая все возможные строки r, такие, что r является сцеплением какой-либо строки из первой таблицы, строки из второй таблицы, . и строки из n-й таблицы (а мы уже научились выделять с помощью SELECT любое подмножество реляционной таблицы), то осталось лишь выяснить, можно ли с помощью SELECT получить декартово произведение. Для получения декартова произведения нескольких таблиц надо указать во фразе FROM перечень перемножаемых таблиц, а во фразе SELECT – все их столбцы.

Так, для получения декартова произведения Вид_блюд и Трапезы надо выдать запрос

Получим таблицу, содержащую 5 х 3 = 15 строк:

В Вид Т Трапеза
З Закуска 1 Завтрак
З Закуска 2 Обед
З Закуска 3 Ужин
С Суп 1 Завтрак
С Суп 2 Обед
С Суп 3 Ужин
Г Горячее 1 Завтрак
Г Горячее 2 Обед
Г Горячее 3 Ужин
Д Десерт 1 Завтрак
Д Десерт 2 Обед
Д Десерт 3 Ужин
Н Напиток 1 Завтрак
Н Напиток 2 Обед
Н Напиток 3 Ужин

В другом примере, где перемножаются таблицы Меню, Трапезы, Вид_блюд, Блюда:

образуется таблица (рис 3.1), содержащая 21 х 3 х 5 х 33 = 10395 строк.

Из первых 39 строк этой таблицы лишь две актуальных (отмечены «*»): в них совпадают номера блюд таблиц Меню и Блюда. В остальных – полная чепуха: к закускам отнесены супы и напитки, на завтрак предлагается незапланированный суп и т.д.

3.2.2. Эквисоединение таблиц

Если из декартова произведения убрать ненужные строки и столбцы, то можно получить актуальные таблицы, соответствующие любому из соединений.

Меню Трапезы Вид_блюд Блюда
Т В БЛ Т Трапеза В Вид БЛ Блюдо В Основа Выход Труд
1 З 3 1 Завтрак З Закуска 1 Салат летний З Овощи 200. 3
1 З 3 1 Завтрак З Закуска 2 Салат мясной З Мясо 200. 4
1 З 3 1 Завтрак З Закуска 3 Салат витаминный З Овощи 200. 4 *
. . .
1 З 3 1 Завтрак З Закуска 12 Суп молочный С Молоко 500. 3
1 З 3 1 Завтрак З Закуска 13 Бастурма Г Мясо 300. 5
. . .
1 З 3 1 Завтрак З Закуска 32 Кофе черный Н Кофе 100. 1
1 З 3 1 Завтрак З Закуска 33 Кофе на молоке Н Кофе 200. 2
1 З 6 1 Завтрак З Закуска 1 Салат летний З Овощи 200. 3
1 З 6 1 Завтрак З Закуска 2 Салат мясной З Мясо 200. 4
1 З 6 1 Завтрак З Закуска 3 Салат витаминный З Овощи 200. 4
1 З 6 1 Завтрак З Закуска 4 Салат рыбный З Рыба 200. 4
1 З 6 1 Завтрак З Закуска 5 Паштет из рыбы З Рыба 120. 5
1 З 6 1 Завтрак З Закуска 6 Мясо с гарниром З Мясо 250. 3 *
. . .

Рис. 3.1. Иллюстрация декартова произведения

Очевидно, что отбор актуальных строк обеспечивается вводом в запрос WHERE фразы, в которой устанавливается соответствие между:

  • кодами трапез (Т) в таблицах Меню и Трапезы (Меню.Т = Трапезы.Т),
  • кодами видов блюд (В) в таблицах Меню и Вид_блюд (Меню.В = Вид_блюд.В),
  • номерами блюд (БЛ) в таблицах Меню и Блюда (Меню.БЛ = Блюда.БЛ).

Такой скорректированный запрос

позволит получить эквисоединение таблиц Меню, Трапезы, Вид_блюд и Блюда:

Т В БЛ Т Трапеза В Вид БЛ Блюдо В Основа Выход Труд
1 З 3 1 Завтрак З Закуска 3 Салат витаминный З Овощи 200. 4
1 З 6 1 Завтрак З Закуска 6 Мясо с гарниром З Мясо 250. 3
1 Г 19 1 Завтрак Г Горячее 19 Омлет с луком Г Яйца 200. 5
. . .
3 Г 16 3 Ужин Г Горячее 16 Драчена Г Яйца 180. 4
3 Н 30 3 Ужин Н Напиток 30 Компот Н Фрукты 200. 2
3 Н 31 3 Ужин Н Напиток 31 Молочный напиток Н Молоко 200. 2

3.2.3. Естественное соединение таблиц

Легко заметить, что в эквисоединение таблиц вошли дубликаты столбцов, по которым проводилось соединение (Т, В и БЛ). Для исключения этих дубликатов можно создать естественное соединение тех же таблиц:

Реализация естественного соединения таблиц имеет вид

Т В БЛ Трапеза Вид Блюдо Основа Выход Труд
1 З 3 Завтрак Закуска Салат витаминный Овощи 200. 4
1 З 6 Завтрак Закуска Мясо с гарниром Мясо 250. 3
1 Г 19 Завтрак Горячее Омлет с луком Яйца 200. 5
.
3 Г 16 Ужин Горячее Драчена Яйца 180. 4
3 Н 30 Ужин Напиток Компот Фрукты 200. 2
3 Н 31 Ужин Напиток Молочный напиток Молоко 200. 2

3.2.4. Композиция таблиц

Для исключения всех столбцов, по которым проводится соединение таблиц, надо создать композицию

Трапеза Блюдо Вид Основа Выход Труд
Завтрак Салат витаминный Закуска Овощи 200. 4
Завтрак Мясо с гарниром Закуска Мясо 250. 3
Завтрак Омлет с луком Горячее Яйца 200. 5
. . .
Ужин Драчена Горячее Яйца 180. 4
Ужин Компот Напиток Фрукты 200. 2
Ужин Молочный напиток Напиток Молоко 200. 2

3.2.5. Тета-соединение таблиц

В базе данных ПАНСИОН трудно подобрать несложный пример, иллюстрирующий тета-соединение таблиц. Поэтому сконструируем такой надуманный запрос:

позволяющий выбрать из полученного в п.3.2.1 декартова произведения таблиц Вид_блюд и Трапезы лишь те строки, в которых значение трапезы «меньше» (по алфавиту) значения вида блюда:

В Вид Т Трапеза
З Закуска 1 Завтрак
С Суп 1 Завтрак
С Суп 2 Обед
Н Напиток 1 Завтрак

3.2.6. Соединение таблиц с дополнительным условием

При формировании соединения создается рабочая таблица, к которой применимы все операции, рассмотренные в главе 2: отбор нужных строк соединения (WHERE фраза), упорядочение получаемого результата (ORDER BY фраза) и агрегатирование данных (SQL-функции и GROUP BY фраза).

Например, для получения перечня блюд, предлагаемых в меню на завтрак, можно сформировать запрос на основе композиции (п. 3.2.4):

Вид Блюдо Основа Выход ‘Номер -‘ БЛ
Закуска Салат витаминный Овощи 200. Номер — 3
Закуска Мясо с гарниром Мясо 250. Номер — 6
Горячее Омлет с луком Яйца 200. Номер — 19
Горячее Пудинг рисовый Крупа 160. Номер — 21
Напиток Молочный напиток Молоко 200. Номер — 31
Напиток Кофе черный Кофе 100. Номер — 32

В п.3.6 можно познакомиться с достаточно полным примером соединения таблиц с различными дополнительными фразами.

3.2.7. Соединение таблицы со своей копией

В ряде приложений возникает необходимость одновременной обработки данных какой-либо таблицы и одной или нескольких ее копий, создаваемых на время выполнения запроса.

Например, при создании списков студентов (таблица Студенты) возможен повторный ввод данных о каком-либо студенте с присвоением ему второго номера зачетной книжки. Для выявления таких ошибок можно соединить таблицу Студенты с ее временной копией, установив в WHERE фразе равенство значений всех одноименных столбцов этих таблиц кроме столбцов с номером зачетной книжки (для последних надо установить условие неравенства значений).

Временную копию таблицы можно сформировать, указав имя псевдонима за именем таблицы во фразе FROM. Так, с помощью фразы

будут сформированы три копии таблицы Блюда с именами X, Y и Z.

В качестве примера соединения таблицы с ней самой сформируем запрос на вывод таких пар блюд таблицы Блюда, в которых совпадает основа, а название первого блюда пары меньше (по алфавиту), чем номер второго блюда пары. Для этого можно создать запрос с одной копией таблицы Блюда (Копия):

или двумя ее копиями (Первая и Вторая):

Получим результат вида

Первая.Блюдо Вторая.Блюдо Основа
Морковь с рисом Помидоры с луком Овощи
Морковь с рисом Салат летний Овощи
Морковь с рисом Салат витаминный Овощи
Помидоры с луком Салат витаминный Овощи
Помидоры с луком Салат летний Овощи
Салат витаминный Салат летний Овощи
Бастурма Бефстроганов Мясо
Бастурма Мясо с гарниром Мясо
Бефстроганов Мясо с гарниром Мясо

3.3. Вложенные подзапросы

3.3.1. Виды вложенных подзапросов

Вложенный подзапрос — это подзапрос, заключенный в круглые скобки и вложенный в WHERE (HAVING) фразу предложения SELECT или других предложений, использующих WHERE фразу. Вложенный подзапрос может содержать в своей WHERE (HAVING) фразе другой вложенный подзапрос и т.д. Нетрудно догадаться, что вложенный подзапрос создан для того, чтобы при отборе строк таблицы, сформированной основным запросом, можно было использовать данные из других таблиц (например, при отборе блюд для меню использовать данные о наличии продуктов в кладовой пансионата).

Существуют простые и коррелированные вложенные подзапросы. Они включаются в WHERE (HAVING) фразу с помощью условий IN, EXISTS или одного из условий сравнения ( = | <> | | >= ). Простые вложенные подзапросы обрабатываютя системой «снизу вверх». Первым обрабатывается вложенный подзапрос самого нижнего уровня. Множество значений, полученное в результате его выполнения, используется при реализации подзапроса более высокого уровня и т.д.

Запросы с коррелированными вложенными подзапросами обрабатываются системой в обратном порядке. Сначала выбирается первая строка рабочей таблицы, сформированной основным запросом, и из нее выбираются значения тех столбцов, которые используются во вложенном подзапросе (вложенных подзапросах). Если эти значения удовлетворяют условиям вложенного подзапроса, то выбранная строка включается в результат. Затем выбирается вторая строка и т.д., пока в результат не будут включены все строки, удовлетворяющие вложенному подзапросу (последовательности вложенных подзапросов).

Следует отметить, что SQL обладает большой избыточностью в том смысле, что он часто предоставляет несколько различных способов формулировки одного и того же запроса. Поэтому во многих примерах данной главы будут использованы уже знакомые нам по предыдущей главе концептуальные формулировки запросов. И несмотря на то, что часть из них успешнее реализуется с помощью соединений, здесь все же будут приведены их варианты с использованием вложенных подзапросов. Это связано с необходимостью детального знакомства с созданием и принципом выполнения вложенных подзапросов, так как существует немало задач (особенно на удаление и изменение данных), которые не могут быть реализованы другим способом. Кроме того, разные формулировки одного и того же запроса требуют для своего выполнения различных ресурсов памяти и могут значительно отличаться по времени реализации в разных СУБД.

3.3.2. Простые вложенные подзапросы

Простые вложенные подзапросы используются для представления множества значений, исследование которых должно осуществляться в каком-либо предикате IN, что иллюстрируется в следующем примере: выдать название и статус поставщиков продукта с номером 11, т.е. помидоров.

Результат:
Название Статус
СЫТНЫЙ рынок
УРОЖАЙ коопторг
ЛЕТО агрофирма
КОРЮШКА кооператив

Как уже отмечалось в п.3.3.1, при обработке полного запроса система выполняет прежде всего вложенный подзапрос. Этот подзапрос выдает множество номеров поставщиков, которые поставляют продукт с кодом ПР = 11, а именно множество (1, 5, 6, 8). Поэтому первоначальный запрос эквивалентен такому простому запросу:

Подзапрос с несколькими уровнями вложенности можно проиллюстрировать на том же примере. Пусть требуется узнать не поставщиков продукта 11, как это делалось в предыдущих запросах, а поставщиков помидоров, являющихся продуктом с номером 11. Для этого можно дать запрос

В данном случае результатом самого внутреннего подзапроса является только одно значение (11). Как уже было показано выше, подзапрос следующего уровня в свою очередь дает в результате множество (1, 5, 6, 8). Последний, самый внешний SELECT, вычисляет приведенный выше окончательный результат. Вообще допускается любая глубина вложенности подзапросов.

Тот же результат можно получить с помощью соединения

При выполнении этого компактного запроса система должна одновременно обрабатывать данные из трех таблиц, тогда как в предыдущем примере эти таблицы обрабатываются поочередно. Естественно, что для их реализации тебуются различные ресурсы памяти и времени, однако этого невозможно ощутить при работе с ограниченным объемом данных в иллюстративной базе ПАНСИОН.

3.3.3. Использование одной и той же таблицы во внешнем и вложенном подзапросе

Выдать номера поставщиков, которые поставляют хотя бы один продукт, поставляемый поставщиком 6.

Илон Маск рекомендует:  Что такое код mssql_rows_affected
Результат:
ПС
1
3
5
6
8

Отметим, что ссылка на Поставки во вложенном подзапросе означает не то же самое, что ссылка на Поставки во внешнем запросе. В действительности, два имени Поставки обозначают различные значения. Чтобы этот факт стал явным, полезно использовать псевдонимы, например, X и Y:

Здесь X и Y – произвольные псевдонимы таблицы Поставки, определяемые во фразе FROM и используемые как явные уточнители во фразах SELECT и WHERE. Напомним, что псевдонимы определены лишь в пределах одного запроса.

3.3.4. Вложенный подзапрос с оператором сравнения, отличным от IN

Выдать номера поставщиков, находящихся в том же городе, что и поставщик с номером 6.

Результат:
ПС
1
4
6

В подобных запросах можно использовать и другие операторы сравнения (<>, = или >), однако, если вложенный подзапрос возвращает более одного значения и не используется оператор IN, будет возникать ошибка.

3.3.5. Коррелированные вложенные подзапросы

Выдать название и статус поставщиков продукта с номером 11.

Такой подзапрос отличается от рассмотренного в п.3.3.2 тем, что вложенный подзапрос не может быть обработан прежде, чем будет обрабатываться внешний подзапрос. Это связано с тем, что вложенный подзапрос зависит от значения Поставщики.ПС а оно изменяется по мере того, как система проверяет различные строки таблицы Поставщики. Следовательно, с концептуальной точки зрения обработка осуществляется следующим образом:

  1. Система проверяет первую строку таблицы Поставщики. Предположим, что это строка поставщика с номером 1. Тогда значение Поставщики.ПС будет в данный момент имеет значение, равное 1, и система обрабатывает внутренний запрос получая в результате множество (9, 11, 12, 15). Теперь система может завершить обработку для поставщика с номером 1. Выборка значений Название и Статус для ПС=1 (СЫТНЫЙ и рынок) будет проведена тогда и только тогда, когда ПР=11 будет принадлежать этому множеству, что, очевидно, справедливо.
  2. Далее система будет повторять обработку такого рода для следующего поставщика и т.д. до тех пор, пока не будут рассмотрены все строки таблицы Поставщики.

Подобные подзапросы называются коррелированными, так как их результат зависит от значений, определенных во внешнем подзапросе. Обработка коррелированного подзапроса, следовательно, должна повторяться для каждого значения извлекаемого из внешнего подзапроса, а не выполняться раз и навсегда.

Рассмотрим пример использования одной и той же таблицы во внешнем подзапросе и коррелированном вложенном подзапросе.

Выдать номера всех продуктов, поставляемых только одним по-ставщиком.

Результат:
X.ПР
17

Действие этого запроса можно пояснить следующим образом: «Поочередно для каждой строки таблицы Поставки, скажем X, выделить значение номера продукта (ПР), если и только если это значение не входит в некоторую строку, скажем, Y, той же таблицы, а значение столбца номер поставщика (ПС) в строке Y не равно его значению в строке X».

Отметим, что в этой формулировке должен быть использован по крайней мере один псевдоним — либо X, либо Y.

3.3.6. Запросы, использующие EXISTS

Квантор EXISTS (существует) — понятие, заимствованное из формальной логики. В языке SQL предикат с квантором существования представляется выражением EXISTS (SELECT * FROM . ).

Такое выражение считается истинным только тогда, когда результат вычисления «SELECT * FROM . » является непустым множеством, т.е. когда существует какая-либо запись в таблице, указанной во фразе FROM подзапроса, которая удовлетворяет условию WHERE подзапроса. (Практически этот подзапрос всегда будет коррелированным множеством.)

Рассмотрим примеры. Выдать названия поставщиков, поставляющих продукт с номером 11.

Результат:
Название
СЫТНЫЙ
УРОЖАЙ
КОРЮШКА
ЛЕТО

Система последовательно выбирает строки таблицы Поставщики, выделяет из них значения столбцов Название и ПС, а затем проверяет, является ли истинным условие существования, т.е. су-ществует ли в таблице Поставки хотя бы одна строка со значением ПР=11 и значением ПС, равным значению ПС, выбранному из таблицы Поставщики. Если условие выполняется, то полученное значение столбца Название включается в результат.

Предположим, что первые значения полей Название и ПС равны, соответственно, ‘СЫТНЫЙ’ и 1. Так как в таблице Поставки есть строка с ПР=11 и ПС=1, то значение ‘СЫТНЫЙ’ должно быть включено в результат.

Хотя этот первый пример только показывает иной способ формулировки запроса для задачи, решаемой и другими путями (с помощью оператора IN или соединения), EXISTS представляет собой одну из наиболее важных возможностей SQL. Фактически любой запрос, который выражается через IN, может быть альтернативным образом сформулирован также с помощью EXISTS. Однако обратное высказывание несправедливо.

Выдать название и статус поставщиков, не поставляющих продукт с номером 11.

Результат:
Название Статус
ПОРТОС кооператив
ШУШАРЫ совхоз
ТУЛЬСКИЙ универсам
ОГУРЕЧИК ферма

3.3.7. Функции в подзапросе

Теперь, после знакомства с различными формулировками вложенных подзапросов и псевдонимами легче понять текст и алгоритм реализации запроса (п. 3.1) на получение тех поставщиков продуктов для Сырников, которые поставляют эти продукты за минимальную цену:

Естественно, что это коррелированный подзапрос: здесь сначала определяется минимальная цена продукта, входящего в состав Сырников, и только затем выясняется его поставщик.

На этом примере мы закончим знакомство с вложенными подзапросами, предложив попробовать свои силы в составлении ряда запросов, с помощью механизма таких подзапросов:

  1. Выдать названия всех мясных блюд.
  2. Выдать количество всех блюд, в состав которых входят помидоры.
  3. Выдать блюда, продукты для которых поставляются агрофирмой ЛЕТО.

3.4. Объединение (UNION)

В литературе [2] рассматривалась реляционная операция «Объединение», позволяющая получить отношение, состоящее из всех строк, входящих в одно или оба объединяемых отношения. Но при этом исходные отношения или их объединяемые проекции должны быть совместимыми по объединению. Для SQL это означает, что две таблицы можно объединять тогда и только тогда, когда:

  1. они имеют одинаковое число столбцов, например, m;
  2. для всех i (i = 1, 2, . m) i-й столбец первой таблицы и i-й столбец второй таблицы имеют в точности одинаковый тип данных.

Например, выдать названия продуктов, в которых нет жиров, либо входящих в состав блюда с кодом БЛ = 1:

Результат: Продукт
Майонез
Лук
Помидоры
Зелень
Яблоки
Сахар

Из этого простого примера видно, что избыточные дубликаты всегда исключаются из результата UNION. Поэтому, хотя в рассматриваемом примере Помидоры, Зелень и Яблоки выбираются обеими из двух составляющих предложения SELECT, в окончательном результате они появляются только один раз.

Предложением с UNION можно объединить любое число таблиц (проекций таблиц). Так, к предыдущему запросу можно добавить (перед точкой с запятой) конструкцию

позволяющую добавить к списку продуктов Масло, Рис, Мука и Кофе. Однако тот же результат можно получить простым изменением фразы WHERE первой части исходного запроса

3.5. Реализация операций реляционной алгебры предложением SELECT

С помощью предложения SELECT можно реализовать любую операцию реляционной алгебры [2].

Селекция (горизонтальное подмножество) таблицы создается из тех ее строк, которые удовлетворяют заданным условиям. Пример:

Проекция (вертикальное подмножество) таблицы создается из указанных ее столбцов (в заданном порядке) с последующим исключением избыточных дубликатов строк. Пример:

Объединение двух таблиц содержит те строки, которые есть либо в первой, либо во второй, либо в обеих таблицах. Пример:

Пересечение двух таблиц содержит только те строки, которые есть и в первой, и во второй. Пример:

Разность двух таблиц содержит только те строки, которые есть в первой, но отсутствуют во второй. Пример:

Декартово произведение таблиц и различные виды соединений были подробно рассмотрены в п. 3.2.1-3.2.6.

Здесь опущено лишь достаточно нудное описание редко встречаемой операция деления, которая также может быть реализована предложением SELECT с коррелированными вложенными подзапросами.

3.6. Резюме

Краткое знакомство с возможностями предложения SELECT показало, что с его помощью можно реализовать все реляционные операции. Кроме того, в предложении SELECT выполняются разнообразные вычисления, агрегирование данных, их упорядочение и ряд других операций, позволяющих описать в одном предложении ту работу, для выполнения которой потребовалось бы написать несколько страниц программы на алгоритмических языках Си, Паскаль или на внутренних языках ряда распространенных СУБД.

Например, пусть требуется получить калорийность и стоимость тех блюд, для которых:

  • есть все составляющие их продукты;
  • калорийность не превышает 400 ккал;
  • стоимость не превышает 1.5 рубля, а результат надо упорядочить по возрастанию калорийности блюд в рамках их видов.

Для этого можно дать запрос, показанный на рис. 3.2, позволяющий получить искомый результат в виде таблицы

Вид Блюдо
Горячее Помидоры с луком калорий — 244.6 0.44 руб
Горячее Бефстроганов калорий — 321.3 0.53 руб
Горячее Драчена калорий — 333.9 0.33 руб
Горячее Каша рисовая калорий — 339.2 0.27 руб
Горячее Омлет с луком калорий — 354.9 0.36 руб
Десерт Яблоки печеные калорий — 170.2 0.30 руб
Десерт Крем творожный калорий — 394.3 0.27 руб
Закуска Салат летний калорий — 155.5 0.32 руб
Закуска Салат витаминный калорий — 217.4 0.37 руб
Закуска Творог калорий — 330.0 0.22 руб
Закуска Мясо с гарниром калорий — 378.7 0.62 руб
Напиток Кофе черный калорий — 7.1 0.05 руб
Напиток Компот калорий — 74.4 0.14 руб
Напиток Кофе на молоке калорий — 154.8 0.11 руб
Напиток Молочный напиток калорий — 264.9 0.34 руб
Суп Суп молочный калорий — 396.6 0.22 руб

Рис. 3.2. Пример сложного запроса

Такой результат, нестрого говоря, строился следующим образом.

  1. FROM. Эта фраза инициирует создание в рабочей памяти таблицы, являющейся декартовым произведением таблиц Блюда, Вид_блюд, Состав, Продукты и Наличие.
  2. WHERE. Эта фраза нужна для преобразования полученного декартова произведения в естественное соединение и удаления из последнего строк с кодами блюд, не обеспеченных продуктами. Естественное соединение образуется путем вычеркивания строк, где не совпадают: код блюда из таблицы Блюда с кодом блюда из таблицы Состав, код продукта из таблицы Состав с кодом продукта из таблицы Продукты и т.д. Обеспеченность блюда всеми продуктами проверяется с помощью последовательности подзапросов. Внутренний подзапрос выдает перечень кодов продуктов, которых нет в кладовой пансионата. Следующий подзапрос выдает коды тех блюд, в состав которых должны входить «отсутствующие» продукты. И, наконец, из естественного соединения вычеркиваются строки с кодами полученных блюд (точнее оставляются строки «Где код блюда не принадлежит перечню кодов блюд, полученному в подзапросе».
  3. SELECT. Из полученного соединения удаляются столбцы, не используемые в выражениях SELECT или других фразах. Если в списке SELECT есть выражения (константы), то для хранения их значений формируются дополнительные столбцы и инициируются операции по их заполнению. В рассматриваемом примере будут сохранены столбцы Вид, Блюдо, Белки, Углев, Жиры, Вес, Стоимость, К_во и созданы дополнительные столбцы для формирования и хранения значений стоимости и калорийности составляющих каждого блюда, а также для хранения текстовых констант ‘калорий -‘ и ‘руб’. Обратите внимание на прием, использованный при суммировании стоимостей продуктов, входящих в состав блюда, и стоимости его приготовления (Труд): можно ли заменить MIN на MAX или AVG?
  4. GROUP BY. Отредактированное естественное соединение группируется по видам блюд и их названиям. Создаются группы горячих блюд, десертов и т.д., а внутри каждой группы создаются подгруппы строк со сведениями о продуктах, относящихся к конкретному блюду группы.
  5. SELECT. Каждая подгруппа строк, полученная на предыдущем шаге, преобразуется в единственную строку для результата. В нее заносится вид блюда (общий для всех подгрупп группы), название блюда (общее для всех строк подгруппы), две текстовых константы (‘калорий -‘ и ‘руб’) и две суммы. Последние формируются путем суммирования тех значений дополнительных столбцов, которые принадлежат подгруппе.
  6. HAVING. Сформированные строки, не удовлетворяющие условиям фразы HAVING исключаются из результата предыдущего шага.
  7. ORDER BY. Результат шага 6 упорядочивается в соответствии со списком фразы ORDER BY для получения окончательного результата. Сначала строки группируются по видам блюд (в алфавитном порядке), а затем – по значению элемента данных, указанного на четвертом месте фразы SELECT, т.е. по калорийности.

Конечно, рассмотренный запрос весьма сложен, но попробуйте написать на любом знакомом вам языке программу, реализующую те же действия, и оцените сложность ее написания и отладки.

В MySQL-запросах зачем использовать соединение вместо того, где?

Кажется, что для объединения двух или более таблиц мы можем либо использовать join, либо где. Каковы преимущества одного над другим?

Любой запрос, включающий более одной таблицы, требует определенной формы связи, чтобы связать результаты из таблицы «A» с таблицей «B». Традиционные средства (ANSI-89) для этого:

    Перечислите таблицы, включенные в список через запятую, в предложении FROM

Напишите связь между таблицами в предложении WHERE

Здесь запрос переписан с использованием синтаксиса ANSI-92 JOIN:

С точки зрения производительности:

Там, где это поддерживается (Oracle 9i+, PostgreSQL 7. 2+, MySQL 3. 23+, SQL Server 2000+), нет никакой выгоды в производительности при использовании любого синтаксиса по сравнению с другим. Оптимизатор видит их как один и тот же запрос. Но более сложные запросы могут выиграть от использования синтаксиса ANSI-92:

  • Возможность контролировать порядок JOIN — порядок сканирования таблиц
  • Возможность применения критериев фильтра к таблице до присоединения

С точки зрения технического обслуживания:

Существует множество причин использовать синтаксис ANSI-92 JOIN поверх ANSI-89:

  • Более читабелен, так как критерии JOIN отделены от предложения WHERE
  • Меньше шансов пропустить критерии ПРИСОЕДИНЕНИЯ
  • Согласованная поддержка синтаксиса для типов JOIN, отличных от INNER, что упрощает использование запросов в других базах данных
  • Предложение WHERE служит только для фильтрации декартовых произведений объединяемых таблиц.

С точки зрения дизайна:

Синтаксис ANSI-92 JOIN — это шаблон, а не анти-шаблон:

  • Цель запроса более очевидна; столбцы, используемые приложением, понятны
  • Он следует правилу модульности о строгой типизации, когда это возможно. Явное почти всегда лучше.

Заключение

Если не считать знакомства и/или комфорта, я не вижу никакой пользы в том, чтобы продолжать использовать предложение ANSI-89 WHERE вместо синтаксиса ANSI-92 JOIN. Некоторые могут жаловаться, что синтаксис ANSI-92 более многословен, но именно это делает его явным. Чем более явным, тем легче понять и поддерживать.

Это проблемы с использованием синтаксиса where (другим мудрым, называемым неявным соединением):

Во-первых, слишком легко получить случайные кросс-соединения, потому что условия соединения не подходят рядом с именами таблиц. Если у вас есть шесть таблиц, которые объединены вместе, легко пропустить один в предложении where. Вы увидите, что это исправлено слишком часто, используя отдельное ключевое слово. Это огромный успех для базы данных. Вы не можете получить случайное кросс-соединение, используя синтаксис явного соединения, поскольку он не сможет проверить синтаксис.

Правовые и левые соединения проблематичны (на сервере SQl вы не можете получить правильные результаты) в старом синтаксисе в некоторых базах данных. Кроме того, они устарели в SQL Server, я знаю.

Если вы собираетесь использовать кросс-соединение, это не ясно из старого синтаксиса. Это ясно, используя текущий стандарт ANSII.

Гораздо сложнее, если разработчик точно видит, какие поля являются частью соединения или даже какие таблицы объединяются в каком порядке с использованием неявного синтаксиса. Это означает, что для пересмотра запросов может потребоваться больше времени. Я знал очень мало людей, которые, когда они нашли время, чтобы чувствовать себя комфортно с явным синтаксисом соединения, когда-либо возвращались к старому пути.

Я также заметил, что некоторые люди, которые используют эти неявные соединения, на самом деле не понимают, как работают соединения, и, таким образом, получают неправильные результаты в своих запросах.

Честно говоря, вы бы использовали любой другой код, который был заменен лучшим методом 18 лет назад?

лабы по информатике, егэ

лабораторные работы и задачи по программированию и информатике, егэ по информатике

SQL урок 3. Запросы sql INNER JOIN (объединение таблиц)

Выборка из нескольких таблиц (неявная операция соединения)

В sql выборка из нескольких таблиц или неявная операция соединения допускается в предложении FROM, но при этом перечисление таблиц, как правило, сопровождается условием соединения записей из разных таблиц.

Рассмотрим пример неявной операции соединения:

SELECT DISTINCT группы.`Преподаватель` , список.`Учебная группа` , список.`курс` FROM группы, список WHERE группы.`Учебная группа` = список.`Учебная группа` AND курс

SELECT DISTINCT pc.Номер, Производитель FROM pc, product WHERE pc.Номер = product.Номер AND Цена

SELECT DISTINCT A.`Курс` AS номер_курса1, B.`Курс` AS номер_курса2 FROM список AS A, список AS B WHERE A.`Год рождения` = B.`Год рождения` AND A.Курс A.Курс используется для того, чтобы не выводились одинаковые пары, отличающиеся только перестановкой курса.
В общем случае можно использовать условие A.Курс <> B.Курс !

SELECT DISTINCT A.Номер AS модель1, B.Номер AS модель2 FROM pc AS A, pc AS B WHERE A.Цена = B.Цена AND A.Номер A.Номер используется для того, чтобы не выводились одинаковые пары, отличающиеся только перестановкой номера:

Запросы sql INNER JOIN

В предложении FROM может использоваться явная операция соединения двух и более таблиц.

Разберем пример. Имеем две таблицы: teachers (учителя) и lessons (уроки):

teachers lessons

SELECT t.name,t.code,l.course FROM teachers t INNER JOIN lessons l ON t. >

В запросе буквы l и t являются псевдонимами таблиц lessons (l) и teachers (t).

Inner Join — это внутреннее объединение ( JOIN — с англ. «объединение», ключевое слово INNER можно опустить).

При внутреннем объединении выбираются только совпадающие данные из объединяемых таблиц.

Запросы sql OUTER JOIN

При использовании внутреннего объединения inner join выбираются только совпадающие данные из объединяемых таблиц. Для того чтобы получить данные, которые подходят по условию частично, необходимо использовать внешнее объединение.

OUTER JOIN — внешнее объединение, которое возвращает данные из обеих таблиц (совпадающие по условию объединения), ПЛЮС выборка дополнится оставшимися данными из внешней таблицы, которые по условию не подходят, заполнив недостающие данные значением NULL .

Существует два типа внешнего объединения — LEFT OUTER JOIN («внешней» таблицей будет находящаяся слева) и RIGHT OUTER JOIN («внешней» таблицей будет находящаяся справа).

Рисунок относится к объединению типа Left Outer Join:

SELECT t.name, t.code, l.course FROM teachers t LEFT OUTER JOIN lessons l ON t. >

С тем же примером (выбрать имена учителей и курсы, которые они ведут) фильтрация по RIGHT OUTER JOIN вернет полный список уроков по курсам (правая таблица) и сопоставленных учителей. Но так как нет таких уроков, которые бы не соответствовали определенным учителям, то выборка будет состоять только из двух строк:

SELECT t.name, t.code, l.course FROM teachers t RIGHT OUTER JOIN lessons l ON t. >

Выбрать фамилии студентов и их оценки по Word. В случае отсутствия оценки, все равно выводить фамилию.

В приведенных примерах можно вводить фильтры для более точной фильтрации:

SELECT t.name, t.code, l.course FROM teachers t LEFT OUTER JOIN lessons l ON t. >

Объединение с подзапросом

При использовании объединения часто бывает необходимо, чтобы результирующая выборка содержала данные только по одной конкретной строке

SELECT t1.*, t2.* from left_table t1 left join (select * from right_table where some_column = 1 limit 1) t2 ON t1. >

SELECT t1.*, t2.* from left_table t1 inner join (select * from right_table where some_column = 1 limit 1) t2 ON t1. >

SELECT t1.*, t2.* from teachers t1 inner join (select * from lessons where course = «php» limit 1) t2 ON t1. >

Разберем еще один пример:

SELECT t1.производитель, t1.Тип, t2 . * FROM pc t2 INNER JOIN ( SELECT * FROM product WHERE Тип = «Компьютер» ) t1 ON t2.Номер = t1.Номер

Так как в таблице product находятся данные не только по компьютерам, то мы использовали подзапрос, при этом сохранив внутреннее соединение таблиц.
Результат:

Понравилась статья? Поделиться с друзьями:
Кодинг, CSS и SQL